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Abstract

When designing a message transmission system, from the point of view of making sure that the
information transmitted is as fresh as possible, two rules of thumb seem reasonable: use small buffers
and adopt a last-in-first-out policy. In this paper, the freshness of information is interpreted as the
recently studied “age of information” performance measure. Considering it as a stochastic process
operating in a stationary regime, we compute the whole marginal distribution of the age of information
for some well-performing systems. We assume that the arrival process is Poisson and that the messages
have independent service times with common distribution, i.e., the M/GI model. We demonstrate
the usefulness of Palm and Markov-renewal theory to derive results for Laplace transforms. Our
numerical studies address some aspects of open questions regarding the optimality of previously
proposed scheduling policies, and a policy newly considered herein, for AoI management.
Keywords and phrases. Age of information, Markov renewal, Palm probability, Laplace transform, queueing

1 Introduction

The so-called “age of information” (AoI) performance criterion, defined as the time elapsed since the
information possessed by a monitor was generated and time stamped at the source, has recently received a
lot of attention, e.g., [16, 17]. The reason is simple: in several applications it is the freshness of information
that is important rather than the correct transmission of all messages. Examples include virtual reality,
online gaming, weather reports, semi or fully autonomous vehicles, stock market trading, power systems
and other “cyber physical” systems. Often in these applications, bounds on the tail of the AoI distribution
(not just its mean) need to be met.

We start by precisely defining the concept of AoI in general. Consider a message processing facility
with one input stream of arriving messages. The facility can be a single queue or a complex network
system. An arriving message has a certain positive “size” (expressed in time units and interpreted as
processing or service time) and three things can happen: (i) the message is immediately rejected upon
arrival; (ii) the message is accepted but rejected while in the system; (iii) the message is successfully
transmitted as soon as it is processed in its entirety. We are interested in the time that the latter will happen
in comparison to the time that the message arrives in the system. If messages are labeled by integers in a
way that the message with label n ∈ Z arrives at time Tn ∈ R and Tm < Tn when m < n, if Tn + ∆n denotes
the time at which message labeled n leaves the system either by being rejected or successfully transmitted,
and if ψn is a binary variable indicating the latter (ψn = 1 if message n is successful or 0 if not), then we let

D(t) := sup{Tn + ∆n : n ∈ Z,Tn + ∆n ≤ t, ψn = 1}, (1)
A(t) := sup{Tn : n ∈ Z,Tn + ∆n ≤ t, ψn = 1}, (2)
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and define the AoI at time t by
α(t) := t − A(t). (3)

Note that A(t) = A(D(t)). This definition is quite general, that is, it does not depend on the details of the
system design.

Typically, systems that adopt freshness of information as performance measure should be designed
so that its AoI “be as small as possible”. The last phrase can mean several things. For example, it can
mean that the quantity α(t) is least for all t under identical traffic conditions. Or it could mean least in
terms of an expectation or another functional of the process, e.g., P(α > γ) < ε for some quality-of-service
parameters γ, ε where here “α” has the stationary AoI distribution. Adopting AoI as a performance
criterion immediately poses some simplifications over traditional queueing theory performance criteria
but also presents some new challenges.

It is reasonable to conjecture that every time a message arrives we should start to process it immediately
if possible (after all, we are not interested in obsolete information). That is, even if the server is busy at the
moment of arrival, the currently served message is immediately discarded and the new one starts being
processed. Systems working in this manner are service-preemptive. It also seems reasonable to serve
messages in reverse order of arrival: the most recent message must be served first (LIFO).

One may thus conjecture that LIFO-preemptive (i.e., service preemptive) is “best”. But numerical
examples and simulations show that this may be false depending on the model assumptions. In particular,
it has been shown, that a single buffer system with no service preemption (called B1 below) has smaller
AoI both in expectation and stochastically under particular assumptions on the message size distribution,
e.g., [7, 12].

The simplest systems with small-size buffer and no service preemption are defined next. One of them,
denoted as B2, is a single-server FIFO queue with capacity for two messages and blocking. (Thus, an
incoming message finding the buffer full is immediately discarded.) The other, denoted as P2, also works
without service preemption. An arriving message under P2 finding the buffer full displaces or “pushes
out” the stored message. See Figure 1 for a typical scenario in P2.

Figure 1: The P2 system. The lower cell contains the message being processed (if any). Message a arrives at an
empty system and is immediately processed. Message b arrives and is stored in the upper cell. While the buffer
still contains a and b, a third message c arrives and immediately kicks b out. When a completes being processed it
departs and c moves to the lower cell.

More generally, we define, for n ≥ 2, Bn and Pn as follows. The Bn system is a single-server queue
with buffer of size n, blocking of any incoming message finding the buffer full, and operating under FIFO
(First In First Out) dequeuing policy1 for n > 2. The Pn system, for n ≥ 2, works as follows: messages
are stored in an order that is reverse to their order of arrival (i.e., LIFO dequeuing policy when n > 2)2.
So if a message is being processed in cell 1 at time t, the message in cell 2 arrived last before t while the

1“Dequeuing” policy denotes how the server selects which to serve from among stored messages when it becomes free. FIFO
or LIFO dequeuing policies are relevant when more than one message can be stored.

