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SUMMARY .

Repeated measures data, in which the same response variable is recorded on each chservational unit on several
different occasions, oceur frequently in many different disciplines. Many methods of analysis have been suggested
including ¢-tests at each separate time point and multivariate analysis of variance. In this paper the apptication of
a number of methods is discussed and illustrated on a variety of data sets. The approach invelving the calculation
of a small number of relevant summary statistics is considered to have advantages in many circumstances,

Keywords: Compound symmetry; Missing values; Multivariate analysis of variance; Repeated measures; Summary
measures

1. Introduction

Repeated measures data arise when time sequences of observations of the same dependent
variable are made on each of a number of experimental units (usually subjects or patients—in
this paper they will be referred to as ‘subjects’) possibly allocated to one of several
treatments. The investigator may also vary systematically the conditions under which the
repeated measurements are made, thus introducing one or more within-subject factors into
the design. Often the repeated measures include several taken before any treatment starts.
The dependent variable may be quantitative or categorical. The following is 2 small selection
of specific examples that have been reported in the increasing literature of repeated measures
designs.

{a) A randomized trial of 152 patients with coronary heart discase compared an active
drug with a placebo during a 12-month follow-up period. The liver enzyme CPK in
serum was measured to study a possible adverse drug effect on the liver. Each patient
had three pretreatment measurements taken 2 months before, 1 month before and at
randomization, and.eight post-treatment measurements taken every 1.5 months after
randomization (Frison and Pocock, 1992).

{b) During the grazing season, from spring to autuman, cattle can ingest round-worm larvae,
which have developed from eggs previously deposited in the pasture in the faecces of
infected cattle. Once infected, an animal is deprived of nutrients and its resistance to
other diseases is lowered, which in turn can greatly affect its growth. The monitoring
of the effects of a treatment for the disease requires observations to be made throughout
the grazing season. In an experiment to compare two methods for controlling the
disease, 60 animals were randomly assigned to two treatment groups each of size 30.
The animals were put out to pasture at the start of the grazing season, the members
of each group receiving one of the two treatments. The weight of each animal was then

T Address for carrespandence: Department of Biostatistics and Computing, Institute of Psychiatry, De Crespigny
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© 1995 Rayal Statistical Society 0039-0526/95/44113



114 EVERITT

recorded 11 times. The first 10 measurements were made at 2-week intervals and the
final measurement was made after a 1-week interval (Kenward, 1987).

(c) Visual acuity was the subject of an investigation in which response times of the eyes
to a stimulus were measured. The variable recorded was the time lag between the
stimulus (a light flash) and the electrical response at the back of the cortex. Recordings
were made for left and right eyes through lenses of four different powers (Crowder and
Hand, 1990).

(d) In a comparative clinical trial to investigate which of two drugs made life mare tolerable
for patients suffering from brain tumours, participants were asked, ‘do you still enjoy
doing the things you used to?’, and their responses in terms of the three categories
‘yes’, ‘sometimes’ and ‘no’ recorded on nine occasions. Here the response variable is
categorical (Crowder and Hand, 1990). '

The methods used to analyse repeated measures data range from the simple to the complex,
with a particular approach often being specific to a particular discipline. In medicine, for
example, such data are still largely analysed by a series of r-tests at different time points,
whereas in psychology multivariate analysis of variance is frequently employed. The purpose
of this paper is to review some of the methods used in practice and to illustrate their
application to particular data sets. The theory behind each method will be dealt with only
very briefly or omitted entirely. Good sources of theoretical detail are Crowder and Hand
(1990), Laird et al. (1992), Lindsey (1993) and Diggle et al. {1994).

Section 2 considers relatively simple methods including the analysis of separate time points
and the use of summary measures. Section 3 describes the use of analysis-of-variance models.
Section 4 looks at more complex models, particularly useful when the repeated measures are
not taken at the same time for each subject, or when there are missing values, a frequently
aceurring problem with longitudinal data.

QOunly the analysis of quantitative repeated measures data is discussed in this paper.
Categorical variables will be considered in a later paper.

v

2. Simple methods for the analysis of repeated measures data

A useful initial step in the analysis of repeated measures data is to graph the data in some
way. A method often employed, particularly in medical publications, is to plot means by
treatment group for every time point. An example of such a plot for the data from the trial
of two treatments for the control of intestinal parasites in cattle given in Keaward (1987) is
shown in Fig. 1. Stardard error bars are frequently attached to such plots, although the
resulting diagram can, at times, become quite cluttered. To supplement this ‘means’ plot,
it is usually helpful to produce separate graphs of the responses against time for each subject,
differentiating between treatments in some way. Fig. 2, for example, shows the individual
growth profiles for the 30 animals on each treatment. When the number of individual curves
is large it may be more useful to plot a small number of representative curves. A suggestion
due to Jones and Rice {1992) may be helpful here. The idea is to use principal components
analysis to select a small number of the growth curves. Specifically, those curves corresponding
to the units with the minimum, maximum and median principal component scores on the
first one or two principal components will generally give an adequate summary of all the
curves. For the cattle growth data the first principal component is simply a weighted average
of the weights on each of the 11 occasions, and the second component is essentially a contrast
of the weights on the first eight occasions, with those on the last three. The summary curves
chosen according to the individual principal component scores are shown in Figs 3 and 4.
These curves highlight the apparent decline in weight on the last two or three occasions for
those animals given treatment B.
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Fig 2. Individual growth profiles in each treatment group for the cattle growth data: (a) treatment B; (b} treatment A
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A commonly used method of analysis for repeated measures that involve a number of
treatment groups, particularly in medical and related research, is to compare the groups at
each time point, by using either ¢-tests or some nonparametric equivalent. Table 1, for example,
shows the results of using the procedure on the cattle weight data. None of the t-tests show
any evidence of a treatment difference.

