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Abstract

It is maintained that much research into the design and analysis of cross-over trials has been
of little practical relevance to drug development. The point is illustrated using three topics: the
AB=BA design, bioequivalence and multi-period designs in two treatments. It is suggested that
statisticians should pay more attention to the work of fellow scientists, in particular, in the /eld
of pharmacokinetics, and also that the philosophical–inferential base employed in examining
cross-over trials has often been too narrow. c© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Clinical cross-over trials are trials in which subjects are given sequences of treatments
with the object of studying di5erences between individual treatments (Senn, 1993).
They hold a perplexing position in pharmaceutical statistics. They appear to divide
regulators and developers as regards their utility: the former are worried that they will
give biased results if a5ected by carry-over (to be explained below), the latter are
enthusiastic about their e7ciency. They are often inappropriate in phase III, where the
investigation of tolerability is usually as important as that of e7cacy. On the other
hand, in chronic disease, they are the designs of choice for investigating individual
response to treatment. When it comes to analysis, they have been plagued by seemingly
endless controversy and approaches that were previously regarded as appropriate are
now regarded as misguided. On the one hand the challenge of /nding ‘optimal’ designs
appears to have been enthusiastically accepted by statisticians; on the other, the models
employed have been criticised as inappropriate and pharmacologically na<=ve. Table 1
lists some areas of recent past or current controversy.
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Table 1
Debatable issues concerning the use of cross-over trials in drug development

General area Topic or controversial area

General Appropriate role in drug development
The AB=BA design Is pre-testing for carry-over acceptable?

Can this design be used at all?
The use of baselines

Bioequivalence What are optimal tests and can they be used?
Choice of hypotheses
Choice of limits for relative bioavailability
Appropriate size of tests
Type of con/dence limit to use
Log transformation versus Fieller’s theorem
Individual bioequivalence

Multi-period designs General utility of this approach
Choice of models for carry-over
Optimal or robust designs?
Degrees of freedom for error

n-of-1 trials (trials with repeated random Stage of drug development in which to use
treatment allocation for a given individual) Predicting e5ects for individual patients

In this paper, I shall attempt to give an overview of some of these areas of contro-
versy. I shall do this from the perspective of an applied statistician who has worked
within the pharmaceutical industry. This will tend to stress practical aspects of these
controversies at the expense of theoretical ones. Mathematical complexities will be
avoided altogether but some philosophical issues of importance will be stressed.

Since an overall review of cross-over trials has recently been given elsewhere (Senn,
1998) and since, in any case, space here would not permit this to be repeated, speci/c
details of analysis and models will be almost completely avoided since they are not
necessary for the discussion which follows. Illustration of controversies in this /eld
will be limited to three speci/c examples: /rst, the analysis of the AB=BA cross-over,
second, the application of this design to the problem of bioequivalence and third,
multi-period designs in two treatments. Multi-treatment designs will not be covered.

2. The AB=BA design

A very simple design in two periods and two treatments (A and B, say) is one
whereby patients are allocated in equal numbers, or at the very least with equal prob-
ability, to two sequences of treatments, A followed by B (‘AB’) or B followed by A
(‘BA’). For continuous data a very simple analysis can be based on the within-patient
di5erences. If the period e5ect is ignored these can be analysed using the matched-pairs
t, an analysis which dates back to Student’s famous paper (Student, 1908), and a
suitable estimate of the treatment e5ect is the simple mean of these within-patient
di5erences. A slightly more complex analysis is necessary if the period e5ect is to
be eliminated. (Period e5ect here refers to any secular di5erence between periods of
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measurement, generally a5ecting all patients or their measurements, and unrelated to
treatment.) This analysis is based on an unweighted average (to be referred to subse-
quently as CROS) of a treatment estimate taken separately within each sequence. Hills
and Armitage (1979) gave a very good description of this approach in a famous paper.

A common assumption in the analysis of experiments is that there is no interference
between units. The units in a cross-over trial are episodes of treatment and a way in
which this assumption can break down is if the treatments given during one episode
can continue to a5ect the same patient in a subsequent episode. This sort of residual
e5ect of previous treatments is referred to as ‘carry-over’ and can bias estimates, for
where the trialist believes that (s)he is studying the e5ect of one treatment only, the
e5ect of two or more may be being studied. It has been well understood, at least since
Grizzle (1965), that if carry-over occurs, then unless (which is scarcely plausible) it
is identical for each treatment, it will bias the estimate, CROS, described above.