2In the P2 and B2 systems, there is obviously only at most one message to choose from when the server is free so these
systems are both LIFO and FIFO.
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message in cell n is the oldest. A new message arriving at a full buffer is always stored in cell 2, displacing
the other messages upwards and pushing out the one sitting in cell n (oldest one). For n ≥ 2, Pn has no
service preemption.

For n = 1, the system B1 is simply a single-buffer blocking queue: an arriving message is immediately
rejected if there is a message in the system. TheP1 system is the single-buffer push-out system: an arriving
message pushes out the currently processed message and takes its place. Of all systems Pn and Bn, n ≥ 1,
the P1 system is special because it is the only one with service preemption.

In some practical scenarios, a LIFO queueing policy is infeasible3. Also, in some virtualized
computational environments, whether or not the message transmission server is busy may not be
observable. That is, an executing AoI-sensitive application may only be able to sense the occupancy of
their transmission buffer memory, and send a recently generated message if the buffer memory is empty,
otherwise drop the message. That is, buffered messages cannot be replaced, and so the B2 policy is
implemented. Obviously, if the buffered message can be replaced, the P2 policy can be implemented.

The expectation of AoI for B∞ system for the M/M model (i.e., the M/M/1 queue), a system with
generally large AoI, was analyzed in [9]. Further work on the expectation of various systems was done
in [14]. Other work for LIFO queues, including comparison of different systems, has been done in
[10, 6, 3, 11, 7]. In [7], the stationary AoI distribution of the P2 policy for the M/GI model (among several
others) is derived by a sample-path approach focusing on the (locally maximal) AoI at departure times and
the system delay of successfully served messages; see their Theorem 10. The stationary AoI distribution
of P1 [7, 12] and B1 [12] for the GI/GI model has been derived. [16, 17] are broader surveys of articles
which address AoI-related issues, e.g., shared queueing systems, not considered herein.

In this paper, we analyze the AoI processes and derive the stationary AoI distribution forB2 (in Section
3) and P2 (in Appendix A) for the M/GI model. Though the stationary AoI distribution for P2 for the
M/GI model was already derived in [7], we herein use a different approach (which also works for Pn LIFO
systems when n > 2). In the following, we use the classical embedding technique, valid for queueing
systems assuming Poisson arrivals, given that the system sampled at certain epochs (the departures of
successful messages in our case) has a Markovian property, see, e.g., [4]. Some numerical comparisons for
the Pn and Bn systems for the M/GI model, for n = 1, 2, are given in Section 5.

When the message sizes are i.i.d. exponential, having (for notational convenience) rate µ = 1, we shall
show (as a corollary) that, in steady-state, the value of AoI at some (and hence any) point of time, has
density

fB2(t) = c (q(t)e−t + e−λt), (4)

fP2(t) = q1(t)e−t + q2(t)e−(λ+1)t
−

λ
λ − 1

e−λt, (5)

in the P2 and B2 cases, respectively, where

c =
λ

(λ2 + λ + 1)(λ − 1)2 , q(t) = 1
2λ(λ − 1)2t2 + λ(λ − 1)t − 1,

q1(t) =
(λ3 + λ2

− 2λ)t − λ2 + λ + 3
(λ2 + λ + 1)(λ − 1)

, q2(t) =
(λ2 + λ)t + λ2 + 3λ + 3

λ2 + λ + 1
,

when λ , 1; while, for λ = 1, the densities become

fB2(t) = 1
3 (t2 + t)e−t, fP2(t) = 1

3 (7 + 2t)e−2t + 1
3 (6t − 7)e−t.

(For general µ, simply replace λ by λ/µ and t by µt in the foregoing expressions.)

3At the “network layer”, the Internet performs “in order” (FIFO) delivery of packets by rule.

3



In Section 6, time-reversibility is employed for the P3 system4. Again note that Pn systems for n ≥ 3
employ a LIFO policy when selecting (successful) messages to enter the server and begin transmission.
The same approach can be applied to Pn (and Bn) for any positive integer n > 2 to support the conjecture
that the stationary AoI of Pn is stochastically increasing in n for n ≥ 2.

In Section 7, we show how the Markov embedding can be used to compute the stationary AoI for a
more complex causal push-out policy, P2,θ with parameter θ ≥ 0, which can achieve lower mean AoI than
P1 or P2 for some cases of service-time distribution.

In Section 8, we conclude with a short summary discussion including future work.

2 Basic framework

Under our assumptions, and because we consider finite buffers, it holds that there is a unique stationary
version of the stochastic process α in all systems considered. We will not offer any reasons for this technical
result, but only point out that even existence may not hold if the arrival and message size processes are
neither independent nor renewal, and point out the difficulties by referring to [2]. We shall always be
considering the stationary version. Hence α(t) has the same distribution for all t which we are interested in
describing. We note that computing the expectation is, in general, not that much easier than deriving the
whole distribution. We also note that deriving the distribution is essential in case that we are interested not
just in maintaining a low AoI on the average but also in maintaining the tail of the probability distribution
small.