Finney (1990) suggested that this approach may be quite useful if the occasions are few
and the intervals between them are large. In general, however, there are convincing arguments
against such multiple tests. The first is that the tests are clearly nor independent and so their
interpretation is difficult. Simply assuming that the tests give independent information about
group differences is clearly not sensible, as is demonstrated by considering what would happen
if the repeated measurements were made more frequently. The number of significance tests per-
formed would rise accordingly, but the increased information about the difference between the
treatments is likely to be very small. Repeated testing also assumes that each time point is of
separate interest in its own right. This is unlikely in most cases; the real interest is likely to be in
something more global. The separate significance tests do not give an overall answer to whether
or not there is a treatment difference and provide no single estimate of the treatment effect.

A more relevant, but still relatively straightforward, approach to the analysis, of repeated
measures data is that involving the use of summary measures, and sometimes known as
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Fig. 4 Summary curves chosen by the use of principal component scores (treatment B; , median; -+
minimum; - - - - - , maximum): (a) principal companent 1 curves; (b} principal component 2 curves

response feature analysis. Here the responses for each subject are used to construct a single
number that summarizes some aspect of the subject’s response profile. (In some cases more
than a single summary measure may be used.) The summary measure to be used needs to be
chosen before the analysis of the data and should, of course, be relevant to the particular
questions of interest in the study. Matthews ef al. (1990) gave a list of potentially useful
summary measures, reproduced here in Table 2. In clinical trial work, Frison and Pocock
(1992) argued that the average response to treatment over time is oftcn likely to be the most
relevant summary of the repeated measurements.

Having identified a suitable summary measure, the analysis of treatment differences
generally involves the application of a simple univariate test (usually a t-test or nonparametric
equivalent) to the single measure now avaijlable for each subject. Table 3 shows the results
of the analysis of several different summary measures calculated from Kenward's cattle
weight data. Once again there is no evidence of any treatment effect. (Diggle et al. (1994)
consider other summary measures that do show a treatment difference.)

Pretreatment measures, if available, can be used in association with the response feature
approach in several ways. If, for example, the average response to treatment over time
is the chosen summary, Frison and Pocock (1992) suggest three possible methods of
analysis: .



118 EVERITT

TABLE 1
t-tests for each time point for cattle growth dataf
Time (days) A B t P
4] Mean 226.20 224.63
sD 10.27 10.20 —0.59 (.56
14 Mean 23033 227.90
SD 12.45 10.41 —0.82 0.41
28 Mean 246 .87 243.53
SD 12.85 12.13 —1.03 0.30
42 Mean 26563 26247
SD 13.60 14.15 — (.88 0.38
56 - Mean 281.13 276.43
5D 15.56 14.75 —1.20 (.23
70 Mean 294 33 283.07
SD 17.35 19.45 —1.32 .19
84 Mean 304.73 29923
Sp 17.51 15.75 — .28 Q.21
93 Mean 3287 317.67
5D 18.46 15.30 1.10 (.28
112 Mean 31503 320.20
SD 19.87 17.01 1.08 .29
126 Mean 32407 326.93
SD 2168 20,12 0.53 Q.60
133 Mean 32547 320.50
SD 21.08 24,39 —0.584 .40

18D, standard deviation.

(a) post-treatment means (POST)—a simple analysis using the mean for each subject’s
post-treatment responses as the summary measure;

(b) mean changes (CHANGE)—a simple analysis of each subject’s difference between
the mean of post-treatment responses and the mean of base-line measurements, the
latter often consisting of a single base-line value per subject;

(¢) analysis of covariance (ANCOVA)—between-subject variations in base-line measure-
ments are taken into account by using the mean of the base-line values for each subject,
as a covariate in a linear model for the comparison of post-treatment means.

TABLE 2
Some summary measures as given in Matthews ¢¢ af. (1990)

Type of data Question of interest Summdry measire
Peaked Is averall value of outcome variahle the Overall mean equal time intervals); area
o same in different groups? under curve (unequal time intervals)

Peaked Is maximum (minimum) response different Maximum (mininum) value
between groups?

Peaked Is time to maximum {minimum) response Time to maximum {miniroum) response
different between groups? :

Growth Is rate of change of outcome variable Regression coefficient
different between groups?

Grawth Is eventual value of outcome variable the Final value of outcome measure or
same between groups? difference hetween last and first

values, or percentage change between
) first and last value
Growth Is response in one group delayed relative Time to reach a particular value (2.g. a fixed

to the ather?

percentage of base-line)
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TABLE 3
Analysis of summary measures for catile grawth datat
A B i P
Mean Mean 284 24 282.51
SD 1494 14.02 —0.45 0.64
Maximum Mean 312643 330.23
5D 2083 18.27 0.75 0.46
Linear slape Mean 0.80 (.83
. 8D 0.15 0.13 0.89 0.38

18D, standard deviation.