Grizzle (1965) pointed out, however, that an unbiased estimate of the treatment
e5ect is available by using the /rst period data only as in any parallel group trial.
Thus, the estimate is the di5erence between the two /rst period means (to be referred
to as PAR, hereafter). Of course, no one would design a cross-over trial intending
to use this estimate. However, Grizzle also pointed out that a test of carry-over was
available. The mean over both periods for any given patient, being not only a mean of
the results for both periods but also for both treatments, must reLect the main e5ects
both of period and treatment, irrespective of the sequence to which the patient was
assigned. It thus follows that any systematic, as opposed to random, di5erences for this
statistic between sequences can only be a reLection of the order in which the treatments
were administered. Di5erences due to order will either reLect a treatment by period
interaction or carry-over. Both of these, however, may be regarded as troubling the
interpretation of the main e5ect of treatment. A standard two independent sample t-test,
therefore, comparing the means over both periods between both sequences provides a
method of diagnosing carry-over (albeit, aliased with period by treatment interaction).
(The relevant contrast that this test uses will be referred to as CARRY hereafter.)

Grizzle proposed a two-stage procedure whereby a preliminary test was to be carried
out on CARRY. Because CARRY was a between-patient contrast for a trial which
would probably be designed to have adequate power for within-patient contrasts only,
Grizzle recommended a test at a less stringent level of signi/cance, say 10%, than
usual. He then proposed that if this test were signi/cant, PAR rather than CROS
should be used to evaluate the e5ect of treatment. In the case of non-signi/cance of
CARRY, CROS might be used as originally intended.

This proposal was widely adopted within the pharmaceutical industry, and was even
formally endorsed by a Statisticians in the Pharmaceutical Industry (PSI) working
group. However, it has had little impact on physicians outside who, if they used any of
the analyses described above, would often adopt the matched-pairs approach unadjusted
for the period e5ect.

There were some dissenting voices. For example, Brown (1980), in an important
investigation of the power of CARRY under likely circumstances, concluded that it
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would give little comfort in practice. He still recommended, however, that Grizzle’s
two-stage procedure should be followed. Senn (1988), on the other hand, suggested
that the procedure should be abandoned altogether since, if the object were to prove
that carry-over had not taken place, the null hypothesis ought to be one of inLuen-
tial carry-over. The signi/cance test employing CARRY ought to seek to reject this
hypothesis in an analogous manner to bioequivalence trials (which will be covered in
due course). Such rejection would in practice hardly ever be forthcoming. Hence, the
grounds for using CROS had to be external to the data, implying that the two-stage
procedure was pointless.

A more serious criticism was made by Freeman (1989). He pointed out that PAR
was in fact only an unbiased estimator of the treatment e5ect if it was used in an
unconditional sense. However, CARRY and PAR were strongly correlated and this im-
plied that the conditional distribution of PAR, given that CARRY was signi/cant was
quite other than statisticians had implicitly supposed. The net result was that under the
null hypotheses of no treatment e5ect and no carry-over, the type I error rate was not
5% as assumed (using the conventional levels) but somewhere between 7 and 9.5%.

Subsequently, it was pointed out that in many ways this understates the problem with
the procedure. Only under the extreme version of the Neyman–Pearson philosophy is
the average type I error rate of any relevance. It is composed of two parts, a rate of 5%
with probability 0.9 (given that CARRY is not signi/cant) associated with CROS and
a rate lying between 25% and 50% for PAR with probability 0.1 (given that CARRY
is signi/cant) (Senn, 1994). However, in practice, an investigator will know which of
the two tests (s)he has used. Thus, to take a more Fisherian view, the overall type I
rate is irrelevant: either the two-stage procedure is completely superLuous or the type
I error rate is 5–10 times what has been claimed for it (Grieve and Senn, 1998).

The next stage in the development of this on-going story has been to ‘correct’ the
two-stage procedure so that it produces a test of correct size. Similar schemes have been
proposed by Senn (1996) and Wang and Hung (1997) but in a rather di5erent spirit.
Senn (1996) points out that the power of the corrected procedure is poor compared to
the simpler strategy of always using CROS and that the two-stage procedure in any
case smacks so strongly of ad hocery that it should be ruled out on those grounds
alone. On the other hand, Wang and Hung (1997) seem to /nd a role for it.