Throughout the paper, we let λ be the rate of the (Poisson) arrival process and G the distribution of a
typical message size σ, a random variable that is positive with probability 1 and has finite expectation
denoted by 1/µ. We thus only assume that λ > 0 and µ > 0 (but σ may have infinite variance). It is
assumed that the message sizes are i.i.d. copies of σ and independent of the arrival process. The ratio
ρ = λ/µ is referred to as traffic intensity.

We discuss the technique used in the analysis for all systems described in the introduction from the
point of view of the distribution of the age of information. By this phrase, we will always mean that the
age of information process α(t), t ∈ R, is stationary and that we shall be interested in the distribution of
α(t) for some, and hence all, t which will be taken to be the point t = 0. The goal is to derive a “fixed point
equation” for α(0), see equation (11) below. The arrival process is always taken to be a Poisson process on
R (=time) with rate λ. As mentioned above, Tn is the arrival time of message labeled n. Its size is σn. The
collection of message sizes are i.i.d. and independent of the arrival process. Let

G(x) = P(σ1 ≤ x)

be the distribution function of the typical size and let 1/µ be its expectation, assumed to be finite. Also
assume that G(0) = 0. Abusing notation, we shall let G denote the probability measure defined by the
function G(x) and by Ĝ(s) its Laplace-Stieltjes transform:

Ĝ(s) =

∫
∞

0
e−sxdG(x).

Recall that Tn + ∆n is defined as the time at which message n departs either because it was pushed out or
rejected or because it was successfully processed (ψn = 1 in the latter case). See discussion around (1) and
(2) where these symbols were introduced. Then the number of messages in the system at time t ∈ R is
given by

ξ(t) =
∑
n∈Z

1Tn≤t<Tn+∆n .

4Time reversibility is also employed when using Markov embeddings to similarly study GI/M models which are not addressed
herein.
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Note that if the message is immediately rejected then ∆n = 0 and so this message does not contribute to ξ.
We let

{Sm : m ∈ Z} := {Tn + ∆n : n ∈ Z, ψn = 1},

and, thinking of the two sets as sequences, {Sm} is a subsequence of {Tn + ∆n} and is enumerated so that
Sm1 < Sm2 if m1 < m2. We note that ξ is right-continuous for all t. Recalling the notions of Markov renewal
and semi-Markov processes, see, e.g., [1, VII.4], our first observation is:

Lemma 1. For both B2 and P2 cases, the process ξ(t), t ∈ R, is a semi-Markov process [4, Ch.10] with respect to
the points Sn, n ∈ Z. Moreover, the distribution of ξ is the same in both B2 and P2 cases.

This follows easily by standard arguments in queueing theory, for instance in the analysis of a queue
with Poisson arrivals; see, e.g., [4, Ch. 6, Sec. 5]. Thus, ξ does not “see” the difference between B2 and P2.
The distinction between these two will become important in the next section when we discuss the details
about α in each case.

We further assume that the arrival process together with the process ξ are stationary under a probability
measure P. (This assumption is non-vacuous; we shall not elaborate on this further but refer the reader to
[2] for an exposition of techniques used to establish it.)

We refer to the intervals [Sn,Sn+1) as segments and split the paths of ξ into a union of paths over
segments. (See Figure 2.) By convention, we assume that the segment labelled 0 contains the point t = 0.
Denote by P0 the Palm probability of P with respect to the point process {Sn}. We refer to [2] for this

Figure 2: What ξ(t) looks like when Sn ≤ t < Sn+1, regardless of the policy used, where Sn denotes the departure
time of message with label n provided that it is successful.

concept. Intuitively, P0 is P conditional on the event that 0 ∈ {Sn,n ∈ Z}. Hence P0(S0 = 0) = 1. Let

Kn := ξ(Sn), n ∈ Z.

The sequence {Kn} is a Markov chain with state space {0, 1}while {(Sn,Kn)} is the Markov renewal sequence
[1, 4] associated with the semi-Markov process ξ. The latter has transition kernel

Qi j(x) := P0(Sn+1 − Sn ≤ x,Kn+1 = j |Kn = i), i, j ∈ {0, 1},

explicitly given by

[
Q00(x) Q01(x)
Q10(x) Q11(x)

]
=


∫ x

0

(
1 − e−λ(x−u)

)
e−λudG(u)

∫ x
0

(
1 − e−λ(x−u)

) (
1 − e−λu

)
dG(u)∫ x

0 e−λudG(u)
∫ x

0

(
1 − e−λu

)
dG(u)

 , (6)

as follows easily by considering the cases of Figure 2. Letting x→∞ in (6) we obtain the transition matrix
for the Markov chain {Kn}, [

Q00(∞) Q01(∞)
Q10(∞) Q11(∞)

]
=

[
Ĝ(λ) 1 − Ĝ(λ)
Ĝ(λ) 1 − Ĝ(λ)

]
,
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from which it is evident that Kn,n ≥ 1, is not just Markovian but also a sequence of independent Bernoulli
random variables with

P0(Kn = 0) = Ĝ(λ) = 1 − P0(Kn = 1). (7)

Figure 2 shows the four different types of segments depending on the values of Kn and Kn+1. We next
define

Φi(s) := E0[e−s(S1−S0)
|K0 = i],

and, using the kernel (6), we obtain

Φ0(s) =

∫
∞

0
e−sxdQ00(x) +

∫
∞

0
e−sxdQ01(x) =

λ
λ + s

Ĝ(s), (8)

Φ1(s) =

∫
∞

0
e−sxdQ10(x) +

∫
∞

0
e−sxdQ11(x) = Ĝ(s). (9)

From (8), (9), and (7) we obtain the Laplace transform of the segment length:

Φ(s) := E0[e−s(S1−S0)] =
(
1 − Ĝ(λ) + Ĝ(λ)

λ
λ + s

)
Ĝ(s).

