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Abstract

We develop threshold models that allow copula functions or their association parame-

ters changing across time. The number and location of thresholds is assumed unknown.

We use a Markov chain Monte Carlo strategy combined with Laplace estimates that eval-

uate the required marginal densities for a given model. We apply our methodology to

financial time series emphasizing the ability to improve estimates of risk characteristics,

as well as measuring financial contagion by inspecting changing dependence structures.

Keywords : Copulas, Kendall’s τ , time-varying parameters, MCMC, reversible jump MCMC

method.

1 Introduction

There is a considerable recent interest in modelling temporal dependence of financial returns

by building copula functions. The key characteristic of this approach is the splitting of the

joint distribution of returns into two components, the marginal densities and the dependence

structure. The modelling process consists of first specifying the marginal distributions by

exploiting well-known stylized facts based on one-dimensional studies of financial returns,

and of second determining the appropriate copula function, that completely characterizes

the returns dependence. There is a quite substantial empirical evidence that copulas allow

for realistic description of the dependence behavior that goes beyond linear correlation; see,

for example, Embrechts, McNeal and Straumann (2002), Mashal and Zeevi (2002). For an
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overview of the theory of copulas, see, for example, Joe (1997), Nelsen (1999), Bouye, Dur-

rleman, Nikeghabali, Riboulet and Roncalli (2000), Embrechts, Lidskog and McNeal (2003).

A recent definition of contagion given by Forbes and Rigobon (2002) specifies contagion

as an increase in cross-market linkages occurring if two markets (or group of markets) do not

present high degree of comovement during both stability and crisis periods. Thus, a condi-

tional correlation test can be carried out to investigate whether the correlation between two

markets changes in contagion periods; see, for example, King and Wadhwani (1990), Forbes

and Rigobon (2002), Caporale, Cipollini and Spagnolo (2005). If the correlation does not

vary, the two markets are said to have interdependence. The advantages of this definition of

contagion has been extensively discussed in Forbes and Rigobon (2002).

In this paper we propose a methodology for modelling dynamic dependence structure by

allowing copula functions or copula parameters to change across time. Thus, we construct

tests for contagion based on more general structures than correlation. We employ a threshold

approach so these changes do not evolve in time but occur in distinct points. This strategy

resembles the threshold or change-point models applied in time-series analysis, see for ex-

ample Tong (1983). A key ingredient of our proposed methodology is that the number of

thresholds is unknown. Moreover, our model determination strategy allows the choice of dif-

ferent copula functions and/or different parameter values between two time thresholds. This

becomes feasible due to an adoption of a Markov chain Monte Carlo (MCMC) algorithm

together with a Laplace approximation.

The rest of the paper is organized as follows: In section 2 we describe the set of models

that capture time-varying dependency between financial returns. In Section 3 we develop an

MCMC implementation algorithm that efficiently deals with the large space of models and

provides estimates of posterior model probabilities. In Section 4 we test our strategy with

simulated data and real data sets. In Section 5 we conclude with a brief summary.
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2 Threshold models for copulas

Assume that we deal with two financial returns Xt and Yt, t = 1, . . . T, which are considered

to be realizations of the random variables X and Y . Although generalization of our method to

multivariate settings is immediate, we only focus on the simple bivariate case throughout the

paper. Moreover, emphasis is given to the dependence structure between Xt and Yt, rather

than the correct specification of their marginal densities. Thus, we follow Patton (2005) and

we assume that the marginal distributions are characterized by the evolution of the condi-

tional volatilities according to a GARCH(1,1) process. Conditional on this specification, our

interest is to model via copulas the time-varying dependence structure of Xt and Yt.

There have been some related efforts in the literature to deal with such modelling perspec-

tive. Patton (2005) proposes a constant functional form for a copula and a parametric model

for the evolution of its parameters. Dias and Embrechts (2004) derive a hypothesis test

for checking breaks in the association parameters. Rodriguez (2003) uses Markov switch-

ing parameters in the spirit of Hamilton and Susmel (1994). Our approach is based on

Bayesian non-parametric modelling following ideas from Denison, Mallick and Smith (1998).