Whatever the eventual fate of the two-stage analysis, whether completely abandoned
(as is my hope) or widely adopted in a modi/ed form, its history hitherto has been
nothing short of disastrous. It has, in retrospect, been a good thing that the recom-
mendations of statisticians have not been adopted. Ironically, although there are now
three books on cross-over trials (Jones and Kenward, 1989; Senn, 1993; Ratkowsky
et al., 1993) none of which recommends this procedure, general textbooks on medical
statistics continue to be written which endorse it.

However, it should be stressed, that although the two-stage analysis of the AB=BA
design cannot be recommended, this does not mean that the design itself is not use-
ful. On the contrary, it can be extremely useful provided that the assumption of no
carry-over can be made.
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3. Bioequivalence

Once the patent on an innovator drug expires, it is then possible for generic ver-
sions to be produced and marketed with a consequent bene/cial on the price e5ect
(for health care purchasers!). It also happens that an innovator company may wish to
provide di5ering versions of the same product, for example a dispersible rather than
a tablet form. It may also be the case that a treatment can be taken under di5erent
circumstances, say with or without a certain food, which may or may not interact
with it.

In all these cases it seems intuitively unreasonable to require a full new drug de-
velopment ab initio. For example, if a generic company had to repeat all the steps of
the innovator company in developing the product, it would a5ect the price at which it
could compete. It was early recognised that a potential pharmacological solution to this
problem was to compare the concentration time curves in the blood of the innovator
and generic products using a suitable number of subjects, often healthy volunteers, and
nearly always using an AB=BA cross-over. “The blood is a gate through which the
drug must pass”. It seems implausible that formulations that could be equivalent at this
point could subsequently di5er in terms of distribution and hence in terms of pharma-
codynamic e5ect. Thus, equivalence in concentration is believed to imply equivalence
in e5ect and side e5ect.

The pharmacological solution brought with it, however, a statistical problem. Early
practice seems to have been to compare concentration–time curves with a conventional
signi/cance test carried out on suitable summary measures, nearly always area under
the curve (AUC) but sometimes also concentration maximum (Cmax) and time to reach
Cmax (Tmax). (AUC is a measure of the bioavailability of the product and is the most
important of these measures.) At /rst, small trials were employed with no thought to
power. Gradually, however, it came to be realised that failure to /nd a signi/cant dif-
ference was not proof of equivalence. However, early solutions seem to have involved
making a similar error to that with carry-over in the two-stage analysis, namely looking
at it in terms of the power of the conventional test to /nd a di5erence, rather than
evolving a new test altogether.

An important early paper was that of Westlake (1976) who made what was, in
my opinion, the crucial observation, namely that the problem is essentially one of
estimating the relative bioavailability and showing that this is close to 1. He proposed
using a 95% con/dence interval centred on 1. Kirkwood (1981) proposed instead a
con/dence interval centred on the observed ratio. As O’Quigley and Baudoin (1988)
showed, a /ducial=Bayesian interpretation of the di5erence between the two approaches
is that the /rst relates to the probability that the relative bioavailability lies within the
region of equivalence whereas the second examines whether the most probable region
includes the region of equivalence. There has been much technical discussion since
of the appropriate approach and there is an enormous literature on this apparently
simple problem, some areas of debate are covered in chapter 22 of Statistical Issues
in Drug Development (Senn, 1997). The general approach now internationally agreed
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by regulatory authorities is to analyse log-AUC and, having anti-logged, show that a
90% conventional con/dence limit for the ratio of AUCs lies in the invariant range
0.8–1.25.

Consider the relative bioavailability of the ‘test’ (for example, generic) treatment
compared to the ‘reference’ (for example, innovator) treatment. Suppose that if this
relative bioavailability, �, is less than 80% it is referred to as ‘sub-availability’ and if it
is more than 125% it is referred to as ‘super-availability’ and that anything in between
is considered to constitute ‘practical equivalence’. In a hypothesis-testing framework,
rejection of the hypothesis of super-availability, H0A: �¿1:25 and of the hypothesis of
sub-availability, H0B: �¡0:8 would seem to imply that practical equivalence obtains. It
can be shown that carrying out two such one-sided tests independently, each at the 5%
level, corresponds to a procedure which accepts bioequivalence if the 90% conventional
two-sided con/dence limits for the di5erence in log-AUC, 
 = log �, lie between the
limits of equivalence log 0:8 = −0:223 and log 1:25 = 0:223.

