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Summary We present a Bayesian forecasting methodology of discrete-time finite state-

space hidden Markov models with non-constant transition matrix that depends on a set

of exogenous covariates. We describe an MCMC reversible jump algorithm for predictive

inference, allowing for model uncertainty regarding the set of covariates that affect the

transition matrix. We apply our models to interest rates and we show that our general

model formulation improves the predictive ability of standard homogeneous hidden

Markov models.
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1 Introduction

We deal with discrete-time finite state-space hidden Markov models (HMM) that have

been extensively used as standard modelling devices for stochastic processes on which

only partial observations are made. The standard form of these models is specified as

follows. The data generation mechanism consists of a bivariate process {(Yt, Zt)} with

{Zt} being an unobservable, or hidden, finite Markov chain that governs the distribution

of the observable process {Yt}.

Modelling economic and financial time series via HMMs has been proposed by Hamilton

(1994). There are many applications and generalisations in financial econometrics,

see for example Garcia and Perron (1996), Krozlig (1997), Schaller and Van Norden

(1997), Kim and Nelson (1999), Franses and van Dijk (2000). MCMC-based advances

in computational Bayesian statistics have expanded their wide applicability; see, for

example, McCulloch and Tsay (1994), Chib (1996), Billio et al. (1999) and Frühwirth-
1Email for correspondence: meligots@math.uoa.gr
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Schnatter (2001). For a general background on HMMs and their applications see the

books by MacDonald and Zucchini (1997), Cappé et al. (2005) and Frühwirth-Schnatter

(2006). For a recent review of classical versus Bayesian inference for HMMs see Ryden

(2008).

An important application of HMMs is forecasting. In contrast with the threshold models

that are used to just describe the mechanism that produced the data regime-switching,

the Markovian structure of HMMs allows for one step ahead forecasts of {Zt} and

consequently of {Yt}. However, HMMs can be seen as generalisations of threshold

models, in the form of the multiple-change point formulation introduced by Chib (1998);

for forecasting applications in economic time series see, for example, Koop (2003) and

Pesaran et al. (2006).

In this paper we are dealing with forecasting using non-homogeneous HMMs. Specifi-

cally, we consider models which incorporate covariate information in two ways. First,

we assume that Yt may depend not only on Zt, but also on a set of exogenous covariates

Wt = (W1t, . . . ,Wnt) that have been observed up to time t − 1. Our methodology is

immediately applicable to cases in which past values of Yt can be used instead of the

covariates Wt, implying an AR(p) model for {Yt}. Secondly, we assume that the hidden

process {Zt} is a non-homogeneous Markov chain with time-varying transition matrix

P (t), the values of which depend on a further set of covariates Xt = (X1t, . . . ,Xkt).

Thus, our model formulation assumes that some covariates (or lagged values of Yt) af-

fect directly, in a linear fashion, the density of Yt, whereas past values of the same or

some other covariates affect Yt through the transition matrix of the hidden process.

Past relevant literature on non-homogeneous HMMs is scarce. Diebold et al. (1993) have

considered maximum likelihood estimation of the simple two-state Gaussian HMM with

time-varying transition matrix. Applications of HMMs with time-varying transitions

include Durland and McCardy (1994), Gray (1996), Peria (2002), Masson and Ruge-

Murcia (2005), Kim et al. (2008), and Banachewicz et al. (2007). Wong and Li (2001)

have considered a two-state non-homogeneous Markov switching mixture autoregressive

model. All the above papers consider a small number of states (2 or 3 states) and they

adopt classical inferential procedures. A Bayesian approach to inference for a two-state

non-homogeneous HMM has been proposed by Filardo and Gordon (1998) who adopted

a binary regression probit model.

We consider Bayesian inference for a general m-state non-homogeneous HMM, assuming
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that the elements of the transition matrix P (t) are linked with Xt through a multinomial

logistic link. We construct a Markov chain Monte Carlo (MCMC) algorithm and provide

detailed implementation guidelines when Yt, conditional on Zt, follows an autoregressive

process of order p or is linearly regressed on Wt. Although we deal with Gaussian

likelihoods, other time series formulations such as discrete-valued time series or spatial

autoregressive processes possess no further difficulties, except perhaps the extra care

needed for MCMC mixing in some complicated model formulations, since given the

unobserved process Zt the model collapses to well-known MCMC algorithms; see, for

example, Spezia (2009). Our proposed models are useful primarily for forecasting rather

than being summaries for explaining the data generation mechanism. Therefore, an

issue of particular interest incorporated in our MCMC scheme is that we accommodate

and exploit model uncertainty within our Bayesian modelling to improve, via model

averaging, the predictive ability of the proposed models.