The results of applying each of these methods to the cattle weight data, regarding the
observation at time O as pretreatment, are shown in Table 4. All three approaches indicate
that the data show no evidence of a treatment effect. (In any detailed analyses of these data,
assumptions such as normality and equality of regression slopes within groups would, of
course, need to be checked.)

Frison and Pocock (1992) compared the three approaches to the analysis of repeated
measures data when pretreatment values are available. With a single pretreatment recording,
they found that analysis of covariance is more powerful than both analysis of change scores
and analysis of post-treatment means only, except when the correlations between the repeated
measures are small. Using the mean of several pretreatment measures as a covariate makes
the analysis of covariance even more efficient if there are substantial correlations between the
repeated measures. The differences between the three approaches can be illustrated concisely
by comparing power curves calculated by using the formulae given in Frison and Pocock
(1992). Figs 5-7 show some examples for the situation with two treatment groups, two
pretreatment and four post-treatment observations. (The correlations between pairs of
repeated measures are assumed equal in the calculation of these power curves.) The sample
size needed to achieve a particular power to detect a standardized difference of 0.5 is always
lower- with analysis of covariance, and in some cases substantially lower. As the correlation
increases, CHANGE becomes less inferior to method ANCOVA. Both become substantially
better than POST. With a correlation of 0.2, CHANGE is seen to be less efficient than simply
dealing with post-treatment values. (When the correlation is 0 the ANCOVA and POST
methods are almost equivalent.)

TABLE 4
Analysis of cattle growth datat
A B t P
(@) POST
Mean 286.11 284.71
SD 1538 14.16 .35 0.72
(B) CHANGE
Mean 5991 60.08
5D 1191 10.12 Q.00 0.95
() ANCOVA
Adjusted means 285.36 218547 0.00 0.97

+SD, standard deviation.
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The use of summary measures in the analysis of repeated measures data has several
advantages. Three listed by Matthews (1993} are

(a) an appropriate choice of summary measures ensures that the analysis is focused on
relevant and interpretable aspects of the data. .

{b) the method is statistically valid and

{c} to an extent, missing and irregular observations can be accommadated (this point will
be the subject of further consideration in Section 4),

There are, however, some possible disadvantages with such an approach. First it may be
difficult to specify in advance an appropriate and relevant summary measure. Matthews er
al. (1990), however, pointed out that this may, in fact, be an advantage since it might encourage
researchers to think about the features of the data that will be of most interest to them when
designing the study, rather than simply posing the rather vague question, ‘how do the
groups differ?”. A further statistical problem in using the response feature approach to the
analysis of repeated measures data arises from assuming that the individual summary
measures in each group are identically distributed. In Table 3, for example, one of the analyses
involves a t-test for the difference in the treatment group means of the linear regression slopes
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of each calf. This ¢-test assumes that the slopes have identical normal distributions within
groups. But, if there is natural variation in the slopes between individuals even in the same
group, then such an assumption is clearly not valid. The distributions of the individual slopes
‘will have different means.

Ignoring that a summary measure is.#ot a single observation but an aggregate of data
from a subject may, on occasions, involve a loss of information that could be used to allow
a more efficient analysis. Matthews (1993) addressed this problem and described some ad hoc
procedures that might be useful in particular circumstances. Gornbein er al (1992) also
considered how the summary measure approach.can be made more efficient and considered
several models in which some form of weighting is introduced. This will be of particular
importance if the configuration of repeated measures for each subject varies, resulting in the
individual summary measures being estimated with differing precisions.

3. Analysis-of-variance methods for repeated measures data

In many areas, particularly psychology, repeated measures data often arise from designed
experiments. The traditional analysis of such data in these disciplines is by univariate analysis
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of variance in which the within-subject factors are considered part of the experimental design
as reflected in the summary table. The usual models behind such analyses are described in
detail in Winer (1971) but in general involve the sum of fixed and random effects. The former
correspond to design variables and their interactions. The latter arise from regarding subjects
as a sample from some population. Subject effects are taken to be random as are the
interactions of the subject and design variables. For Kenward’s cattle weight data this
approach leads to the analysis of variance shown in Table 5. The terms corresponding to the
main effect of time and the group x time interaction are both highly significant. The first of
these simply indicates the growth of the animals over the time period considered and is not
of great interest. The significant interaction, however, suggests that the growth profiles in the
two groups are not parallel and that, consequently, the two treatments involved lead to
different patterns of growth. Fig. [ indicates that this results largely from the behaviour of
the curves after day 84. Further interpretation of this interaction would need more substantive
knowledge of investigation but clearly here the analysis-of-variance approach leads to a
different conclusion from that when the summary measure procedure is used, at least for the
summary measures considered.
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TABLE 5 :

Analysis of variance for cattle growth data

Source Sum of squares Degrees of freedom Mean sguare F £
Group 497.47 1 497.47 0.22 0.64
Errot 133920.55 58 230897

Time 845724.68 I 8457247 [191.53 <0.0001
Group x time 2558.71 10 255.87 3.60 0.0001
Erraor 41167.15 . 580 70.98

To illustrate the analysis-of-variance approach to repeated measures data further, in an
area where it is more likely to be employed, the data shown in Table 6 taken from Broota
(1989) will be used. These data arise from an experiment in which two groups of subjects are
required to read two types of word under three cue conditions. Details are given in Pahwa
and Broota (1981). Here the repeated measures arise from the crossing of two experimental
factors. The resulting analysis of variance is shown in Table 7. The main effects of type and
cue are both highly significant and the type x cue interaction appears to be of possible interest,
a point which will be examined later.