Now consider, for argument’s sake, a bioequivalence trial in which the standard
deviation of within-subject log-AUC were known to be �. (Of course, in practice, this
would never be the case but assuming that this is so will su7ce to make a point.)
Suppose that we have m subjects assigned to each sequence and that n = 2m. The
standard error of the estimate of the di5erence in log-bioavailability will be �

√
(2=n).

Let the point estimate of the di5erence in log-bioavailability (test-reference) be d. The
conventional approach thus concludes bioequivalence if d−1:645×�√(2=n)¿−0:223
and d+ 1:645× �√(2=n)¡+ 0:223. A necessary (but not su7cient) condition for this
to be so is that

1:645 × �√(2=n)¡+ 0:223: (1)

Now suppose that � is large, then for su7ciently small n, condition (1) is not met.
It thus follows that whatever the value of d, bioequivalence will not be concluded.
However, the treatments might, in fact, be perfectly (or at the very least acceptably)
bioequivalent. Hence under these circumstance the procedure has zero power and of
course also zero size.

Although the above argument assumes a known value of � it is intuitively clear
that a similar phenomenon can arise where the value of � has to be estimated and the
t-distribution is used for calculating the con/dence limits. (Because the estimate of �
can, with small probability, be small even where � is large, a test of zero size will
not result but one which is less than the nominal 5% is possible.) This suggests that
the now common approach of seeing that the 90% con/dence limits lie between the
limits of equivalence is not optimal in the Neyman–Pearson sense and that, indeed even
where � is small compared to n, the test is in general conservative. As a consequence,
various proposals have been made to improve this approach. An important paper, is
that of Mehring (1993), which in addition to covering various theoretical matters in
considerable depth, also shows a commendable common-sense which has not been
adopted by all who have studied this problem. Other papers include those of Anderson
and Hauck (1983), Berger and Hsu (1996) and Brown et al. (1997).
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In my view, however, there are good reasons for resisting any attempts to replace
the 90% con/dence interval approach by anything less conservative and, indeed, it can
even be claimed that its is too liberal. The basic problem is that all ‘improvements’
proposed are improvements in the Neyman–Pearson sense only and do not look so
good from the perspective of alternative philosophies. To see why it is necessary to
look at the conventional approach when attempting to prove superiority of an active
treatment to placebo.

Under such circumstances,the regulator will require the sponsor to show, given a null
hypothesis of equality, that a conventional two-sided test has rejected this at the 5% level.
If this approach is adopted the following can be claimed whatever the sample size.

(1) The type I error rate will be 5%.
(2) If e7cacy is accepted, the p-value will be 0.05 or less.
(3) If e7cacy is accepted, the conventional 95% con/dence limits for the e5ect of

treatment will exclude zero.
(4) If e7cacy is accepted, the Bayesian 95% highest posterior density interval corre-

sponding to an uninformative prior will exclude zero.
(5) If e7cacy is accepted, the likelihood ratio for the best-supported alternative hy-

pothesis compared the null hypothesis will be greater than 6.

It can thus be seen that in some sense at least consensus is maintained between
various approaches to examining e7cacy.

When we come to look at bioequivalence, however, this approach breaks down. For
example, given large enough � and small enough n, to produce a test with ‘correct’ size
can require us to accept equivalence even though the point estimate for relative bioavail-
ability lies outside the limits of equivalence. Under such circumstances it is quite
clear that the likelihood ratio must be against the hypothesis of equivalence and for
in-equivalence. It is also clear that agreement with Bayesian and other approaches will
not be produced. Whatever lip service may be given to the Neyman–Pearson approach
from certain quarters within drug development, it is quite clear that the practical con-
sensus that this is the only reasonable approach just does not exist. No regulator would
accept bioequivalence if the point estimate lay outside the limits of equivalence and (I
hope) no pharmaceutical statistician would attempt to convince him or her to do so.

In practice, this is not likely to be a serious problem. If it is accepted that a rea-
sonable amount of evidence is needed to conclude anything about a treatment, then
in that case we shall never be in the position of being forced or willing to conclude
equivalence unless � is small compared to n, but by the same token there can be no
value in improving the conventional approach in a Neyman–Pearson sense. In fact, the
various Neyman–Pearson improvements which have been proposed to the conventional
approach would only ever be reasonable if the following were the true.