From this, we obtain the mean length of a segment as

E0[S1 − S0] =
1
µ

+
Ĝ(λ)
λ

. (10)

We shall henceforth use the abbreviation E(X; A) for the expectation of a random variable X on the
event A, that is, the quantity E(X1A). The following result depends entirely on the semi-Markov property
of ξ.

Proposition 1. For both B2 and P2 cases, the random variable α(0) satisfies

E[e−sα(0)] =
λ
s
·

E0[e−sα(0); K0 = 0]
(
1 − λ

λ+s Ĝ(s)
)

+ E0[e−sα(0); K0 = 1]
(
1 − Ĝ(s)

)
λ
µ + Ĝ(λ)

. (11)

Proof. The Palm inversion formula [1, 2] applied to the P-stationary process α gives

E[e−sα(0)] =
E0[

∫ S1

S0
e−sα(t)dt]

E0[S1 − S0]
. (12)

Take a look at (3) and notice that the process α is right-continuous. Its set of discontinuities is {Sn}.
Moreover, it increases at unit rate on each segment:

α(t) = α(Sn) + t − Sn, for t ∈ [Sn,Sn+1). (13)

To see this, notice that, for Sn ≤ t < Sn+1, we have D(t) = D(Sn) = Sn, by the definition of D in (1), and so
A(D(t)) = A(D(Sn)) = A(Sn). Since, from the definition (3), α(t) = t − A(D(t)) for all t, we have

α(t) = t − A(Sn),

whenever Sn ≤ t < Sn+1. Writing this for t = Sn, we have

α(Sn) = Sn − A(Sn),
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and so (13) is obtained by subtracting the last two displays. In particular, S0 = 0 and α(t) = α(0) + t for
t ∈ [S0,S1), P0-a.s. Hence, for i = 0, 1,

E0
[∫ S1

S0

e−sα(t)dt; K0 = i
]

= E0
[
e−sα(0) 1 − e−sS1

s
; K0 = i

]
=

1 −Φi(s)
s

E0[e−sα(0); K0 = i], (14)

where the last equality follows from the fact that α(0) and S1 − S0 are conditionally independent given
{K0 = i}, a consequence of the semi-Markov structure of the process {ξ(t)}, see Lemma 1. Using expressions
(8) and (9) and adding the terms in (14) we obtain the numerator of (12). The denominator is given by
(10). This shows the validity of (11). �

Remark 1. See the related proof of Proposition 1 of [8]. It should be clear that (11) holds for a much larger
class of systems with one (or several independent) Poisson arrival process(es). Also, though specialized
for the n = 2 case, (11) is based on an expression given by Palm’s theorem that works for any n ≥ 2, as
more clearly indicated by the statements of Propositions 2 and 3 below. For example, we may define Bn
to be an extension of B2 when the buffer has n cells where messages are stored according to the order of
their arrivals and a message arriving to a full buffer is immediately rejected (the so-called M/GI/1/n queue).
On the other hand, we may define Pn to be an extension of P2: messages are stored in an order that is
reverse to their order of arrival; so if there is a message being processed in cell 1 at time t, the message
in cell 2 arrived last before t while the message in cell n is the oldest; a new message arriving at a full
buffer is always stored in cell 2, displacing the other messages upwards and expels the one sitting in cell 1
(oldest one). In both Bn and Pn, the process ξ is semi-Markov and thus Proposition 1, depending only on
this semi-Markov property, applies and formula (11) holds. In fact, one can assert that the proposition
holds for networks with i.i.d. message sojourn times, e.g., due to a single bottleneck server. We shall not
attempt to formalize this further in this paper.

3 The B2 system

Recall that the B2 system is the same as a single server queue with buffer size 2. Under our Poisson
assumption for the arrival process and i.i.d. assumptions for message sizes, this is further denoted by
M/GI/1/2 in standard queueing terminology. We are, however, interested not in the number of messages in
the system neither on message delays but, rather, on the age of information process α. Assuming that α is
stationary, we compute the Laplace transform of α(0) under P by using (11) which requires knowledge of
E0[e−sα(0); K0 = j], j = 0, 1. To obtain the latter, we consider the segment [S−1,S0), further condition on K−1,
and summarize the results in Lemma 2 below. In what follows, we let τ, σ, be two independent random
variables, where τ is exponential with rate λ and σ has distribution G.

