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Let {Xn;n ∈ N} be a sequence of independent, identically distributed random
variables with values in R+ and distribution function F . The process {Sn;n ∈ N0}
defined by means of S0 := 0, Sn := Sn−1 + Xn, n = 1, 2, . . . is called an ordinary
renewal process. The non–negative random variables Xn are called increments or,
in many applications, inter–event times. In connection with the sequence of random
points in time, {Sn}, one can define the counting process Nt =

∑∞
n=0 1(Sn ≤ t),

t ∈ R+, where 1(A) designates the indicator function of the event A (which is 1 if
A occurs and 0 otherwise). The renewal function associated with a renewal process
is the increasing, right–continuous function U(t) := ENt =

∑∞
n=0 F

∗n(t) where
F ∗n(t) denotes the n–fold convolution of the distribution function F with itself (hence
F ∗n(t) = P (Sn ≤ t)).

Renewal processes are intimately related to the theory of the so–called renewal
equation which is a linear integral equation of the form

Z(x) = z(x) +

∫ x

0

Z(x− y)F (dy) (1)

where z : R+ → R is a Borel function, bounded on finite intervals, and F a probability
distribution on R+. F and z are assumed to be given and the object is to determine
the (unique) solution Z which is bounded on finite intervals, and study its asymptotic
behavior as x → ∞. Its solution is given, in terms of the renewal function by the
convolution Z(x) =

∫ x
0
z(x− y)U(dy).

Renewal processes are important as special cases of random point processes. In this
respect the Poisson process on the real line is the simplest and most important renewal
process. They occur naturally in the theory of replacement of industrial equipment,
the theory of queues, in branching processes, and in many other applications. In the
framework of perpetual replacement of a single item, Xn is the life of the nth such
item which, as soon as it fails, is replaced by a new one with independent duration
distributed according to F . Then Nt is the number of items used in the time interval
[0, t] and SNt

is the time of the last replacement before t. We define three additional
processes {At; t ≥ 0}, {Bt; t ≥ 0}, and {Ct; t ≥ 0} as follows: At := t − SNt−1 is
the age, Bt := SNt

− t is the remaining life, and Ct := At + Bt = XNt
is the total

life duration of the item currently in use. (The age and remaining life are also known
as the backward and forward recurrence times.) The statistics of these processes can
be described by means of appropriate renewal equations. For instance, if Wx(t) :=
P (At ≤ x) then conditioning on S1 (using the so–called “renewal argument”) we
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obtain

Wx(t) = (1− F (t))1(t ≤ x) +

∫ t

0

Wx(t− s)dF (s). (2)

If we allow the first increment to have a different distribution from all the others,
i.e. if we set S0 = X0 and Sn = Sn−1 +Xn, n = 1, 2, . . . where X0 is independent of
the {Xn} and, unlike them, has distribution F0, different from F , we obtain a delayed
renewal process. This type of process is important because it provides additional flex-
ibility in accommodating different initial conditions. Of course, its limiting properties
are not affected by this modification. Of particular importance, assuming the mean m
to be finite, is the choice F0 = FI , given by

FI(x) :=
1

m

∫ x

0

(1− F (y))dy. (3)

With this choice, {Sn} becomes a stationary point process. FI is called the integrated
tail distribution associated with the distribution F .

Of fundamental importance are the limit theorems related to renewal processes. If

m :=

∫ ∞
0

xdF (x) denotes the mean of the increments, then the Elementary Renewal

Theorem states that lim
t→∞

t−1U(t) = m−1. (The result holds also in the case m =

∞ provided that we interpret m−1 as 0.) A refinement is possible if the increments
have finite second moment, in which case lim

t→∞
(U(t)− t/m) = EX2

1/(2m
2). An

analogous bound, due to Lorden (1970), also holds for all t ≥ 0: U(t) ≤ t/m +
EX2

1/m
2. When the second moment exists we also have a Central Limit Theorem for

the number of events up to time t: As t→∞,
Nt − t/m
σ
√
t/m3

d→ Z where Z is a standard

Normal random variable and σ2 = V ar(X1).
Much deeper is Blackwell’s Theorem which states that, if F in non–lattice and the

mean m is finite then

lim
t→∞

(U(t+ h)− U(t)) = h/m for all h > 0. (4)

(A distribution F on R+ is lattice with lattice size δ if there exists δ > 0 such that
the support of F is a subset of {nδ;n = 0, 1, 2, . . .} and δ is the largest such num-
ber.) If F is lattice (δ) then (4) still holds, provided that h is an integer multiple
of δ. Also, if m = ∞ the theorem still holds with m−1 = 0. Blackwell’s orig-
inal proof (1948) of (4) depended on harmonic analysis techniques. In the 1970’s
with the widespread use of coupling techniques simpler probabilistic proofs of the
renewal theorem became available. (See [11] for a complete account.) An integral
version of Blackwell’s theorem, the Key Renewal Theorem, states that, if z is di-

rectly Riemann integrable then the limit lim
x→∞

∫ x

0

z(x − y)dU(y) exists and equals

m−1
∫ ∞
0

z(x)dx. This then gives the limiting behavior of any function which satisfies

a renewal equation (1). (Direct Riemann integrability is a direct extension of the Rie-
mann integral from bounded intervals to unbounded ones: Fix h > 0 and let γn(h) =
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supnh≤x<(n+1)h z(x), γ
n
(h) = infnh≤x<(n+1)h z(x). Set I(h) :=