(1) We had to make a decision on the basis of the data collected so far so that the
decision was between ‘accept now’, ‘reject now’, and a third course of action
‘collect more data’ was excluded.
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(2) The sponsor had the right to determine the amount of evidence which was necessary
to come to a conclusion and the regulator was honour bound to accept this decision,
provided only that the type I error rate did not exceed the 5% level.

(3) We accepted that maximising power for a given size was a reasonable approach.
(4) We failed to plan trials with adequate numbers of subjects.

But if the /rst two points are true, what is to prevent a sponsor who fears that
his drug may not be bioequivalent adopting the approach that has both highest proba-
bility of success and is cheapest, namely that of collecting no data and rolling an
icosahedral die?

4. Multi-period trials in two treatments

The various problems which have been outlined above in connection with the analysis
of the AB=BA design have led statisticians to seek alternatives in which the e5ect of
carry-over can be eliminated e7ciently. One approach has been to add more periods.
An extensive review of various designs was made by Matthews (1994a) some years ago
in an excellent paper published in this journal. This general /eld is one characterised
by technical brilliance with (from the perspective of an ordinary applied statistician at
least) a fair amount of abstract algebra. As an exercise in mathematics this is all a
perfectly legitimate exploration of the consequences of various models. To the applied
statistician working in drug development, however, this does not justify the application
of the results. As will be shown below, there are good grounds for a healthy scepticism
regarding the practical utility of these approaches and, in fact, little of this work is of
any direct relevance to drug development.

Consider as an example a design in four periods and four sequences in which pa-
tients are randomised in equal numbers to receive one of the following sequences of
treatment: AABB, BBAA, ABBA or BAAB. Any conventional estimator of the treat-
ment contrast for the di5erence between the e5ect of A and B can be expressed as
a linear combination of the sixteen cell means de/ned by the cross-classi/cation of
the four sequences and four periods. Since there are eight cell means corresponding to
treatment A and 8 corresponding to treatment B, a very simple and obvious scheme
of weights is to give each of the means corresponding to A a weight of 1

8 and each
corresponding to B a weight of − 1

8 . If the weights are so distributed it will be seen
that they add up to zero in any sequence and to zero in any period. This is a simple
consequence of the fact that each treatment appears an equal number of times in each
sequence and each period. Thus, in addition to estimating the e5ect of interest, patient
and period e5ects are eliminated.

This design, however has a further property. It is also the case that treatment A is
directly followed by itself on three occasions (period 2 of sequence 1, period 4 of
sequence 2 and period 3 of sequence 4) and is also directly followed by B on three
occasions (period 3 of sequence 1, period 2 of sequence 3 and period 4 of sequence
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4). This is a further balancing-type property of this design. (In fact, in the technical
literature this property is often referred to as ‘balance’ as if no other deserved the
name.) Now suppose that it were the case that carry-over lasted for one period exactly
and depended only on the engendering and not the perturbed treatment (what has been
referred to as the ‘simple carry-over’ model). It would then be the case that we could
speak of the carry-over due to A as a single e5ect and that, in the construction of
the overall treatment estimate, three cell means associated with this e5ect would be
weighted by 1

8 and three would be weighted by − 1
8 . Hence, the e5ect of this carry-over

would be eliminated. (A similar phenomenon would apply to the carry-over associated
with B.)

Given equal correlation of within patient errors, this design would be fully e7cient
but, in fact this assumption can be relaxed and further complications such as restricting
the number of sequences to two only can be introduced. It may then be the case that
there is no fully e7cient design but that a best or set of best designs can be found.
Various detailed investigations of these and related matter have been carried out by a
number of statisticians.

However, an absolutely devastating blow to the rationale of all of this work was
struck by Fleiss (1986, 1989). He pointed out that the model for carry-over was not
in the slightest bit reasonable. Consider a so-called multi-dose trial (a trial in which
patients are given regular therapy, for example twice daily, for a period of time). The
main object of the trial will be to study the steady-state e5ect of treatment. If the
period has been chosen so as to permit this to be possible there can be no carry-over
in terms of e5ect of a treatment into itself. For example, in the AABB sequence above,
steady state will have been reached by the end of period one and hence the e5ect at
the end of period two under A cannot be greater than it would otherwise be had A not
preceded it. On the other hand, it is conceivable that there could be a carry-over from
A into B. Hence, in contradistinction to what has been supposed by many statisticians
working on the so-called ‘optimal’ cross-over designs, these designs do not necessarily
have anything to do with solving the problem of carry-over and the work of the applied
statistician in the pharmaceutical industry. In fact, if carry-over occurs, the alternative
steady-state theory (carry-over from A into B but not into A) seems more reasonable.