Lemma 2. For B2,

E0[e−sα(S0); K−1 = 0,K0 = 0] = Ĝ(λ)Ĝ(s + λ), (15)

E0[e−sα(S0); K−1 = 0,K0 = 1] = Ĝ(λ)
(
Ĝ(s) − Ĝ(s + λ)

)
, (16)

E0[e−sα(S0); K−1 = 1,K0 = 0] =
λ

λ − s

(
Ĝ(s) − Ĝ(λ)

)
Ĝ(s + λ), (17)

E0[e−sα(S0); K−1 = 1,K0 = 1] =
λ

λ − s

(
Ĝ(s) − Ĝ(λ)

) (
Ĝ(s) − Ĝ(s + λ)

)
. (18)

Proof. Recall that the Kn are i.i.d. with distribution (7): P0(Kn = 0) = Ĝ(λ). We shall consider the four cases
separately and, in each case, we shall be referring to the definition (3) to figure out what α(0) is.
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Case 1. K−1 = 0,K0 = 0. Observe α(0) = S0 − T0, see Figure 3. But

P0(S0 − T0 ∈ dx | K0 = 0,K−1 = 0) = P(σ ∈ dx | σ < τ) =
e−λxdG(x)

Ĝ(λ)
,

and so

E0[e−sα(S0); K−1 = 0,K0 = 0] =

∫
∞

0
e−sx e−λx

Ĝ(λ)
dG(x)

(
Ĝ(λ)

)2
= Ĝ(λ)Ĝ(s + λ).

Figure 3: The segment [S−1,S0) when K−1 = K0 = 0 (left) and K−1 = 0, K0 = 1 (right), with S0 = 0.

Case 2. K−1 = 0,K0 = 1. We have α(0) = S0 − T−1, see Figure 3. Since

P0(S0 − T−1 ∈ dx | K0 = 1,K−1 = 0) = P(σ ∈ dx | τ < σ) =

(
1 − e−λx

)
dG(x)

1 − Ĝ(λ)

we obtain

E0[e−sα(S0); K−1 = 0,K0 = 1] = P0(K−1 = 0,K0 = 1)E0[e−sα(S0)
| K−1 = 0,K0 = 1]

= Ĝ(λ)
∫
∞

0
e−sx

(
1 − e−λx

)
dG(x) = Ĝ(λ)

(
Ĝ(s) − Ĝ(s + λ)

)
.

Case 3. K−1 = 1,K0 = 0. To figure out α(0) we are here forced to consider two consecutive segments. We
then have

α(0) = (S0 − S−1) + (S−1 − T0) ,

see Figure 4. Note that S0 − S−1 and S−1 − T0 are conditionally independent given K−1 = 1 and
{S−1 − T0 ∈ dx; K−1 = 1} is independent of K−2 with P0(S0 − S−1 ∈ dx; K0 = 0 | K−1 = 1) = P(σ ∈ dx; σ < τ)
and P0(S−1 − T0 ∈ dx; K−1 = 1 | K−2 = 0) = P(σ − τ ∈ dx; σ > τ), respectively. Thus

E0[e−sα(0); K−1 = 1,K0 = 0] = E[e−sσ; σ < τ]E[e−s(σ−τ); σ > τ]

= E[e−sσe−λσ]E[e−sσ
∫ σ

0
λe−(λ−s)tdt] = Ĝ(s + λ)

λ
λ − s

(
Ĝ(s) − Ĝ(λ)

)
.

Case 4. Again, we have to consider two consecutive segments to realize that

α(0) = S0 − T−1 = (S−1 − T−1) + (S0 − S−1) ,

see Figure 5. The two random variables

(S−1 − T−1) and (S0 − S−1) are conditionally independent given that K−1 = 1

and thus
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Figure 4: The segments [S−2,S−1), [S−1,S0) when K−1 = 1,K0 = 0 in the case where K−2 = 0 (left) and K−2 = 1
(right).

Figure 5: The segments [S−2,S−1), [S−1,S0) when K−1 = 1,K0 = 1 in the case where K−2 = 0 (left) and K−2 = 1
(right).

E0[e−sα(0); K−1 = 1,K0 = 1] = E0[e−s(S−1−T−1)−s(S0−S−1); K−1 = 1,K0 = 1]

= E[e−s(σ−τ); σ > τ]E[e−sσ; σ > τ] = E

[∫ σ

0
e−s(σ−t)λe−λtdt

]
E

[
e−sσ

(
1 − e−λσ

)]
=

λ
λ − s

(
Ĝ(s) − Ĝ(λ)

) (
Ĝ(s) − Ĝ(s + λ)

)
.

This completes the proof. �

Define

ĜI(s) =
1 − Ĝ(s)

s
µ. (19)

This is the Laplace transform of a probability measure GI that is well-known in renewal theory: If we
consider a renewal process with points, say, Zn, n ∈ Z, such that Z0 = 0 and Zn+1 − Zn having distribution
G, then it has a stationary version (with no point at 0) and in such a way that Z1 has distribution GI.