TABLE §
Observations obtained from a 2 x 2 x 3 factorial experiment with repeated measures on
the last two factorst

Subject by {form) b, fecolour)

ey (N) e, C) (T} e(N) ey C) 23(1)

ay (FI)
1 151 206 119 176 182 196
2 175 183 186 148 156 161
3 166 165 161 138 146 150
4 206 150G 22 174 178 184
5 179 187 171 182 185 210
[} 183 175 197 158 159 169
7 174 168 187 167 160 178
8 185 186 185 153 158 169
9 182 189 201 173 177 183
10 151 192 208 ) 168 169 187
I 162 143 168 135 141 145
12 162 162 170 142 147 151

a. {FD)
13 277 267 322 205 231 255
14 . 235 214 271 161 183 187
15 ) 150 156 . 165 140 140 156
16 400 404 379 214 223 216
W17 183 165 187 140 146 143
“18 162 215 184 144 156 165
19 163 179 172 170 189 192
20 163 159 159 143 150 148
21 37 233 138 207 . 225 228
22 05 177 217 205 208 230
23 178 150G AN 144 155 177
24 164 180 187 139 151 163

tFI, field independent; FD, field dependent; N, nermal; C, congruent; I, inecongtuent.
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TABLE 7

Analysis of variance for the data in Table 6

Source Sum of squares Degrees of freedom Mean square F P

Groups 18906.25 I 18906.25 2.56 ¢12

Ertor 162420.08 22 7382.73

Type 25760.25 1 153760.25 1299 00016

Groups x type 3061.78 L 3061.78 1.54 0.23

Error 43622.30 22 1982.83

Cue 5697.04 2 2848.52 22.60 <0.0001

Groups x cue 29262 2 146.31 116 0.32

Errot 5$545.00 44 . 126.02

Type X cue 34537 2 172.69 166 0.08

Groups x type x cue 90.51 2 45.26 ¢.70 0.50
4 65.02

Errar 2860.78 4

The F-tests in Tables 5 and 7 are valid only if a particular set of conditions holds. Normality
of the response variable is, of course, one necessary condition. Of more critical importance
are the conditions relating to the variances and covariances of the repeated measures.
Explicitly, the covariance matrix of the repeated measures must be such that the elements on
the main diagonal, the variances of the repeated measures, are equal, and the off-diagonal
elements, the covariances of each pair of repeated measures, are also equal. A covariance
matrix of such form is said to have compound symmetry. Additionally the validity of the
F-tests in Tables 5 and 7 requires that this covariance matrix is the same in each treatrent
group.

Compound symmetry is a special case of a more general situation under which the simple
F-tests are valid. This more general condition is known as sphericiry or circularity and relates
to the covariance matrix of a set of p — | orthonormal contrasts between the p repeated
measures. Specifically this covariance matrix must be a scalar multiple of the identity matrix
for the F-tests to be valid. A detailed account of sphericity and compound symmetry is given
in Crowder and Hand (199Q).

If the sphericity condition does not hold then the univariate F-tests of Tables 5 and 7 are
not correct, and their use will lead to an increase in the size of the type 1 error, Various tests
of the condition are available (see, for example, Mauchly (1940)), but they are of limited
practical use because of their known sensitivity to non-normality, to which the F-tests in
question are relatively robust. In many sitvations, however, the compound symmetry
assumption is likely to be questionable a priori. It is very probable that, with repeated
measures data, observations closer together in time will be more highly correlated than those
separated by a greater time interval. Table 8, for example, shows the correlation matrices for
each treatment group in the cattle growth data. Neither matrix appears to have the compound
symmetry form, the correlations of measurements close in time being noticeably higher than
those with wider separation. The Mauchly sphericity test of the pooled within-group matrix
gives a P-value less than 0.0001.' Clearly the F-values for these data, given in Table 5, are not.
strictly valid.

If sphericity does not hold, the univariate F-tests may be adapted to non-sphericity by
estimating a correction factor that measures the departure from sphericity. This correction
factor, which is a function of the variances and covariances of the repeated measures, is defined
explicitly in Crowder and Hand (1990); it is used to reduce the degrees of {reedom of the
F-tests associated with the within-subjects part of the analysis-of-variance table. Two methods
of estimating the correction factor have been suggested, one by Greenhouse and Geisser (1959)
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TABLE 8
Correlation matrices for cattle growth data
Occasion
! 2 3 4 5 6 7 & 9 0 i
fa) Trearment A
1.000
0825 1.000