There is an even more fundamental criticism of all of this work. ‘Period’ is not even
a primitive design constraint in many cases. The task of the statistician is not necessarily
to /nd an e7cient design in four periods (say) but to /nd an e7cient design in six
months (say). One of the tasks of the statistician and physician in working together
will be to determine the length of the period of treatment and this can only be done
in the light of pharmacodynamic and pharmacokinetic theory. As has been pointed
out, a statistician who knows how to design a trial to study the steady-state e5ect
of treatment knows how to design one to eliminate carry-over. Thus, pharmacological
theory, rather than deep understanding of algebra and orthogonality, is the key to good
design (Sheiner et al., 1991).

Matthews (1994b) has pointed out that designs which are e7cient for the simple-carry-
over theory are often e7cient for the steady-state theory also, so that the designs which
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have been found need not necessarily be abandoned in the light of Fleiss’s criticism.
However, as Senn and Lambrou (1998) have pointed out, Matthews’s claim is only
relevant provided the form of carry-over is known at the time of analysis. If both
steady state and simple carry-over have to be eliminated, alternative designs may be
superior.

In any case, this whole discussion raises the issue of the relevance of the usual design
criterion. It has been implicitly assumed in most investigations that minimum variance
unbiased estimation is attainable and desirable. Consider, however, the ‘optimal’ design
in two periods: the AB=BA=AA=BB design. For a given number of patients allocated
in equal numbers to all sequences, the estimator that eliminates simple carry-over has
four times the variance of that of CROS for the AB=BA design. Furthermore, unless
simple carry-over applies and the carry-over from A into A equals the carry-over from
A into B, the estimate is not even unbiased. If realistic carry-over occurs, and an
unbiased estimate is essential, there will also be no choice but to use /rst period data
only, in which case a more e7cient approach would have been not to collect the
second period data. Thus, the statistician who contemplates using the AA=BB=AB=BA
design has already implicitly accepted that some bias is acceptable. But if some bias
is acceptable, ought not all three designs (two sequence, four sequence and parallel
group) be compared in terms of mean-square error. If this is done for almost any
realistic combination of carry-over, within- and between-patient variances, the AB=BA
design will come out best.

5. Discussion

These examples illustrate that there may be considerable grounds for concern regard-
ing statistical research into the cross-over trial.

First, the distinction between single-dose pharmacodynamic and multi-dose thera-
peutic trials needs to be understood by all working on these trials. For the latter, the
de/nition of a ‘period’ is arbitrary. For both types it needs to be appreciated that pa-
tients are not recruited simultaneously. In particular, statisticians should be aware that
when designing cross-over trials, the length of period and or washout always has to be
determined by the trialist. These determinations are made in the light of beliefs about
carry-over.

This brings us to the second point. There is a very vigorous pharmacokinetic school
doing important work on the e5ects of treatments. The theories of pharmacodynamic
response that they have been developing have their roots at least as far back as Hill’s
famous paper (Hill, 1910). If statisticians had paid any attention to this work the
implausible simple carry-over model would not have been the overwhelming favorite
with them which it has proved.

The work on optimal design for simple carry-over would also have been of more
practical bene/t if more care had been taken over terminology. For example, ‘an
optimal design for dealing with carry-over’, as commonly applied, usually means,
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‘minimum variance unbiased design for dealing with the sort of carry-over which lasts
for one period and depends only on the engendering treatment’. Since it is doubtful
that this sort of carry-over is ever encountered, this sort of a design is not necessarily
optimal or even useful for the practical experimenter.

In short, statisticians involved in developing models and designs for cross-over trials
need to look beyond mathematics to wider scienti/c, philosophical and practical issues,
if they are going to do work which is useful to their fellow scientists.

Acknowledgements

I thank two anonymous referees for helpful comments on an earlier version.