The MCMC algorithm we propose has the following key points. First, conditional on

{Zt} the parameters that specify the formulation of the stochastic process {Yt} are,

in general, easy to sample from. Second, conditional on {Yt} and on all transition

matrices {P (t)}, a forward-backward filtering algorithm is used to simulate the hidden

sequence of states {Zt}. Third, the regression coefficients of Xt are obtained via Gibbs

steps which utilize the auxiliary variable sampling method of Holmes and Held (2006).

Finally, a reversible jump MCMC step is used to simultaneously sample in the product

of model and parameter space.

We apply our methodology to a monthly interest rates return series in which it is

commonplace that two-state HMMs, or regime-switching models, are appropriate in

capturing the stylized facts of the data. We find that non-homogeneous HMMs, using a

set of six covariates that affect the transition matrix of the hidden process improve the

predictive ability of the model when compared against a standard homogeneous HMM.

These results indicate that our proposed modelling strategy may offer important tools

in forecasting using HMMs.

The paper proceeds as follows. In section 2 we introduce the discrete-time finite state-

space HMM with time varying transition matrix. In section 3 we present Bayesian

inference for this model, while in section 4 we consider inference under model uncertainty

as well as forecasting using Bayesian model averaging. In section 5 we present results

from the application of our approach to US interest rates returns. Finally, section 6
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concludes the paper.

2 The Model

Consider a random process {Yt} and suppose that we wish to use covariates Xt and Wt

for forecasting purposes. Let yt, xit, wjt be the corresponding realisations at time t for

the process {Yt} and the i-th covariate in Xt and j-th covariate in Wt, i = 1, . . . , k,

j = 1, . . . , n. We model the dynamics of {Yt} through a hidden Markov model (HMM)

with time-varying transition matrix. Specifically, we assume that there exists a hidden

underlying process {Zt} which is a non-homogeneous discrete-time Markov chain on a

finite state-space S = {1, . . . ,m} with transition probability matrix at time t denoted

by P (t) = [p(t)
ij ]. The latent variables Z1, . . . , ZT represent the hidden states of some

underlying mechanism that has generated the observed data y1, . . . , yT . For Zt = s,

s ∈ S, we assume that the distribution of Yt is given by

Yt|Zt = s ∼ N(μs + wtbs, σ
2
s ), (1)

where wt = (w1t, . . . , wkt), bs is a n× 1 vector of coefficients and σ2
s is the state specific

variance of the Gaussian process.

The time-varying transition matrix P (t) of the hidden process is modelled as a function

of the observed covariates, x1t, . . . , xkt, at time t. Time-varying transition probabilities

incorporate covariate information to describe the transition dynamics of the underlying

hidden process. Thus, we allow the covariates to affect the observed process {Yt} in a

non-linear fashion. We use the multinomial function to link Xt and the entries of P (t).

Specifically, the ij-th entry of P (t) is assumed to depend on xt = (1, x1t, . . . , xkt) via

p
(t)
ij =

exp (xtβij)∑m
�=1 exp (xtβi�)

, for i, j = 1, . . . ,m, (2)

where βij is a (k+ 1)× 1 vector of regression coefficients. For identifiability reasons, in

each row of the transition matrix we restrict one of the βij ’s to be equal to a (k+1)× 1

vector of zeros. For example, for m = 2 the above modelling approach reduces to

adopting a logistic link function to model two transition probabilities. A similar non-

homogeneous HMM has been formulated by Banachewicz et al. (2007) for modelling

portfolio defaults.
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3 Bayesian Inference

We consider Bayesian inference on the parameters of our non-homogeneous HMM

by constructing a Markov chain Monte Carlo algorithm which updates, in turn, the

multinomial regression coefficients β = {βij ; i, j = 1, . . . ,m} in (2), the state spe-

cific model parameters θ = {μs, bs, σ
2
s ; s = 1, . . . ,m} in (1), and the latent variables

ZT = (Z1, . . . , ZT ). In detail, this algorithm is described as follows.