0.744 0.907 1.600

0659 0.844 925 1.00¢

0.635 0.803 0379 0.941 1.600

(.548 0.736 826 0905 .934 L.30G

.524 0.628 0.74% 0.825 0872 0935 1.000

.5330 0.667 0.771 0.837 0.893 0.959 932 1000

0.512 0.59% 0.707 0.767 0.83¢ 0919 (.933 0.969 1.600

0.476 (.584 0.699 0.734 0.799 0.885 0.883 0.943 0.964 1.000

0.479 (.551 0.679 713 0.773 0.849 0.864 0.924 0.958 0.984 1.000

—_ O AD D el O LA L D

fh) Treatment B
1 1.000
0862 100G
0.835 0.944 1.000
0.685 Q0.893 0.930 1.000
0.673 0.842 0.881 0,945 1.000
0.540 0.681 0.763 0781 0.831 1.000
0.613 0.781 0.822 913 0.935 0.780 1.00¢
0.437 0.809 Q0.238 0.922 0912 0.783 0.953 1.000
0.644 0.773 0.7%0 0.869 0905 0789 0.907 0.951 1.000
. 0481 0.451 0.668 0,776 0.778 0.632 0.759 0.782 0.834 1.000
0443 0.569 0.622 0.723 0684 0.563 0.715 0.713 0.757 0924 1.000

o=~ I = JESL B L RN Ry PO Y

and one by Huynh and Feldt (1976). For many data sets the estimates are likely to be very
similar. When sphericity holds, the correction factor takes the value 1, and its smallest possible
value is 1/(p — 1). Greenhouse and Geisser {1959) suggested this lower limit in all cases, thus
avoiding the need to estimate the correction factor at all. Such a strategy is, however, very
conservative. .

The correction factor approach can be illustrated on both the cattle growth data from
Kenward {1987) and the reaction time data of Broota (1989). For the former the estimated
correction factor using the method described in Greenhouse and Geisser (1959) is 0.2767, and
using the method suggested by Huynh and Feldt (1976} it is 0.2970. Using the former, the
degrees of freedom for the F-test of differences between time points become 10 x 0.2767 = 2.8
and 580 x 0.2767 = 160.5. The associated P-value remains very small. For the group x fime
interaction, the degrees of freedom of the relevant F-test also become 2.8 and 160.5. The
P-value increases from 0.0001 to 0.0173. If the conservative strategy of using the value
1/(p = 1) = 0.1 as the correction factor had been employed, the P-value for the interaction
would be above 0.05, and the interaction effect deemed non-significant.

The sphéricity test for the Broota data in Table 6 has a-P-value 0.03 and the estimated cor-
rection factor for the tests involving the “cue’ factor is 0.96 (Huynh-Feldt), and, for the tests
involving the factor ‘type’, takes the value 0.86. Here departure from the sphericity assumption
is less pronounced than for the cattle growth data, and adjustment of the F-tests given in
Table 7 by the relevant correction factor makes little difference to the associated P-values.

An alternative to the use of correction factors when the sphericity assumption does not
hold is to adopt a multivariate approach to the repeated measures. The main advantage of
this method is that no assumptions are made about the form of the covariance matrix of the
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repeated measures, although this covariance matrix is still required to be the same in each
treatment group. The disadvantage of the multivariate approach to the analysis of repeated
measures is often stated to be its relatively low power when the sphericity assumption is, in
fact, valid {Crowder and Hand, 1990; Rouanet and Lepine, 1970). Davidson (1972), however,
compared the power of the two tests when compound symmetry holds and concluded that
the multivariate test is nearly as powerful as the univariate test when the number of
observations exceeds the number of repeated measutes by 20 or more.

The multivariate procedure involves testing on a set of transformed variables representing
the within-subject differences of each within-subject factor and their interactions. (If a factor
has only two levels, the univariate and multivariate approaches are equivalent.) Each of the
transformed variables has some within-cell variance that can be used as the error term in the
analysis of that variable. In some cases each of the transformed variables is examined
individually to give what Hand and Taylor (1987) call a multiple univariate analysis. In
others the transformed variables are assessed simultaneously by using a multivariate test. The
hypothesis that the means of a set of transformed variables representing a within-subject
factor, or an interaction between within-subject factors, are zero can be tested by using
Hotellings T*-statistic. The interactions of within-subject factors with treatment groups are
tested by using the same statistic if the number of groups is 2, or with one or other of a
variety of possible test statistics if there are more than two groups.

For the cattle growth data an obvious set of transformed variables is the orthegonal
polyromials, representing linear, quadratic, cubic, etc., effects over time. A multiple univariate
analysis of these variables is shown in Table 9. Each effect is tested by using its own particular
error term. In this analysis no multivariate test criteria have been used. For these data it is
unlikely that the higher order polynomial terms would be of any interest, and in practice
several would be combined.

The results of applying the multivariate approach to the Broota data are shown in Table
10. The most notable difference between this analysis and the univariate analysis given earlier
(see Table 7) concerns the test for the type x cue interaction. Using Hotelling’s T2, this
interaction is found to be significant beyond the 5% level; the univariate tests, both adjusted
and unadjusted, are not significant. Some insight into the reason for this difference can be
obtained from the pair of type x cue interaction effects for each individual. These are
calculated as follows (using the labelling nomenclature in Table 6);

interaction effect ane = b ¢, — bcy — bye; + bycy;
interaction effect two = b,¢c, — bycq — by, + byes.