References

Anderson, S., Hauck, W.W., 1983. A new procedure for testing equivalence in comparative bioavailability
and other clinical trials. Comm. Statist. A 12, 2663–2692.

Berger, R.L., Hsu, J.C., 1996. Bioequivalence trials, intersection-union tests, and equivalence con/dence sets.
Statist. Sci. 11, 283–302.

Brown, B., 1980. The cross-over experiment for clinical trials. Biometrics 36, 69–79.
Brown, L.D., Hwang, J.T.G., Munk, A., 1997. An unbiased test for the bioequivalence problem. Ann. Statist.

25, 2345–2367.
Fleiss, J.L., 1986. Letter to the editor. Biometrics 42, 449–450.
Fleiss, J.L., 1989. A critique of recent research on the two-treatment cross-over design. Control Clin. Trials

10, 1121–1130.
Freeman, P.R., 1989. The performance of the two-stage analysis of two-treatment, two-period cross-over

trials. Statist. Med. 8, 1421–1432.
Grieve, A.P., Senn, S.J., 1998. Estimating treatment e5ects in clinical cross-over trials. J. Biopharm. Statist.

8, 191–233; discussion 235–247.
Grizzle, J.E., 1965. The two-period change-over design and its use in clinical trials. Biometrics 21 467–480

(Corrigenda see Grizzle (1965), Biometrics 30, 727 and Grieve, A.P., 1982. Biometrics 38, 517).
Hill, A.V., 1910. The possible e5ects of the aggregation of the molecules of haemoglobin on its dissociation

curves. Proc. Physiol. Soc. 40, iv–vii.
Hills, M., Armitage, P., 1979. The two-period cross-over trial. Brit. J. Clin. Pharm. 8, 7–20.
Jones, B.J., Kenward, M.G., 1989. Design and Analysis of Cross-Over Trials. Chapman and Hall, London.
Kirkwood, T.B.L., 1981. Bioequivalence testing a need to rethink. Biometrics 37, 589–591.
Matthews, J.N.S., 1994a. Modelling and optimality in the design of cross-over studies for medical

applications. J. Statist. Plann. Inference 42, 89–108.
Matthews, J.N.S., 1994b. Multi-period cross-over trials. Statist. Methods Med. Res. 3, 383–405.
Mehring, G.H., 1993. On optimal tests for general interval-hypotheses. Comm. Statist: Theory Methods 22,

1257–1297.
O’Quigley, J., Baudoin, C., 1988. General approaches to the problem of bioequivalence. Statistician 37,

51–58.
Ratkowsky, D.A., Evans, M.A., Alldredge, J.R., 1993. Cross-over Experiments, Design, Analysis and

Application. Marcel Dekker, New York.
Senn, S.J., 1988. Cross-over trials, carry-over e5ects and the art of self-delusion. Statist. Med. 7, 1099–1101.
Senn, S.J., 1993. Cross-over trials in Clinical Research. Wiley, Chichester.
Senn, S.J., 1994. The AB=BA crossover: past, present and future?. Statist. Methods Med. Res. 3, 303–324.
Senn, S.J., 1996. The AB=BA cross-over: how to perform the two stage analysis if you can’t be persuaded

that you shouldn’t. In: Hansen, B., de Ridder, M. (Eds.), Liber Amicorum Roel van Strik. Rotterdam,
pp. 93–100.



40 S. Senn / Journal of Statistical Planning and Inference 96 (2001) 29–40

Senn, S.J., 1997. Statistical Issues in Drug Development. Wiley, Chichester.
Senn, S.J., 1998. Cross-over trials. In: Armitage, P., Colton, T. (Eds.), Encyclopedia of Biostatistics. Wiley,

New York.
Senn, S.J., Lambrou, D., 1998. Robust and realistic approaches to carry-over. Statist. Med. 17, 2849–2864.
Sheiner, L.B., Hasimoto, Y., Beal, S.L., 1991. A simulation study comparing studies for dose ranging. Statist.

Med. 10, 303–322.
Student, 1908. The probable error of a mean. Biometrika 6, 1–25.
Wang, S.-J., Hung, H.M.J., 1997. Use of two-stage statistic in the two-period cross-over trials. Biometrics

53, 1081–1091.
Westlake, W.J., 1976. Symmetrical con/dence intervals for bioequivalence trials. Biometrics 37, 741–744.