Let Y t = (Y1, . . . , Yt) be the history of the observed process, Zt = (Z1, . . . , Zt) the

sequence of states up to time t, and let fs(.) denote the normal probability density

function of Yt | Zt = s, s ∈ S, as given in (1). The joint likelihood function of the

observed data, yT , and the unobserved sequence of states, zT , is given by

π(yT , zT | θ, β) = π(yT | zT , θ, β)π(zT | θ, β) = fz1(y1)p(1)
z1,z2

fz2(y2) . . . p(T−1)
zT−1,zT

fzT
(yT )

where the entries of the transition matrix are linked to parameters β via (2). We assume

that the chain is equally likely to start off at any state, which amounts to assuming a

uniform distribution on the initial state.

If a prior distribution π(θ, β) = π(θ)π(β) is specified for the model parameters, then

inference on all the unknown quantities in the model is based on their joint posterior

distribution

π(θ, β, zT | yT ) ∝ π(θ, β)π(yT , zT | θ, β).

The prior specification we consider is the following. For the multinomial regression

coefficients βij we assume independent multivariate normal prior distributions N(ξ, v),

restricting in each row of the transition matrix one of the βij ’s to be a vector of zeros. For

the state specific parameters μs, bs, σ
2
s we use conjugate prior distributions σ2

s ∼ IG(p, q)

and (μs, bs) | σ2
s ∼ N(ξ̃, σ2

sΩ), where IG denotes the inverted Gamma distribution.

The MCMC sampling scheme is constructed by successively updating the latent vari-

ables zT given the current value of the model parameters θ, β by using the Forward-

backward algorithm outlined in Subsection 3.1; the multinomial regression coefficients

β given the sequence of states zT by adopting the auxiliary variable method of Holmes

and Held (2006) discussed in Subsection 3.2 (we note here that the data-augmented

Metropolis-Hastings sampling scheme of Scott (2009) could be used instead); and the

state specific parameters θ conditional on zT by using well-known conjugate Gibbs

sampling steps the details of which are omitted; see, for example, O’Hagan and Forster,

2004).
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3.1 Simulating the Hidden States

The Forward-backward algorithm (Baum et al., 1970, Scott, 2002) consists of a set

of filtering recursions that can be used for calculating the likelihood and simulating

realisations of the hidden underlying process of a partially observed Markovian model

given the values of the model parameters. It can be constructed either to implement the

EM algorithm by maximizing the likelihood function, as for example in Banachewicz et

al. (2007), or within the context of an MCMC scheme for Bayesian inference as it is

applied here, see Carter and Kohn (1993), Frühwirth-Schnatter (1994, 2006).

The forward recursion for the evaluation of the likelihood is constructed as follows.

For time t and state s define the forward variables at(s) as the joint probability of the

data up to time t and the state of the hidden process at time t given the values of the

parameters θ, β:

at(s) = Pr(yt, Zt = s | θ, β) = Pr(Zt = s) Pr(yt | Zt = s, θ, β),

with a1(s) ∝ fs(y1). The forward variables can be calculated recursively via the rela-

tionship

at(s) =
m∑

j=1

Pr(yt, Zt−1 = j, Zt = s | θ, β) =

⎡⎣ m∑
j=1

at−1(j)p
(t−1)
js

⎤⎦ fs(yt).

The final step of the recursion allows the calculation of aT (s) = Pr(yT , ZT = s | θ, β),

s ∈ S, and, therefore, the likelihood L(yT | θ, β) can be obtained as

L(yT | θ, β) =
m∑

s=1

aT (s).

The calculation of the likelihood function via the forward recursion requires O(m2T )

steps, instead of the O(mT ) steps needed for direct evaluation of the likelihood. This

reduces the computational complexity of the problem substantially.

In order to simulate a realisation z1, . . . , zT from the joint distribution of the hidden

state variables Z1, . . . , ZT a second -backward- recursion is constructed. The state at

time T is first simulated from

Pr(ZT = s | yT ) =
Pr(yT , ZT = s)

L(yT )
=

aT (s)∑m
j=1 aT (j)

, s = 1, . . . ,m.