∑∞
n=0 hγn(h)

and I(h) :=
∑∞
n=0 hγn(h). Clearly, if h1 > h2 > 0 then I(h1) ≤ I(h2) ≤

I(h2) ≤ I(h1), though these quantities may not necessarily be finite. If limh→0 I(h)
and limh→0 I(h) exist and are equal then z is directly Riemann integrable. It should
be noted that the direct Riemann integral is more restrictive than either the improper
Riemann integral or the Lebesgue integral.)

The discrete version of the renewal theorem is simpler but not elementary. Suppose
we are given a probability distribution {fn;n = 1, 2, . . .} which is non–arithmetic,
i.e. g.c.d.{n : fn > 0} = 1 and has mean m =

∑∞
n=1 nfn, and define the renewal

sequence {un;n = 0, 1, 2, . . .} via u0 = 1, un = fn + fn−1u1 + · · ·+ f1un−1. Then
limn→∞ un = m−1 (interpreted as 0 when m = ∞). This is the celebrated Erdös–
Feller–Pollard (1948) renewal theorem (see [7], vol. 1, ch. 13) which marks the begin-
ning of modern renewal theory and played a central rôle in the treatment of Markov
chains with countable state space. Interesting behavior arises if the non–arithmetic
distribution function {fn} has infinite mean: Suppose that

∑∞
k=n+1 fk = L(n)n−α

where 0 < α < 1 and L(n) is a slowly varying function. (A real function L is said to be
slowly varying if it is positive, measurable, and for every λ > 0, L(λx)/L(x) → 1 as
x→∞.) Then (Garsia and Lamperti, 1962) lim infn→∞ n1−αL(n)un = π−1 sinπα.
If 1/2 < α < 1, this can be sharpened to limn→∞ n1−αL(n)un = π−1 sinπα. Anal-
ogous results in continuous time are also proved. Suppose that F (.) is continuous,
F (0+) = 0, F (∞) = 1, m =∞, and

1− F (t) ∼ t−αL(t)

Γ(1− α)
⇔ m(t) :=

∫ t

0

(1− F (u))du ∼ t1−αL(t)

Γ(2− α)
, t→∞,(5)

where α ∈ [0, 1) and L(·) is a slowly varying function at infinity. Under these condi-
tions the growth rate of U(t) is given by (see e.g. [3], Ch. 8),

U(t) ∼ Cαt/m(t), as t→∞, where Cα = [Γ(α+ 1)Γ(2− α)]−1.

Erickson (1970) proved a version of Blackwell’s theorem in the infinite mean cycle
case. It states that if in (5), α ∈ ( 1

2 , 1], then for any fixed h > 0

lim
t→∞

m(t)[U(t)− U(t− h)] = Cαh.

If α ∈ (0, 12 ], then lim has to be replaced by lim inf . Several versions of the Key
Renewal Theorem in the infinite mean cycle case are also proved in Teugels (1968),
Erickson (1970), and Anderson and Athreya (1987).

Using the Key Renewal Theorem one can obtain the asymptotic behavior of the age
and the current and residual life. If Y is a random variable with distribution P (Y ≤

y) =
1

m

∫ y

0

xdF (x) and V is uniform in [0, 1] and independent of Y , then

(At, Bt, Ct)
d→ (V Y, (1− V )Y, Y ) as t→∞.

In particular the limiting marginal distribution of the age (which is the same as that of
the residual life) is

lim
t→∞

P (At ≤ x) = FI(x),
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the integrated tail distribution given in (3). The limiting behavior of these processes
gives rise to the so called “renewal paradox”. For instance, the limiting distribution of
the item currently in use is

lim
t→∞

P (Ct ≤ x) =
1

m

∫ x

0

ydF (y)

with corresponding mean, provided that the second moment of F exists, given by m+
σ2/m. Hence if we inspect such a process a long time after it has started operating (and
is therefore in equilibrium) the part we are going to see will have longer life duration
than average. Of course this is simply an instance of length–biased sampling and its
effects are more pronounced when the variability of the distribution F around its mean
is large.

In the infinite mean cycle case the life time processes At and Bt have a linear
growth to infinity, i.e. the normalized processes At/t and Bt/t have non-degenerate
limit laws, jointly or separately. This result is usually called the Dynkin-Lamperti
theorem (Dynkin, 1955, Lamperti, 1962). (See also [3], Ch. 8). The theorem states
that the condition (5) with α ∈ (0, 1) is necessary and sufficient for the existence of
non-degenerate limit laws for At/t, Bt/t,

lim
t→∞

P (At/t ≤ x) = π−1 sinπα

∫ x

0

u−α(1− u)α−1, 0 < x < 1,

lim
t→∞

P (Bt/t ≤ x) = π−1 sinπα

∫ x

0

u−α(1 + u)−1du, x > 0.