In particular, we assume that a bivariate copula function Cθ:[0, 1]2 → [0, 1], indexed by a

parameter θ, is chosen to model the joint distribution function of the random variables X

and Y , H(X,Y ) = P [X ≤ x, Y ≤ y] say, through

H(X,Y ) = Cθ(F (X), G(Y )), (1)

with F and G denoting the distribution functions of X and Y respectively. For reasons that

will be evident later θ lies in (−∞,∞); if this is not the case, we just perform a simple

transformation. We generalize the static relationship (1) by introducing disjoint sets Ij,

j = 1, . . . , J, so that

H(X,Y ) =
J∑

j=1

Ij(t)Cθj
(F (xj), G(yj)) (2)

where [0, T ] =
⋃

j Ij , Ij(t) = 1 if t ∈ Ij, and in each interval Ij the parameter of the copula

is θj and the corresponding samples xj and yj. To allow for full flexibility, the number of

disjoined sets is unknown and estimated from the data. The model formulation (2) can be

viewed as a change-point model in which the value of copula parameter jumps to a new value

of some undetermined time.
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A further realization of (2) is achieved by employing a collection of copula functions {Ci
θ, i =

1, . . . , �} so that

H(X,Y ) =
J∑

j=1

Ij(t)
�∑

i=1

wijC
i
θj

(F (xj), G(yj)) (3)

where Ci
θj

denotes the copula function Ci
θ with θ = θj and wij denotes the probability of

having the copula i in the interval Ij , so
∑�

i=1 wij = 1 for all j. Thus, our general model

(3) allows both the functional form of the copula and the parameters to change within each

interval Ij.

The intervals {Ij , j = 1, . . . , J}, J > 1, are specified by J − 1 thresholds parameters

γ1, . . . , γJ−1. We set γ0 = 1 and γJ = T , so for J = 1, I1 = [1, T ]. Since our model as-

sumes that the dependence between two consecutive thresholds is characterized by a copula

function, we should allow some distance between thresholds, so that enough data points are

used to estimate the parameter of the copula. Note that copula functions model dependence

in the tails of the joint distribution, so small sample sizes are not adequate for gathering

tail-behavior information. We denote this distance as d, so that we require |γj − γj−1| ≥ d,

j = 1, . . . , J − 2, and we have used, in our empirical studies, d = 100.

It is evident that our models provide an immediate test for interdependence or contagion

between two markets or group of markets since the model with zero thresholds corresponds

to interdependence. Moreover, the increased flexibility offered by keeping the location and

number of thresholds unknown allows full investigation of the time of the contagion.

3 Bayesian model formulation

3.1 Bayesian model determination

Suppose that we have data y that are considered to have been generated by a model m, one of

the set M of the competing models. Each model specifies a joint distribution of Y , f(y|m, θm),

conditional on the parameter vector θm. A Bayesian model determination approach requires

the specification of the prior model probability of m, f(m), and conditional prior densities
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f(θm|m) for each m ∈ M . Then the posterior model probability is given by

f(m|y) =
f(m)f(y|m)∑

m∈M f(m)f(y|m)
,m ∈ M (4)

where

f(y|m) =
∫

f(y|m, θm)f(θm|m)dθm

is the marginal probability of model m.

If the number of possible models |M | is large, and if analytical calculation of f(y|m) is

not possible, MCMC algorithms provide an efficient tool to explore the parameter-model

product space for (m, θm); see for example Green (1995), Dellaportas, Forster and Ntzoufras

(2002). Since the general model (3) involves a large number of models |M |, we describe in

Section 3 how an MCMC algorithm together with Laplace approximation for f(y|m) can be

constructed to estimate (4). A key idea is that instead of obtaining samples form f(m, θm),

we just approximate the posterior marginal density of f(m) by integrating out θm for all m

that lie in the high posterior probability region of f(m).