Theorem 1. For B2, the Laplace transform of the stationary Age of Information is given by

E[e−sα(0)] = Ĝ(s)
(
Ĝ(λ) + λ

Ĝ(s) − Ĝ(λ)
λ − s

)  Ĝ(λ)
λ
µ + Ĝ(λ)

λ
λ + s

Ĝ(s + λ)

Ĝ(λ)
+

λ
µ

λ
µ + Ĝ(λ)

ĜI(s)

 . (20)

Proof. Summing (15) and (17) and summing (16) and (18) we obtain

E0[e−sα(S0); K0 = 0] = Ĝ(s + λ)
[
λ

λ − s
Ĝ(s) −

s
λ − s

Ĝ(λ)
]

E0[e−sα(S0); K0 = 1] =
(
Ĝ(s) − Ĝ(s + λ)

) [ λ
λ − s

Ĝ(s) −
s

λ − s
Ĝ(λ)

]
.

Substituting the last two lines into the right hand side of (11) we obtain

E[e−sα(0)] =
Ĝ(s)

[
λ
λ−s Ĝ(s) − s

λ−s Ĝ(λ)
] (

Ĝ(s+λ)
s+λ +

1−Ĝ(s)
s

)
1
λ

(
λ
µ + Ĝ(λ)

) , (21)
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which gives (20) if we take into account the definition of ĜI. �

Corollary 1. Expression (20) gives the stationary AoI as a sum of three independent random variables. In particular,
the middle term in the right hand side of (20) corresponds to the Laplace transform of the random variable (σ − τ)+.
Moreover, the expectation of α(0) is given by

E[α(0)] =
1
µ

+

(
1
µ
−

1 − Ĝ(λ)
λ

)
+

Ĝ(λ) − λĜ′(λ) + 1
2λ

2Ĝ′′(0)

λ
(
λ
µ + Ĝ(λ)

) . (22)

We obtained this corollary directly from the Laplace transform (20) where we recognize that
1
2µ

∫
∞

0 x2dG(x) =
∫
∞

0 xdGI(x). Notice that if the message size has high variance then so does Eα(0).
In particular, Eα(0) = ∞ if

∫
x2dG(x) = ∞. Rather than seeing this as a problem, one could change the

point of view and adopt another function of α as a performance measure, for instance, Eα(0)p for some
p < 1.

Corollary 2. For B2, with G being exponential with mean 1/µ we have

E[e−sα(0)] =

(
µ

s + µ

)3
λ

s + λ

s2 + 2s(λ + µ) + λ2 + λµ + µ2(
λ2 + λµ + µ2) , (23)

E[α(0)] =
3λ3 + 2λ2µ + 2λµ2 + µ3

λµ
(
λ2 + λµ + µ2) . (24)

Inverting the Laplace transform (23) gives density (4), i.e., when µ = 1: if λ , 1,

fB2(t) = c (q(t)e−t + e−λt),

where

c =
λ

(λ2 + λ + 1)(λ − 1)2 , q(t) = 1
2λ(λ − 1)2t2 + λ(λ − 1)t − 1,

else if λ = 1,
fB2(t) = 1

3 (t2 + t)e−t

Interestingly, as λ → ∞ we immediately see from (23) that E[e−sα(0)] → (µ/(s + µ))3, the Laplace
transform of the sum of three i.i.d. exponentials. See Appendix C for an explanation.

4 The P2 system

We remind the reader that P2 differs from B2 in that the arriving message is always admitted by replacing
the message (if any) sitting in the second cell of the buffer, see Figure 1. Again,P2 is not service-preemptive:
once a message starts being processed it will not be interrupted. The strategy for obtaining the Laplace
transform of α(0) is the same as before. The following theorem, whose proof is given in Appendix A, was
derived in [7] by different means.

Theorem 2. For P2, the Laplace transform of the stationary Age of Information is given by

E[e−sα(0)] = Ĝ(s)
(
Ĝ(λ) + λ

1 − Ĝ(s + λ)
s + λ

)  Ĝ(λ)
λ
µ + Ĝ(λ)

λ
λ + s

Ĝ(s + λ)

Ĝ(λ)
+

λ
µ

λ
µ + Ĝ(λ)

ĜI(s)

 (25)
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Corollary statements for deterministic or exponential service-time distributions are also given in the
Appendix. The mean AoI derived from Theorem 2 is also consistent with [14].

Corollary 3. In expression (25) we recognize that α(0) is equal in distribution to the sum of three independent
random variables. In particular, the middle term corresponds to the Laplace transform of the random variable τ1τ≤σ.
Moreover,

E[α(0)] =
1
µ

+
1
λ

(
1 − Ĝ(λ) + λĜ′(λ)

)
+

Ĝ(λ) − λĜ′(λ) + 1
2λ

2Ĝ′′(0)

λ
(
λ
µ + Ĝ(λ)

) (26)

Recall that a real random variable X is stochastically smaller than Y, and write X≤stY, if

P(X > u) ≤ P(Y > u) for all u ∈ R.

Note that stochastic ordering is a partial order in the space of probability measures on the real line so two
random variables may not be comparable at all.

The following simple lemma compares the middle terms ofB2 andP2 to show that AoI is stochastically
larger under B2 (consistent with the elementary coupling argument).

Lemma 3. If τ is exponentially distributed and independent of σ, then

τ1τ≤σ ≤st (σ − τ)+.