An important and immediate generalization of the renewal equation (1) is to allow F to
be a general positive finite measure on R+. Setting ‖F‖ := F (R+) one distinguishes
the excessive case where ‖F‖ > 1, the defective case where ‖F‖ < 1, and the proper
case we have already discussed, where ‖F‖ = 1. In the excessive case one can always

find a (unique) β > 0 such that
∫ ∞
0

e−βxdF (x) = 1. One can define then a probability

distribution function F# via the relationship dF#(x) = e−βxdF (x), x ≥ 0. Multi-
plying both sides of (1) by e−βx and setting z#(x) = e−βxz(x), Z#(x) = e−βxZ(x),

the proper renewal equation Z#(x) = z#(x) +

∫ x

0

z#(x − y)dF#(y) is obtained.

The Key Renewal Theorem then yields

lim
x→∞

e−βxZ(x) =
1

m#

∫ ∞
0

z#(y)dy,

which establishes that, asymptotically, Z grows exponentially with rate β. We should
point out that the defective case is not entirely similar. While formally one again tries to

identify β > 0 so that
∫ ∞
0

eβxdF (x) = 1, this may or may not be possible according

to whether the distribution function
1

‖F‖
F (x) is light–tailed or heavy–tailed. In the

former case one proceeds just as in the excessive case. (For more details see [7], vol.
2 ch. 11). This type of analysis is characteristic of the applications of renewal theory
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to areas such as population dynamics, the theory of collective insurance risk, and to
the economic theory or replacement and depreciation (Jorgenson (1974), Feldstein and
Rothchild (1974)).

Alternating renewal processes arise in a natural way in many situations, like queue-
ing systems and reliability of industrial equipment, where working(busy) periods (X)
interchange with idle periods (T ). Consider a sequence of random vectors with non-
negative coordinates (Ti, Xi), i = 1, 2, . . .. It defines an alternating renewal sequence
(Sn, S

′
n+1) as follows S0 = 0, S′n = Sn−1 + Tn, Sn = S′n +Xn = Sn−1 + (Tn +

Xn), n = 1, 2, . . . . An interpretation in terms of the reliability theory is the follow-
ing. There are two types of renewal events: Sn is the moment when the installation of
a new element begins (The installation takes time Tn); S′n+1 is the moment when the
installation ends and the new element starts working. (The working period has length
Xn). The renewal process N(t) = sup{n : Sn ≤ t} counts the pairs of renewal events
in the interval [0, t]. The processes σt = max{0, t − S′N(t)+1} – spent working time
and τt = min{SN(t)+1 − t,XN(t)+1} – residual working time generalize the lifetime
processes At and Bt. Their properties are derived in Mitov and Yanev (2001) in the
infinite mean cycle case.

The central place that renewal theory holds in the analysis of stochastic systems
is due to the concept of regeneration. Let {Xt; t ∈ R+} be a process with values
in S (e.g. a Euclidean space Rd) and sample paths that are càdlàg (right–continuous
with left–hand limits) a.s.. Such a process is called regenerative with respect to a
(possibly delayed) renewal process {Sn}, defined on the same probability space, if, for
each n ∈ N the post Sn process ({XSn+t}t≥0, {Sn+k − Sn}k∈N) is independent of
{S0, S1, . . . , Sn} and its distribution does not depend on n, i.e. ({XSn+t}t≥0, {Sn+k−
Sn}k∈N)

d
= ({XS0+t}t≥0, {Sk − S0}k∈N) for all n. The existence of an embedded,

non–lattice renewal process with respect to which the process {Xt} is regenerative,
together with the finiteness of the mean m := E[S1 − S0] is enough to guarantee the
existence of a “stationary version”, say {X̃t}, to which {Xt} converges as t goes to
infinity. The statistics of {X̃t} can be determined by analyzing the behavior of {Xt}
over any regenerative cycle, i.e. a random time interval of the form [Sn, Sn+1). If
k ∈ N, ti ∈ R+, i = 1, 2, . . . , k, and f : Sk → R is any bounded, continuous function
then

Ef(X̃t1 , . . . , X̃tk) =
1

m
E

∫ S1

S0

f(Xt1+t, . . . , Xtk+t)dt.

Nowadays, our view of whole areas of probability, including parts of the theory
of Markov processes is influenced by renewal theoretic tools and related concepts of
regeneration. The analysis of many stochastic models is greatly facilitated if one iden-
tifies certain embedded points in time that occur according to a renewal process and
with respect to which the process is regenerative. The fact that these regeneration cy-
cles are independent, identically distributed, also facilitates the statistical analysis of
the simulation output of regenerative systems.

A detailed representation of the renewal theory and its applications could be found,
for instance, in the following books [1], [3], [7], and [14].

Reprinted with permission from Lovric, Miodrag (2011), International Encyclope-
dia of Statistical Science. Heidelberg: Springer Science +Business Media, LLC.
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