3.2 Priors

We take the prior model probabilities to be f(m) = |M |−1. Special care is needed in model

choice problems for f(θm|m), since it is well known that very disperse priors cause the

Bartlett’s-Lindley paradox, see Kass and Raftery (1995). We follow Kass and Wassermann

(1996) and we propose a unit information prior for f(θm|m). To specify this prior for a given

interval Ij = [γj−1, γj ] and a copula function C, first calculate the corresponding maximum

likelihood

θ̂ = arg max
∏

t∈Ij

f(xt)g(xt)cθ(F (xt), G(xt)) (5)

where f , g and cθ are the corresponding density functions of F , G and Cθ, respectively.

Then, we place a zero-mean Normal prior for θ with variance given by

(γj − γj−1)|H(θ̂)|−1

where H(θ̂) is the Hessian matrix evaluated at θ̂. As expected, this prior specification is also

very non-informative within each model, obtaining standard deviations for the prior densities

that are about 40 times larger than the corresponding posterior standard deviations.
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4 MCMC Algorithm

4.1 Laplace approximation

Searching in both model and parameter space is possible via reversible jump algorithm of

Green (1995). For an extensive list of applications in Bayesian non-linear modelling see

Denison, Holmes, Mallick and Smith (2002). However, to facilitate our search, we integrate

out the parameter uncertainty within each model by approximating the marginal likelihood

by

f̂(y|m) = (2π)d/2|Σ̂m|1/2f(y|θ̂m,m)f(θ̂m|m) (6)

where dim(θm) = d, θ̂m is the maximum likelihood estimate calculated by (5) and Σ is

the inverse of the Hessian matrix evaluated at θ̂m. For details see Kass and Raftery (1995),

Raftery (1996). By performing this approximation for every model m, we are left with the

task to sample in the space of (discrete) density function specified by (4) with f(y|m) replaced

by (6).

4.2 MCMC moves

We require an efficient Markovian scheme that mixes well in the model space. To achieve

this, we employ a random walk Metropolis algorithm which is properly tuned with a pro-

posal density that allows quick exploration of the state space; for details, see Dellaportas and

Roberts (2003).

Assume that the maximum number of thresholds is K. This number is taken to be large

enough so that it does not affect in any way the posterior density of the number of thresh-

olds. The proposal density q(m
′ |m), which proposes a new model m

′
, when the current model

is m, is constructed as follows. Assume that model m has k thresholds. Then the possible

proposal moves are formed as

• ‘Birth’ : Propose adding a new threshold.

• ‘Death’ : Propose removing one of the k current thresholds if the copula is the same in

both sides of the threshold.

• ‘Move’ : Propose a reallocation of one of the k current thresholds.
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• ‘Change’ : Propose a change of a functional form of a copula within two current thresh-

olds.

Denote by bk,dk,mk and ck the probabilities of ‘Birth’,‘Death’,‘Move’ and ‘Change’ moves

respectively. Then the proposal densities, for the model m with k thresholds, are formed as:

q(m
′ |m) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

bk
T−k , if ‘Birth′

dk
k , if ‘Death′

mk
k , if ‘Move′

ck
k , if ‘Change′

For example a sensible choice is bk=dk=mk=ck=1
4 , k = 1, . . . ,K − 1; bK=d0=m0 = 0,

b0=c0=1
2 , bK=mK=cK=1

3 . For the ‘Move’ proposal density we chose a discrete uniform,

which takes equidistant values around the current threshold, and we noticed that a length 21

time points, provides a reasonable density spread that achieves a good mixing behavior.

We have noticed that some combinations of the four basic moves offer great flexibility in

our samplers (see Dellaportas, Forster and Ntzoufras (2002) for a discussion on ‘local’ and

‘global’ moves in model space), so the algorithm we suggest involves also the following moves:

• ‘Birth-Change’: Propose adding a new threshold and changing the copula function in

one of the two resulting intervals.

• ‘Death-Change’: Propose removing one of the current k current thresholds when the

copula functions are different in each side of the threshold and propose one of the two

functions as a candidate for the new interval.