A scatterplot of these effects is shown in Fig. 8. Separate t-tests that the mean effects are zero
give t = 1.97, P = 0.06, and ¢t = —0.10, P = 0.92. Fig. 8 shows that there are two subjects
with very large values for the second effect (subjects 5 and 18). When these subjects are
removed, Hotelling's T2 = 14.27 with a P-value of 0.005, the two separate ¢-tests now have
values 3.24 (P = 0.004) and —1.29 (P = 0.21) and the type x cue interaction in the analysis
of variance has a P-value of 0.0042. It appears that these two ‘outliers’ are the reason
that the original univariate and multivariate approaches lead to different conclusions.

4. More complex models for repeated measures data

The repeated measures data most appropriately analysed by the methods described in the
previous section are those from designed experiments where all subjects have the same number
of observations measured at equivalent time intervals. In many cases, however, particularly
longitudinal data arising from clinical trials, the number of repeated measures on each subject
may not be the same, or they may not be taken at the same interval. Additionally gaps in
the data may occur because subjects cease to comply with their assigned treatment and drop
out of the study, or they simply fail to attend an appointed visit. An investigator may choose
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TABLE 9

Analysis of variance of cattle growth data using orthogonal palynomialst

Source Sum of squares Deqrees of freedom Mean square F P
Group 457.47 1 497.47 Q.12 0.64
Error 133920.55 58 2308.97

Timel R16222.84 1 316222 84 2114.13 (.000
Timel x group 30754 1 307.54 0.80 0.38
Error 22392.68 58 3R6.08

Time2 19092.27 I 19092.27 154.09 (.000
Time2 x group [17.82 I 11782 (.95 0.33
Errar TIR6.43 38 123.90

Time3 6647.44 1 664744 115.93 < 1.0001
Timed x group T 54573 1 545.73 9.52 0.0031
Ertor 332581 58 57.34

Time4 1379.19 1 1379.19 49.76 <(.0001
Timed x group 1044.19 1 [044.19 17.67 <0.0001
Error 1607.61 58 2772

Times 1161.75 [ 1161.75 86.69 <0.0001
Time5 x group 283.25 I 283.25 21.14 < 0.0000
Errar 777.25 38 1340

Timeé 118.32 1 118.32 4.74 0.0334
Timeé x group 2455 1 2495 1.00 03216
Error 1448.02 58 2497

Time? 60.95 1 60.95 478 0.0328
Time7 x group 18.12 | 38.12 299 0.0891
Error 739.34 - 58 1275

Time§ 582.14 { 58214 25.64 < 00001
Time8 » group 5117 1 1.7 2.55 G2
Error 1316.64 58 2270

Time9 312.96 1 31296 2446 <0.0001
Timed x group 94.28 1 94.28 888 0.004
Error 616.13 58 10.62

Timeld 146.81 1 146.81 4.85 0.03
Timel0 x group 4505 1 4303 1.49 (.23
Etror 1757.22 58 3030

+Timel to tinel0 represent orthogonal pelynomial components, so that timel is the linear trend, time2 the quadratic
trend etc. :

to extrapolate, fill in or impute missing values by using any one of a variety of methods that
have been suggested. Appropriate mean values obtained from the non-missing observations
might, for example, be inserted. For several reasons, Gornbein et a/. (1992) do not recommend
this approach. Another popular method of dealing with the missing data problem, particularly
in the pharmaceutical industry, is to carry the last recorded value of a subject forwards to
produce a ‘complete’ set of repeated measures. According to Heyting er al (1992), the
- usefulness of this methad is very limited since it makes very unlikely assumptions about the
data. Imputation methods need to be carefully chosen to avoid biased estimates from the
filled-in data. Also, as Gornbein et al. (1992) stressed, imputation invents data, and analysing
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TABLE 10

Multivariate analysis of the Broota data
Effect 72 F . Degrees of freedom p
Cue 44.67 2132 2,20 <0.0001
Cue x group 318 1.52 212 0.24
Type X cue 10.41 497 2,21 0.02
Group » type % cue .49 0.7 20 0.50

filled-in data as if they were complete leads to overstatement of precision, i.e. standard errors
are underestimated, stated P-values are too small and confidence intervals do not cover the
true parameter at the rate stated.

The preferred approach to irregular or incomplete repeated measures data is to deal with
them in the context of a suitable model and to use the method of maximum likelihood to
estimate parameters and their standard errors. The advantages of this approach are listed in
Gornbein et al. (1992) and are as follows:

(a) maximum likelihood estimates are principled in that they have known statistical
properties (consistency, large sample efficiency) under the assumed model, which can
be clearly specified and subjected to madel criticism;

(b) maximum likelihood estimation does not require a rectangular data matrix and hence
deals directly with problems of missing data;

{c) estimates are asymptotically efficient under the assumed model;
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Fig 8. Scattergram of type x cue effects for the Broota data
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(d) standard errors of parameter estimates based on the observed or expected information
matrix are available and automatically take into account the fact that the data are
incomplete.

The main disadvantages of this approach are

{a) maximum likelihood estimation requires the specification of a full statistical model for
the data and results may be vulnerable to departures from model assumptions such as
normality and .

(b) maximum likelihood inferences are based on large sample theory and hence may be
unsuitable for small data sets.