Proof. For all a > 0,

P((σ − τ)+ > a) =

∫
∞

a
P(τ < x − a)dG(x) =

∫
∞

a
(1 − e−λ(x−a))dG(x)

P(τ1τ≤σ > a) =

∫
∞

a
(e−λa

− e−λx)dG(x)

Since for all a > 0 and x > a, e−λa
− e−λx = e−λa(1 − e−λ(x−a)) ≤ 1 − e−λ(x−a), the lemma is proved. �

5 Numerical comparisons

Slightly abusing notation, we write αPn instead of αPn(0); to further simplify life, we shall now use
normalized units, assuming µ = 1. Following [14, 7, 12] and the above calculatons, we now summarize
observations regarding Pn,Bn, n = 1, 2.

5.1 Recalling formulas for P1 and B1

Concerning the P1 system we have, from [12, Corollary 4] (see also [7]),

E[e−sαP1 ] =
ρĜ(s + ρ)

s + ρĜ(s + ρ)
, E[αP1] =

1

ρĜ(ρ)
. (27)

On the other hand, for B1, [12, Corollary 9(i)], gives

E[e−sαB1 ] =
ρ

1 + ρ
·

(s + ρ − ρĜ(s))Ĝ(s)
s(s + ρ)

, E[αB1] = 1 +
1
ρ

+
ρ

2
·
Eσ2

1 + ρ
. (28)

We now have information about all systems that we now compare. The comparisons depend on the
message size distributions. We choose to consider two “extremes”. First, exponentially distributed size,
second, deterministic, representing maximal and minimal randomness. The observations are summarized
in plots rather than formulas because the latter, albeit explicit in almost all cases are not succinctly
presentable.
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5.2 Exponential message sizes

We obtain explicit formulas from Corollary 2 for αB2 , Corollary 4 for αP2 and (28), (27), for αB1 , αP1 ,
respectively. We use the notation MP1(ρ) for E[αP1], where ρ = λ/µ = λ in normalized units. Similarly for
other systems. We summarize the comparisons in a plot:

Figure 6: Mean AoI as a function of ρ; the left plot is for 0.4 ≤ ρ ≤ 1.9; the right is for ρ ≥ 1.

We see that
MP1(ρ) < MP2(ρ) < MB2(ρ) for all ρ.

The odd system is B1. For small ρ, MB1(ρ) is worst (highest). For large ρ, MB1(ρ) is between MP1(ρ) and
MP2(ρ). There is also an intermediate zone, where MB1(ρ) is between MP2(ρ) and MB2(ρ).

We can also ask whether the comparisons above remain true in the sense of stochastic ordering. The
information is obtained by inverting the Laplace transforms (23) and (48) which give the densities (4) and
(5), respectively. It is also easy to invert the Laplace transforms (27) and (28). Integrating the densities
from t to∞, we obtain the complementary distribution functions, better summarized in a couple of plots:

Figure 7: P(α > t) plotted against t for small ρ on the left and high ρ on the right.

We obtain that
αP1≤stαP2≤stαB2 for all ρ.

Moreover,
αP1≤stαB1≤stαP2 for all sufficiently high ρ.

The following figure gives plots of variances as functions of ρ.
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Figure 8: Variances as a functions of ρ

Note that they all converge to integers. To see why, see Appendix C and then recall that we assume in this
section that µ = 1, so the service-time σ and σI distributed as ĜI of (19) both have variance one, where
ĜI = Ĝ since σ is assumed to be exponential in this subsection.

5.3 Deterministic message sizes

We now assume that P(σ = 1) = 1: message sizes are all equal to 1 with probability 1. We can thus easily
obtain M(ρ) in all cases by setting σ = 1 in the formulas of Corollaries 1 and 3 and in (28) and (27). They
are summarized in Figure 9. We observe that

MP2(ρ) < MB2(ρ) < MP1(ρ) for all ρ.

Figure 9: Mean AoI as a function of ρ; right plot extends to high values of ρ

Whereas P1 was best in the exponential case, it is now worst. In fact,

lim
ρ→∞

MP1(ρ) = ∞.

The worst system, from the point of view of expectation, is thus P1. However, as in the exponential
case, B1 is the odd system in that it is between B2 and P1 for small ρ, but MB1(ρ) < MP2(ρ) for all
large enough ρ. However, the difference between the two goes to 0 as ρ → ∞. We can easily see that
limρ→∞MB1(ρ) = limρ→∞MP2(ρ) = 3/2, while limρ→∞MB2(ρ) = 5/2.

We again ask whether the comparisons in the mean translate to stochastic comparisons. We observe
that

αP1

d
−−−−→
ρ→∞

∞.

The reason for this is clear: when ρ is high, the message being processed is constantly interrupted. Since
the message size is always 1 no message has a chance to ever be completed. To obtain information about
P(αP1 > x) for all x, we resort to numerics as the Laplace transform (27) with Ĝ(s) = e−s is not invertible.
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Luckily, the Laplace transforms for all other variables, αB1 , αB2 , αP2 are all invertible and correspond to
random variables with densities that can all be analytically computed. We summarize the comparisons of
the distributions in the plot below.

Figure 10: P(α > t) plotted against t for small ρ on the left and high ρ on the right.

Our observation is then that
αP2≤stαB2≤stαP1 , αB1≤stαP1 for all ρ,

whereas αB1 is not comparable to any of the other three random variables. Figure 11 shows the densities
for αP2 and αB2 for various values of ρ.