The way we incorporated these extra moves in our sampler is just split all bk and dk proba-

bilities to half and thus allow equal proposal probabilities for the ‘Birth-Change’ and ‘Death-

Change’ moves. Of course, all these choices only affect the mixing of the chain and might

need to be tuned appropriately in other datasets. The acceptance probability for moving

from model m to model m
′
is given by

α = min{1, f̂(y|m′
)

f̂(y|m)
× R}
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where f̂ is the product of all estimated marginal likelihoods in each interval of [0, T ] calculated

via (6), and R is given by

dk+1

bk
, bk−1

dk
, 1,1

for ‘Birth’, ‘Death’, ‘Move’ and ‘Change’ moves respectively.

We note here that the Metropolis-Hastings moves above resemble the usual reversible jump

moves of Denison, Holmes, Mallick and Smith (2002), but our Laplace estimation (6) essen-

tially removes all the parameter dimension difference between models resulting to a simple

acceptance probability without the usual Jacobian terms.

5 Copulas

We describe in this section the mathematical derivations for our data analysis examples of

the next section. We use the following copulas:

1. Frank’s copula: CF
θ (u, ν) = −1

θ ln(1 + (e−θu−1)(e−θν−1)
e−θ−1

), θ �= 0

2. Clayton’s copula: CC
α (u, ν) = [u−α + ν−α − 1]−1/α, α > 0

3. Gumbel’s copula: CG
β (u, ν) = exp{−[(−lnu)β + (−lnν)β]1/β}, β ≥ 1

where the transformations θ = log α and θ = log(β−1) allow the parameters of the Clayton’s

and Gumbel’s copulas to lie in the (−∞,∞) interval. Frank’s copula (Frank, 1979) was cho-

sen for its nice symmetrical properties, whereas Clayton’s (Clayton, 1978) and Hougaard -

Gumbel’s (Gumbel, 1960, Hougaard, 1986) copulas are somehow complementary, since they

exhibit opposite upper and lower tail dependence properties. The marginal densities for all

series we looked at, are specified by the usual GARCH(1,1) process (Bollerslev, 1986), so that

the joint density functions are applied to the residuals of each series derived from the model

fit in a generic interval I, say ut and νt, t ∈ I. These joint density functions are:
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• cF
θ (U, V ) =

∏
t∈I θ(1 − e−θ)e−θ(ut+νt)[e−θ − 1 + (e−θut − 1)(e−θνt − 1)]−2

• cC
θ (U, V ) =

∏
t∈I(e

θ + 1)(ut + νt)
−eθ−1(u−eθ

t + ν−eθ

t − 1)−e−θ−2

• cG
θ (U, V ) =

∏
t∈I(log ut log νt)e

θ
(utνt)

−1e−((− log ut)eθ+1+(− log νt)eθ+1)
1

eθ+1 (eθ+((− log ut)e
θ+1+

(− log νt)e
θ+1)

1
θ+1 ((− log ut)e

θ+1 + (− log νt)e
θ+1)−2+ 1

θ+1 .

The resulting posterior densities are obtained by multiplying the likelihood functions in each

interval with the non-informative prior densities of Section 3. When the maximizations or

derivatives required for the Laplace approximations are analytically intractable, numerical

techniques are used.

5.1 Model averaging

Our MCMC sampler provides estimates for posterior model probabilities which are useful

in picking the best model (under a zero-one loss function), which mostly represents the

dependence between the two time series. However, it is rather common to exploit further this

posterior density by adopting a predictive approach for inference, or averaging any posterior

summary of interest by weighting it with the posterior probability of each model; see, for

example, the discussion in Bernardo and Smith (1994). This model averaging approach

can be used, for instance, when some dependence summary statistic, say φ(θ), is estimated.