Then, for t = T − 1, . . . , 1, the state at time t given the state at time t+ 1 is simulated
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from

Pr(Zt = s | yT , zt+1) =
Pr(Zt = s | yt) Pr(zt | Zt+1 = s)∑m

j=1 Pr(Zt = j | yt) Pr(zt | Zt+1 = j)

=
at(s)p

(t)
szt+1∑m

j=1 at(j)p
(t)
jzt+1

, s = 1, . . . ,m,

where the forward variables at(s) have been calculated during the forward step of the

algorithm. Note that had we assumed that the chain is not slow mixing we could have

gained some efficiency by performing several forward recursions.

3.2 Simulating the Multinomial Regression Coefficients

We will first consider the simple case m = 2. Given the latent data zT , we choose to

model the two diagonal elements of the transition matrix by linking them to the set of

covariates with a logistic link function g. First define

Z̃s
t = �[Zt+1 = Zt = s]

with �[.] denoting the indicator function, and then model Z̃s
t , s = 1, 2, as

Pr(Z̃s
t = 1) = Pr(ut > 0)

ut = xtβss + et

et ∼ logistic(0, 1)

The logistic regression coefficients are updated using auxiliary variable sampling as

follows. For given s, the above model has the auxiliary variable representation

Pr(Z̃s
t = 1) = Pr(ut > 0)

ut = xtβss + et

et ∼ N(0, λt)

λt = (2ψt)2

ψt ∼ KS

where the KS denotes the Kolmogorov-Smirnov distribution. In this model specifica-

tion, ut follows a scale mixture of normal densities with a marginal logistic distribution

(Andrews and Mallows, 1974). This representation allows for sampling the logistic re-

gression coefficients via iterative Gibbs steps from the conditional posterior distributions

of βss, ut and λt.
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Let Xs denote the design matrix consisting of the covariate values at times t in which

zt = s and let Z̃s and λs be the corresponding vectors of Z̃s
t and λt. Using a multivariate

normal N(ξ, v) prior for βss, the full conditional posterior distribution of βss given Z̃s

and λs is N(Ξs, Vs), where Vs = (v−1 +X ′
sB

−1
s Xs)−1, Ξs = Vs(v−1ξ +X ′

sB
−1
s Z̃s) and

Bs = diag(λs). The posterior densities of the ut’s, after marginalising out the λt’s, are

independent truncated logistic distributions, while the latent variables λt are simulated

from their full conditional posterior distributions via Gibbs steps based on rejection

sampling; see Holmes and Held (2006).

The above approach can be generalised to the multinomial regression case. For the

m > 2 state HMM the likelihood for the regression coefficients used to model the s-th

row of the transition matrix corresponds to a multinomial distribution with m classes.

The likelihood for βsj, conditional on all other coefficients of the s-th row, is proportional

to ∏
zt=s

[
exp (xtβsj − C

(t)
sj )

1 + exp (xtβsj − C
(t)
sj )

]�[zt+1=j] [
1

1 + exp (xtβsj − C
(t)
sj )

]
�[zt+1 �=j]

, (3)

where C(t)
ij = log

∑
s �=j exp(xtβsj). As Holmes and Held (2006) mention, this conditional

likelihood has the form of a logistic regression on class indicator �[zt+1 = j] and therefore

a generalisation of the above logistic sampling scheme can be used in this setting.

3.3 Label Switching

An important problem in Bayesian analysis of HMM is the non identifiability of the

hidden states. This problem occurs when exchangeable priors are used for the state

specific parameters, which is common practice if there is no prior information about

the hidden states. In these cases, the posterior distribution is invariant to permutations

of the state labels and, hence, the marginal posterior distributions of the state specific

parameters are identical for all states. Therefore, direct inferences about the state

specific parameters are not available from the MCMC output.

Various approaches to dealing with the label switching problem in finite mixture models

have been proposed in the literature; see Jasra et al. (2003) for a recent review. Re-

cently, Spezia (2008) considered the label switching problem in HMMs with unknown

number of states. In the present paper we focus our attention on predicting future

observations of economic series that can be modelled using some HMM and on exam-

ining whether the predictive ability of the HMM is improved if the transition matrix is
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assumed to vary in time. Therefore, we consider applications for which the label switch-

ing problem does not matter, since prediction is based on parameter functions that are

invariant of label switching rather than on the parameters directly. Fortunately, in the

application in this paper we did not face the label switching problem and therefore were

able to produce inferences on the model parameters. In general, we propose using some

technique of post-processing the MCMC output in order to be able to infer the state

specific parameters.