Diggle (1988) lists some desirable features for a general method for the analysis of repeated
measures data. These include the following:

(a) the specification of the mean response profile needs to be sufficiently flexible to reflect
both time trends within each treatment group and differences in these time trends
between treatments;

(b) the specification of the covariance structure within each time sequence should be
flexible, but economical,

(c) the method of analysis should accommodate virtually arbitrary patterns of irregularly
spaced time seqguences within subjects.

Very general regression-type models incorporating these and other features are given in
Laird et al. {1992) and Gornbein et al. (1992). An essential feature of these models is that the
parameters of the covariance matrix, which can be allowed to have a variety of forms, are
estimated separately from the other parameters in the modél. Although the covariance
structure is not of direct interest, Diggle (1988) suggests that overparameterization will lead
to inefficient estimation and potentially poor assessment of standard errors for estimates of
the mean response profiles, whereas too restrictive a specification will invalidate inferences
about the mean response profiles when the assumed covariance structure does not hold. In
many repeated measures examples thé model for the covariances will need to allow for
non-stationarity with changes in variance across time being particularly common.

To illustrate the application of these more general models, data from a trial of cestrogen
patches in the treatment of post-natal depression will be used. Details of the study are given
in Kumar et ai. (1993), but essentially women were randomly allacated to two groups: the
members of one group received the active drug, whereas the others received a placebo. The
main response variable was a composite measure of depression, this being observed on two
occasions before treatment and on six occasions during treatment. The number of women
taking part in the trial was 61, of whom 27 were given the placebo and 34 oestrogen.

Of the 61 women in the trial, 45 had no missing values. Table 11 shows the patterns of
the incomplete observations. There is no strong evidence that the missing values are related
to treatment. A plot of the group means here (Fig. 9) shows a general decline of the depression
scores after treatment in both the active and the placebo groups. During the last two occasions
the depression scores begin to level off. The two within-treatment-group covariance matrices
of the repeated measures, based on women with complete data, are shown in Table 12. Tt
appears that a model for the covariance structure that allows for both different variances on
the six visits and different covariances for different pairs of the repeat measures will be
necessary here.

The initial model fitted contained a main effect for group and a linear trend for time. The
covariance matrix of the six repeated measurements was allowed to be unstructured. The
results are shown in Table 13. Both the treatment effect and the lincar time effect are highly
significant. Next the mean of the two base-line observations was considered for inclusion as
a covariate. The estimated regression coefficient was 0.38 with a standard error of 0.16.
Consequently the base-line mean was added to the initial model. Finally a quadratic effect
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TABLE 1]
Pattern of missing (M) values in the treatment trial for post-natal
depression
Subject Visit
7 2 3 4 5 4
Placeba group
I M M M
2 M M M M M
3 M M M
4 M M M M
5 M M M M
6 M M M M
7 M M M M
8 M M M M
9 M M M M M
10 M M . M M M
Active group
11 M M M
12 M M M M
13 M M M M
14 M M M M M
15 M M M M
16 M M M
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Fig. 9. Plot of group means for the trial of aestrogen in the treatment of post-natal depression (visit 0 is the mean
of two pretreatment values): , placebo group; -+ , active group
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TABLE 12
Covariance matrices for the placebo and active groups in the oestrogen trial (based
an complete observations only)

! 2 3 4 h] 6
Placebo group
1 jaom
2 2206 36.93
3 15.94 2214 24.75
4 13.88 22.84 20.65 3421
5 9.51 15.83 19.76 21.74 19.7
6 -0.18 11.60 15.53 17.87 1685 2192
Active group
1 3698
2 11.96 40.11
3 [2.14 3205 29.77
4 6.84 22.69 20.44 21.78
5 8.08 28.66 2529 23.24 32.96
6 1.57 237 20.61 18.82 25.21 2237

" for time was added to the model and, although not quite significant at the 5% level, was
retained. The parameter estimates etc. for this model are shown in Table 14. (Other models
which allow for differences in the linear trend in each group etc. were. considered but found
not to be needed.)

Having decided on a reasonable model for the data by assuming an unstructured
covariance matrix, some attention now needs to be given to whether some form of restricted
cavariance model for the repeated measures might be adequate. Table 15 shows a comparison
of log-likelihoods for the fitted model with

(a) an unstructured covariance matrix,

(b) a covariance matrix satisfying compound symmetry,

(¢) a covariance matrix corresponding to a first-order autoregressive model for the repeat
Measures, N

(d) a random coefficients model assuming a linear trend for each individual over the si
post-randomization visits (see Crowder and Hand (1990) for details of the predicted
form of the covariance matrix) and

(¢) a random coefficients model assuming a quadratic trend for each individual over the
six post-randomization visits.