Instead of deriving an estimate of φ(θ) based on samples drawn from the model with the

highest posterior probability, we can just use

φ(θ) =
∑

m∈M

f(m|y)φm(θ)

where f(m|y) is the posterior model probability of the model m and φm(θ) is the estimate of

φ(θ) under model m. We will be using model averaging in Section 6 to illustrate how predictive

inferences can be made for Kendall’s τ , a common alternative to Pearson’s correlation measure

of association. For completeness we present below the Kendall’s τ of the families of copulas

that will be used in this paper:

1. Frank’s copula: τF = 1−4(1−D1(θ))
θ , τF ∈ (−1, 1) , where Dk(x) is the Debye function,

Dk(x) = k
xk

∫ x
0

tk

et−1dt, k ∈ N.
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2. Clayton’s copula: τC = θ
θ+2 , τC ∈ [0, 1)

3. Gumbel’s copula: τG = 1 − 1
θ , τG ∈ [0, 1).

6 Examples

6.1 Artificial data

We report here one of many artificial data experiments we performed in order to illustrate

the efficiency of our method. We simulate a bivariate series with standard normal marginals

and the dependence structure specified by Frank’s copula. Details of how to simulate from a

copula can be found in Nelsen (1999). The parameter θ was set to θ = 3, then at t = 850 it was

set to θ = 5.5, and at t = 1700 it was set back to θ = 3. For Frank’s copula this corresponds

to Kendall’s τ that jumps from about τ = 0.3 to about τ = 0.5; see Figure 1. We started

the MCMC chain with zero breaks and after a burn-in period of 20,000 points we obtained

our Markov chain output by collecting the next 20,000 points. An ergodic estimate of the

posterior model probabilities, where each model represents a different number of thresholds,

is given in Figure 2. The MCMC chain detected the correct model (k = 2) and the correct

thresholds very early and a series of tests with many initial values showed that the mixing is

very good.

6.2 Real data example 1

We apply our models to daily returns of Dow Jones average and Xetra DAX indices from

7/9/1998 up to 7/9/2004. This sample was selected to include the periods before and after

the 9/11. We initiated our Markov chain with zero breaks and after a burn-in period of

20,000 points we obtained our Markov chain output by collecting the next of 20,000 points.

An ergodic estimate of the posterior model probabilities, where each model represents a

different number of thresholds, is given in Figure 3. The outcome supports model with 4

breaks. The posterior samples provide strong evidence of change-points in the dependence

structure. Notice that there is a small increase in the estimates of Kendall’s τ around 9/11.

For comparison purposes, Figure 4 also depicts two rolling window-based sample estimates of

Kendall’s τ calculated as τr = (Cr−Dr)/(Cr+Dr) where Cr is the number of concordant pairs
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and Dr the number of discordant pairs obtained from the sample of interval Ir = [r, r+W],

where W is the window width and r = 1, . . . , T − W .

6.3 Real data example 2

We deal with daily returns from Mexico and Argentina stock indices during the period

7/4/1994 - 12/31/1996. These data have been analyzed in the past by Forbes and Rigobon

(2002) and Rodriguez (2003) who studied quite extensively the changing structure of depen-

dence in this period and its association with financial contagion. In this case we assumed that

the dependence structure is modelled by either Clayton’s or Gumbel’s copula. An ergodic

estimate of the posterior model probabilities, based on a burn-in period of 20,000 points

and a collected sample of the next 20,000 points, is given in Figure 5. Figure 6 depicts

Kendall’s τ evaluated both with two sample-based estimators and based on our posterior

sample based on model averaging. Our model search strategy clearly indicates that there

is very strong evidence of two thresholds which result to an increase of Kendall’s τ in the

period 96/4− 96/6 from about 0.28 to about 0.37. According to our model, there is evidence

of contagion between Mexico and Argentina during this period.

7 Conclusions

We studied the important question of modelling the dependence structure between economic

series by allowing copula functions and parameters to change across time. Both simulated

and real data examples provide evidence that this flexible threshold-based modelling is very

promising and offers a good insight of the time-varying association between financial series.

Contagion between markets or between groups of markets as defined by Forbes and Rigobon

(2002) can be examined by testing whether the number of thresholds in our model is zero or

not.
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Inst. Statist., Univ. Paris, vol. 9, 171-173.

[22] Genest C. and J.-C. Boies, 2003, “Detecting dependence with Kendall plots”, The Amer-

ican Statistician, vol. 57, 1-10.

[23] Genest C., J.-F. Quessy and B. Remillard, 2002, “Tests of serial independence based on

Kendall’s process”, The Canadian Journal of Statistics, vol. 30, 1-21.