4 Variable Selection

We extend our methodology to accommodate model uncertainty, regarding the set of

covariates to be included in the model, through reversible jump MCMC. Since fore-

casting is our primary focus, it is natural not to focus on the choice of single subset of

variables, but use a model averaging approach which provides composite predictions.

For evidence that accounting for model uncertainty improves predictive performance

see, for example, Hoeting et al.(1999).

4.1 Reversible jump MCMC

Suppose that there are K available covariates that can be included in the multinomial

regression model (2). For simplicity of exposition we assume that the same subset

of covariates are used to model all the entries of the transition probability matrix.

This results in 2K possible models. Denote by M one of these models and βM the

corresponding vector of multinomial regression coefficients. We use a non-informative

discrete uniform prior density π(M) = 2−K on the model space. The reversible jump

MCMC strategy, introduced by Green (1995), can be used for generating from the

joint posterior density π
(
M,βM , θ | yT

)
, based on the standard Metropolis Hastings

approach. During reversible jump MCMC sampling, the constructed Markov chain

moves within and between models so that the limiting proportion of visits to a given

model is the required marginal posterior density π
(
M | yT

)
.

The algorithm works as follows. Suppose that the current state of the Markov chain is

(M,βM ), where βM has dimension d (βM ), and a move is proposed to a new model M
′

with probability j
(
M,M

′
)

and corresponding parameter vector βM
′ . Then, a vector u

is generated from a specified proposal density q
(
u | βM ,M,M

′
)

and we set
(
βM ′ , u

′
)

=
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gM,M ′ (βM , u) for a specified invertible function gM,M ′ such that gM ′ ,M = g−1
M,M

′ . Note

that d (βM ) + d (u) = d
(
βM ′

)
+ d

(
u

′
)
. Green (1995) showed that if the new move is

accepted as the next realization of the Markov chain with probability a = min {1, A}
where

A =
L

(
yT |M ′

, βM ′ , θ
)
π

(
βM ′ |M ′

)
π

(
M

′
)
j
(
M

′
,M

)
q
(
u

′ | βM ′ ,M
′
,M

)
L (yT |M,βM , θ) π (βM |M) π (M) j (M,M ′) q (u | βM ,M,M ′)

|J | ,
(4)

with J = ∂
(
βM

′ , u
′
)
/∂ (βM , u) denoting the Jacobian of the transformation, then the

chain satisfies the condition of detailed balance and has the required limiting distribution

π(M,βM , θ | yT ).

We implement the above algorithm as follows. First, we choose to jump only to ‘neigh-

boring’ models which are obtained by removing or adding a randomly chosen covariate

and setting the corresponding jumping probabilities j
(
M,M

′
)

to be equal for every

possible proposed model M ′. Thus, in every iteration, we add a fourth step in the

MCMC algorithm of Section 3, at which we choose (when this is possible), to add or

to remove a covariate with equal probability and then we randomly choose which co-

variate will be added or removed from the set of available covariates. For example, if

there are currently k < K − 1 covariates in the model, we propose to add a covariate

with probability 1/2 and select a covariate to add from those not included in the model,

each with probability 1/(K − k). The probability of proposing the reverse move is

1/2(k + 1). Hence, in this case, j
(
M

′
,M

)
/j

(
M,M

′
)

= (K − k)/(k + 1). When we

add or remove a covariate, the proposal distribution q(u | βM ,M,M
′
) is just the full

conditional density of the multinomial regression coefficients in M ′, βM ′ . That is the

multinomial regression coefficients are jointly updated with the model, while all other

parameters remain unchanged. Therefore, βM
′ = u, and gM,M

′ (βM , βM
′ ) = (βM

′ , βM ),

so the Jacobian term in (4) is one. As an example, in the case of a two-state HMM,

q(u | βM ,M,M
′
) = q(u | M ′

) is a product of two multivariate normal distributions,

N(ΞM ′,s, VM ′,s), s = 1, 2, where the parameters ΞM ′,s, VM ′,s are defined as in Section

3.2 and depend on the proposed model M ′. The above choices do not affect the results

but may be crucial for the convergence rate of the Markov chain. In our case the per-

formance was immediately excellent, with probability of acceptance at around .75, so

we did not experiment with further choices.