Here none of the simpler structures provides an adequate fit for the abserved covariance
matrix. For the compound symmetry and first-order autoregressive models this is largely

TABLE 13

Initial model for the post-natal depression datat
Parameter Estimate Standard ervor z P
Canstant 1596 0.74 21.40 = (0001
Treatment 1.84 0.52 1.52 0.0004
Linear time — L0 .14 —7.68 <(.0001

tThe treatment was coded 1 for placebo and —1 for active treatment.
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TABLE 14

Parameter estimates for the final model for the post-natal depression datat
Parameter Estimate Standard error z P
Constant . 8.80 36l 243 0.01
Treatment ) 1.97 .50 189 0.0001
Linear time =~ —1.99 .54 —1.68 0.0002
Quadratic time a1l 006 .68 0.0922
Base-line (.38 0.14 234 0.019

tThis model can be written as
DEP = 880 + 1.97 GROUP — 199X + 0.11X?* + 0.38 BASELINE

where GROUP = | for placebo and GROUP = —1 for active treatment, X =1, 2, 3,
4, 5, 6 for occasions 1-6 and BASELINE is the mean of the two pretreatment values.
The estimate of the treatment difference is 2 x 1.97 = 3.94. The estimated standard error
of the treatment difference is 2 x ¢.50 = 100,

because the fitted values for the variances of the measurements on the six visits are constrained
to be equal. The random coefficients models do allow these variances to differ but appear to
fail here because of their inahility to model the covariances adequately.

The fitted model is compared with the observed means in Fig. 10. The fit appears to be
very good. The estimated difference between the two treatment groups is 3.94 with a 95%
confidence interval of (1.94, 5.94). This difference remains the same for all post-treatment visits,
which is a result that may have important implications for the design of future studies in this
area.

Any statistical analysis should mclude a critical assessment of the modelling assumptions.
Several diagnostics have been suggested for models used with repeated measures data
including the semivariogram (Diggle, 1988) and Mahalanobis’s D? (Gornbein et al., 1992).
Here a simple plot of the fitted mean response over the six post-treatment visits against the
difference of the fitted and observed mean is shown in Fig, 11. There is no obvious pattern
in this that might give cause for concern.

A simple analysis of these data by using the mean of the non-missing values over the six
post-treatment visits as response and the mean of the two pretreatment values as covariate
leads to the results shown in Table 16. Here the estimated treatment effect is 4.38 with 95%
confidence interval (1.89, 6.87).

- TABLE 15

Compatison of different covarlance matrix structures for the post-natal depression

datat
Structure Log-fikelthood No. of parameters
Enstructured —785.54 n
Compound symmetric —834.88 2
Autoregressive —B825.45 2
Random coefficient (linear) —823.51 4
Random coefficient (quadratic) —810.51 7

fTesting twice the difference in the log-likeliboods as a y*-variable with- degrees
of freedom equal to the difference in the number of parameters indicates that
none of the simpler structures can be chosen over the unstructured covariance
mateix.
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Fig. 10. Observed means and those predicted by the final model for the treatment trial of oestrogen: , placebo
(P) group model; - - -~ -, active (A) group model

5. Software for analysis of repeated measures

For the analysis of repeated measures at individual time points or when using the summary
statistic approach with or without pre-randomiization measures, almost any piece of current
statistical software will be adequate. Again, to apply the analysis-of-variance procedures
described in Section 3, a large nurnber of packages would be suitable. For more involved
analyses, e.g. thase necessary when the data contain missing values and/or when a variety of
models for the covariance structure are required, only relatively few packages are available.
In this paper the BMDP program 5V has been used to obtain the results given for the
oestrogen data. This program handles missing data by the maximum likelihood approach
described in Little and Rubin (1987), and allows a number of structures for the covariance’
matrices of the repeated measures. Similar analyses are possible with SAS's procedure
MIXED. It is also possible to analyse repeated measures data where the observations are
not all made at the same set of time points with the program ML3. See Prosser et al. {(1991)
for details. -

TABLE i&
Analysis of the treatment teial for post-natal depression by using the mean of six post-treatment measures
as the response and the mean of pretreatment values as the covariatet :

Source Sum aof squares’ Degrees of freedom © Mean square F P
Group 287717 1 . 28777 12.38 . 0.0009
Error 1350.65 _ 58 2329

+The estimated regression coefficient is 0.49 and the adjusted means are 14.85 (placebo group) and 10.47
(active group). The estimated treatment difference is 14.85 — [0.47 = 4.38. The estimated variance of this
differance is 23.29¢1/27 + 1/34) = 1.55.
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Fig. 11. Residuals of the fitted mean response for the oestrogen data

6. Summarizing remarks

Repeat measures data occur frequently in a variety of different disciplines. Methods of
analysis range from a series of t-tests at each individual time point to the fitting of complex
models that allow for missing data and a variety of covariance structures. Several researchers
have made specific recommendations about the most appropriate techniques for dealing with
this type of data. Ekstrom (1990), for example, suggests that the multivariate analysis-of-
variance approach discussed in Section 3 is to be preferred in most situations, whereas Frison
and Pocock (1992) argued that, in many medical investigations at least, the use of the average
response over the repeated measures is often a sensible way to proceed. Perhaps the answer
is that no single ‘best method’ is applicable to all cases simply because such-data are
collected in so many settings with such a variety of aims. In the examples discussed in this
paper, for instance, simply analysing the mean summary measure for the cattle growth data
would overlook important aspects of the data. For the treatment trial of oestrogen, however,
a simple analysis of means leads to very similar conclusions and estimates as a more complex
analysis. On balance, however, there are clear advantages for the busy applied statistician in
the approach involving the calculation of a small number of relevant summary measures and
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comparing them across groups by using ordinary univariate methods. In particular this
approach is easy both to explain and to perform. Faced with the difficult task of communica-
ting results to the possibly statistically naive researcher, such advantages should not be
underestimated.
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