[24] Genest C., K. Ghoudi and L.-P. Rivest, 1995, “A semi-parametric estimation procedure

of dependence parameters in multivariate families of distributions”, Biometrika, vol. 82,

543-552.

13



[25] Genest C. and L.-P. Rivest, 1993, “Statistical inference procedures for bivariate

Achimedean copulas”, Journal of American Statistical Association, vol. 88, 1034-1043.

[26] Genest C. and J. MacKay, 1986, “The joy of copulas: Bivariate districutions with uniform

marginals”, The American Statistician, vol. 40, 280-283.

[27] Green P.J., 1995, “Reversible jump Markov chain Monte Carlo computation and

Bayesian model determination”, Biometrika, vol. 82, 711-732.

[28] Hamilton J.D. and R. Susmel, 1994, “Autoregressive Conditional Heteroskedasticity and

Changes in Regime”, Journal of Econometrics, vol. 64, 307-333.

[29] Hougaard P., 1986, “A class of multivariate failure time distibutions”, Biometrika, vol.

73, 671-678.

[30] Joe H., 1997, Multivariate Models and Dependence Concepts, Monographs on Statistics

and Applied Probability, 73, Chapmann & Hall, London.

[31] Kass R.E. and A.E. Raftery, 1995, “Bayes Factors”, Journal of the American Statistical

Association, vol. 90, 773-795.

[32] Kass R.E. and L. Wassermann, 1996, “The selection of prior distribution by formal

rules”, Journal of the American Statistical Association, vol. 91, 1343-1370.

[33] King M.A. and S. Wadhwani, 1994, “Transmission of volatility between stock markets”,

Review of Financial Studies, vol. 3, 5-33.

[34] Mashal R. and A. Zeevi, 2002, “Beyond correlation: Extreme co-movements between

financial assets”, Technical report, Columbia University.

[35] Mandelbrot B., 1963a, “New methods in statistical economies”, Journal of Political

Economy, vol. 71, 421-440.

[36] Mandelbrot B., 1963b, “The variation of certain speculative prices”, Journal of Business,

vol. 36, 394-419.

[37] Nelsen R.B., 1999, An Introduction to Copulas, Lecture Notes in Statistics, No. 139,

Springer & Verlag, NY.

14



[38] Patton A., 2005, “Modelling Asymmetric Exchange Rate Dependence ”, forthcoming in

International Economic Review.

[39] Richardson S. and P.J. Green, 1997, “On Bayesian analysis of mixtures with an unknown

number of components (with discussion)”, Journal of Royal Statistical Society, B, vol.

59, 731-792.

[40] Rodriguez J.C., 2003, “Measuring financial contagion: A copula approach”, Working

paper, EURANDOM.

[41] Scweizer B., 1991, “Thirty years of copulas”, in Advances in Probability Distributions

with Given Marginals, G. Dall’ Aglio, S. Kotz and G. Salinetti (editors), Kluwer Acad-

emic Publishers, 13-50.
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Figure 1: Kendall’s τ for simulated data. Solid line: real τ ; dotted line: estimated τ based

on the model with two thresholds; dashed line: estimated τ based on model averaging.
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Figure 2: Posterior probabilities for different models. k represents the number of thresholds

in the model. Solid line: k = 2; dotted line: k = 3; dashed line: k = 4.
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Figure 3: Ergodic posterior probabilities for different models. k represents the number of

thresholds in the model. Solid line: k = 4; dotted line: k = 5; dashed line: k = 3.
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Figure 4: Kendall’s τ for Dow Jones-Xetra Dax. Solid line: sample τ for window size 100;

dashed line: sample τ for window size 250; dotted line: estimated τ based on model averaging.
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Figure 5: Mexico-Argentina: Ergodic posterior probabilities for different models. k represents

the number of thresholds in the model. Solid line: k = 1; dashed-dotted line: k = 0; dotted

line: k = 2.
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Figure 6: Kendall’s τ for Mexico-Argentine. Solid line: sample τ for window size 100; dashed

line: sample τ for window size 250; dotted line: estimated τ based on model averaging.
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