We note that our reversible jump algorithm is implemented by choosing to jump only

to neighboring models using proposal distributions such that the Jacobian term is equal
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to one. Therefore, our reversible jump step reduces to a standard Metropolis-Hastings

step similar to that of a proposed binary indicator update as in Holmes and Held

(2006). However, a more complex model specification for the transition matrix can be

easily incorporated within this algorithm by allowing for different subsets of covariates

to affect the transition probabilities. This can be achieved by simply modifying the

proposal distributions for moving among different models.

4.2 Forecasting with Bayesian Model Averaging

Since forecasting of yt+1 is of primary interest, and having been able to calculate the

posterior probabilities of each model via the reversible jump MCMC algorithm, it seems

natural to account for this model uncertainty in our predictive inferences. Rather than

choosing a single “best” model and then make inferences as if the selected model was

the true model, we can use a model averaging approach which provides composite

predictions. In the real data applications of the next section we focus our attention

at examining whether covariate information can be useful in modelling the transition

matrix of a HMM, so different models correspond to all subsets of covariates Xt.

Under a discrete-time finite state-space HMM one-step-ahead predictions are straight-

forward. Given the model specification, M say, the predictive distribution of the next

observation yT+1, is given by

f(yT+1|yT ,M) =
∫
f

(
yT+1|yT , zT ,M, βM , θ

)
π(βM )π(θ)dβMdθ (5)

where

f
(
yT+1|yT , zT ,M, βM , θ

)
=

m∑
s=1

Pr(ZT+1 = s | ZT = zT )fs(yT+1).

The multidimentional integration required in (5) can not be performed analytically, but

it can instead be evaluated numerically by exploiting the samples from the posterior

distribution obtained from the reversible jump MCMC algorithm. Assume that RM

values zT (r), β
(r)
M , θ(r), r = 1, . . . , RM are available from model M at the end of the

MCMC run; then, an approximation of f(yT+1|yT ,M) is given by

f̂(yT+1|yT ,M) = R−1
M

RM∑
r=1

f
(
yT+1|yT , zT (r),M, β

(r)
M , θ(r)

)
(6)

If model uncertainty is taken into account, a Bayesian model averaging estimate of
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f(yT+1 | yT ) is computed by

f(yT+1|yT ) =
∑
M

f(yT+1|yT ,M) Pr(M |yT ). (7)

In practice, a sample from f(yT+1 | yT ) can be obtained as follows. At the rth iteration

of the algorithm, after all the unknown quantities in the model have been simulated,

a value z(r)
T+1 can be simulated first from the discrete distribution with probabilities

Pr(ZT+1 = s | ZT = z
(r)
T ), s = 1, . . . ,m, and then, conditional on the value z(r)

T+1, y
(r)
T+1

can be drawn from f
z
(r)
T+1

(yT+1). Then, inferences on the future observation YT+1 can

be based on the sample y(1)
T+1, . . . , y

(R)
T+1.

The above procedure can be generalised for forecasting when further observations yT+2,

yT+3, . . . arrive, without the need to re-run the MCMC algorithm. Assume that for some

integer 
 > 1, at time T + 
− 1 the data yT+�−1 and xT+�−1 have been observed. Then

the simulation of the yT+� future observation is performed as follows. First we draw

a value z(r)
T+� from a discrete distribution with probabilities Pr(ZT+� = s | ZT+�−1 =

z
(r)
T+�−1)fz

(r)
T+�−1

(yT+�−1), s = 1, . . . ,m and then we draw y
(r)
T+� from f

z
(r)
T+�

(yT+�).

A further issue that is necessary to complete our methodological contribution is the

evaluation of the predictive ability of our proposed models by comparing it to that of

the standard homogeneous HMM. In the applications section that follows we conduct an

out-of-sample exercise based on the logarithmic scoring rule; see, for example, Gneiting

and Raftery (2007). Under each model, we calculate the conditional predictive ordinate

so models which assign large predictive probability to the values that actually occur

return a large log score. For example, for a modelM the predictive log score is calculated

as
∑L

�=1 log f̂(yT+�|yT+�−1,M), where f̂(yT+�) is calculated in the same manner as in

(6). When inferences are based on Bayesian model averaging, the predictive log score

is given by
∑L

�=1 log f̂(yT+�|yT+�−1), where

f̂(yT+�|yT+�−1) = R−1
R∑

r=1

f
(
yT+�|yT+�−1, zT+�−1(r),M (r), β

(r)

M (r) , θ
(r)

)
is the estimate of the predictive density based on a sample of R MCMC draws.

We note that our reversible jump algorithm does not account for model uncertainty

regarding the number of states. For homogeneous HMMs such algorithms have been

proposed in the literature, see Robert et. al (2000) and Cappe et. al (2003). Unfor-

tunately these approaches contain moves between models that are rather complicated

and extensions in our setup is extremely difficult. Nevertheless, since the focus of our
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approach is prediction rather than parameter inference, we suggest choosing m based

on the predictive ability of the respective models. On the other hand, model choice

regarding the set of covariates which affect directly the mean of the Gaussian process

can be easily incorporated within our algorithm. This would simply involve adding

steps that move between models allowing for different covariates or AR effects in the

mean of the analysed series.

5 Application to US Interest Rates

We illustrate our proposed modelling and inferential approach using the monthly US

3-month treasury bill rates from January 1962 until December 1999. For this data

we use a two-state non-homogeneous HMM with six economic variables as covariates.

We make predictions both conditional on a given covariate set and following a BMA

approach. The plot of the analysed series is shown in Figure 1. These data has been

previously analysed by Pfann et al. (1996) and Dellaportas et al. (2007).

It is commonplace that such time series are best modelled by incorporating some sort

of HMM, since regime switching structures are well suited to capture non-linearities

in interest rates. Ang and Bekaert (2002) have shown that regime-switching models

correspond well with business cycles in the US, and have better forecasting ability than

single regime models. Dellaportas et al. (2007) have identified different regimes in

the US 3-month treasury bill rates, also considered here, corresponding to clusters of

data points with high or low volatility. Furthermore, they have advocated adopting

a nonlinear model by using six economic variables to explain the episodes of mean-

reverting tendencies that appear in interest rate levels. The six series that were used as

covariates are the US annual inflation rate (INF), a trade-weighted measure of the US

dollar against other major currencies (CUR), the US producer price index (PPI),the

national association of purchasing management index (NAPM), the US consumer price

index (CPI) and the 10 year US treasury yield (LTR). All the series of explanatory

variables were differenced before the analysis apart from LTR and the data has been

retrieved from DATASTREAM.

In our study we use the above variables to model the transition matrix of a non-

homogeneous HMM. The non-homogeneous HMM we use to analyse this data is of

13



the form

Δyt = μzt + bztyt−1 + σztεt, εt ∼ N(0, 1),

where Δyt = yt−yt−1 and Zt follows a 2-state Markov chain with transition matrix P (t)

which is modelled as described in Section 2 using the six covariates mentioned above.

We assign non-informative prior specifications to βss,μs,bs, s = 1, 2, in the form of a

product of univariate N(0, 10σ2
s ) normal densities, and to σ2

s , s = 1, 2, in the form of

an inverted-Gamma IG(c, d) density with c = d = 0.01. Finally, for the reversible jump

MCMC, each model is assigned equal prior probability. For our comparisons, we also

used the respective homogeneous HMM, for which the constant transition probabilities

pss, s = 1, 2 are assigned independent uniform densities in (0, 1). Inferences for all

models are based on MCMC samples consisting of 20000 draws with a burn-in period

of 5000 iterations.

The most probable model, with posterior probability of 0.165, is the model containing

all variables. The posterior model probabilities of the other models range between 0.001

for the model including just CUR and 0.096 for the model including all covariates except

for CPI.

Our out-of-sample evaluation exercise is designed as follows. We use the data from

January 1962 to December 1997 for inference (estimation period) and we consider the

period from January 1998 to December 1999 as our two-year out-of-sample evalua-

tion period. The data in the evaluation period are predicted under each model using

the model parameters obtained from the estimation data within an MCMC sampling

scheme.

We consider two non-homogeneous HMM for forecasting; the saturated model with all

six covariates and the Bayesian model averaging approach. The BMA approach with

predictive log score of 8.66 outperforms both the standard homogeneous HMM which

obtained predictive log score of 4.35 and the non-homogeneous saturated HMM which

obtained a predictive log score of 8.39.

The difference between predictive log scores of two models, respectively denoted by

p̂ls1 and p̂ls2, can be interpreted on a ‘per month’ basis as an improvement in the

predictive performance by a factor of exp
{

(p̂ls1 − p̂ls2)/24
}

. For example, the dif-

ference in log score between the Bayesian model averaging approach and the homoge-

neous HMM represents an improvement in the predictive performance by a factor of

14



exp {(8.66 − 4.35)/24} = 1.20 or by about 20%.

We now restrict our attention to the most probable non-homogeneous HMM, the sat-

urated model, examining how the different covariates considered affect the transition

probabilities. As mentioned earlier, this involves solving the label switching problem.

In this application, though, our algorithm did not present any label switching. In terms

of MCMC performance, this fact is clearly an indication of poor mixing. However, al-

though we realize the possible dangers of such a problem (see, for example, Marin et al.,

2005), we believe that we have a clear situation in which the modes are well separated

by an area with effectively zero probability and that the single mode is being explored

thoroughly. A close inspection of the MCMC output revealed that the two states of

the hidden Markov chain correspond to periods of high and low volatility, respectively.

Figure 2 shows the plot of the analysed series of first differences of US interest rates

together with the hidden Markov chain inferred by our MCMC algorithm. It is evident

from this plot that one of the underlying states corresponds to periods of high volatility

(state 1) and the other to periods of low volatility (state 2). To investigate the sources

of the non-homogeneity of this hidden Markov chain, we examined how the probabilities

p11 and p22, vary with the six different covariates.

In Figure 3 we show plots of p11 and p22 calculated for a grid of values for each covariate

ranging from the minimum to the maximum value observed in the sample. In each case

the remaining 5 covariates were set equal to their mean values. It seems that, in general

p22 is higher than p11. Both probabilities decrease as the value of US annual inflation

rate (INF) increases, while they both increase as the value of the trade-weighted measure

of the US dollar against other major currencies (CUR) increases. The remaining four

covariates affect p11 and p22 in opposite ways. For example, p11 decreases with national

association of purchasing management index (NAPM), while p22 increases.

Finally, in Figure 4 we show plots of p(t)
11 and p

(t)
22 as they vary with time. It is evident

that p(t)
22 is higher than p(t)

11 , implying that the chain is more probable to remain in the

low volatility than in the high volatility state, while it is more probable to move from

the high volatility state to the low volatility one than vice-versa since 1−p(t)
11 > 1−p(t)

22 .

Moreover, as expected, p(t)
11 is lower in periods of low volatility and gets higher in periods

of high volatility. Similar results are obtained for p(t)
22 .

15



6 Conclusions

In this paper we have considered Bayesian predictive inference for discrete-time finite

state-space HMMs with transition matrix that varies in time depending on a set of

covariates. We have constructed a reversible jump MCMC algorithm for inference on

the model parameters which includes drawing the hidden sequence of states using the

Forward-backward algorithm, simulating the multinomial regression coefficients using

auxiliary variable methods drawing the state specific parameters using standard Gibbs

steps, and sampling from the product space of models and parameters by using reversible

jump MCMC.

The proposed approach to modelling and inference has been used for the prediction of

future observations of economic series. The advantage of our model is that it allows the

transition probabilities of the HMM to vary in time by exploiting covariate information.

Our model assumes that the covariates affect some economic variable of interest in a

non-linear fashion, while other exogenous covariates or lagged values of the economic

variable can be used to model the variable of interest directly. This can be a reasonable

assumption in the analysis of many economic series that has been entirely ignored in the

forecasting literature. Our empirical results indicate that for the dataset we analysed,

our proposed model strategy has better predictive ability than a standard homogeneous

HMMs.
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Figure 1: The monthly US 3-month treasury bill rates for the period 1962 to 1999.
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Figure 2: First differences of the monthly US 3-month treasury bill rates for the esti-

mation period 1962 to 1997 (left axis) and sequence of states of the underlying Markov

process (right axis).

21



−1 −0.5 0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1
INF

−8 −6 −4 −2 0 2 4 6
0

0.2

0.4

0.6

0.8

1
CUR

−1 −0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1
PPI

−8 −6 −4 −2 0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1
NAPM

−0.4 −0.2 0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1
CPI

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1
LTR

Figure 3: Means and 90% credibility intervals of how p11 (solid lines) and p22 (dashed

lines) vary with different covariates.
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Figure 4: Plots of how p11 (top figure) and p22 (bottom figure) vary in time. Also shown

are 90% credibility intervals, obtained from the MCMC output.
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