Figure 11: Densities of αP2 (left) and αB2 (right) for various traffic intensities.

Variance plots are in Figure 12.

Figure 12: variances of all systems as a function of ρ

We have limρ→∞ varP(αB1) = limρ→∞ varP(αP2) = limρ→∞ varP(αB2) = 1/12.
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6 The P3 LIFO system

In this section, we consider larger finite buffers, i.e., the P3 case for the M/GI model. Again note that Pn
systems for n ≥ 3 employ a LIFO dequeuing policy when selecting (successful) messages to enter the
server and begin transmission. We show that P3 has higher mean AoI than P2 for all traffic loads, and
higher mean AoI than P1 for exponential service times, in support of the “small buffers” conjecture for
minimal AoI. The details for stationary mean AoI involve an interesting use of time-reversibility.

6.1 Why simple pathwise arguments won’t work to compare Pm policies for m > 1

Recall that saying that a message that is “Pm successful” means that it captures the server and so completes
service under Pm for m > 1 (which does not preempt service).

Obviously, some messages are P3 successful but not P2 successful. Note that service of P3 successful
messages that were formerly pushed back in the queue do not reduce P3’s AoI.

Conversely, it’s possible some P2 successful messages are not P3 successful. To see why, note that a
message that is P3 successful but not P2 successful may have a long service time during which one or
more P2 successful messages (arriving in a burst) are pushed out under P3.

Consider messages that are both P2 and P3 successful. It’s possible that these messages are not served
in the same order in these systems. To see why, suppose consecutive arriving messages i and i + 1 are
successful in both. If they both arrive when P3’s server is busy with an earlier message having very short
remaining service time, but i arrives when P2’s server is idle, then i + 1 is served before i in P3, unlike P2.
In this case, service of i under P3 does not change P3’s AoI, and P3 enjoys a lower AoI than P2 for an
interval of time after i + 1 departs under P3. On the other hand, if i arrives when P3’s server is busy and
P2’s server is idle, but i + 1 arrives after i departs both systems, then i experiences queueing delay only in
P3. Thus, P2 enjoys a lower AoI than P3 for an interval of time after i departs under P2.

6.2 Mean AoI for P3 under Poisson arrivals

Let τ, τk represent i.i.d. message interarrival times with P(τ > t) = e−λt for t > 0 and λ−1 := Eτ < ∞.
Again, let σ, σk represent i.i.d. message service times which are independent of interarrival times with
P(σ ≤ t) =: G(t) for t > 0, P(σ > 0) = 1, µ−1 := Eσ < ∞, and Ĝ(s) =

∫
∞

0 e−sxdG(x). Let Sn denote the moment
at which the nth successful message completes service and departs the system. Let Kn ∈ {0, 1, 2} be the
number of messages in the system immediately after Sn. So {Kn,Sn} is a Markov-renewal process. In
particular, under P0, α(0) is independent of S1 − S0 given K0.

Let Pi j = P(Kn = j|Kn−1 = i) so that

P =


P(τ1 > σ) P(τ1 ≤ σ, τ1 + τ2 > σ) P(τ1 + τ2 ≤ σ)
P(τ1 > σ) P(τ1 ≤ σ, τ1 + τ2 > σ) P(τ1 + τ2 ≤ σ)

0 P(τ1 > σ) P(τ1 ≤ σ)


=


Ĝ(λ) −λĜ′(λ) 1 − Ĝ(λ) + λĜ′(λ)
Ĝ(λ) −λĜ′(λ) 1 − Ĝ(λ) + λĜ′(λ)

0 Ĝ(λ) 1 − Ĝ(λ)

 (29)

If u = Ĝ(λ) and v = −λĜ′(λ) then the stationary distribution of K, πi := P0(K = i), is

π0 =
u2

1 − v
, π1 =

u(1 − u)
1 − v

, π2 =
1 − u − v

1 − v

As Proposition 1, we have:
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Proposition 2. The stationary mean AoI is

Eα(0) =

∑2
i=0E

0(α(0)|K0 = i)E0(S1 − S0|K0 = i)πi + 1
2E

0(S1 − S0)2

E0(S1 − S0)
, (30)

where P0 and E0 are respectively probability and expectation given S0 = 0.

Proof. For t ∈ [S0,S1), α(t) = α(S0) + t − S0. So, by the Palm inversion formula [2],

Eα(0) =
E0

∫ S1

S0
α(t)dt

E0(S1 − S0)

=
E0(α(S0)(S1 − S0)) + 1

2E
0(S1 − S0)2

E0(S1 − S0)
(31)

�

The terms in (31) are computed as per the following lemmas.
The following three lemmas are straightforward.

Lemma 4. It holds that

E0(S1 − S0|K0) = µ−1 + λ−11{K0 = 0}, (32)

E0(S1 − S0) = π0λ
−1 + µ−1, (33)

E0(S1 − S0)2 = Eσ2 + π02(µ−1 + λ−1)λ−1. (34)

Proof. The proof is straightforward after noting that S1 − S0
d
= σ + τ1{K0 = 0}. �

Lemma 5. It τ, τ1, τ2 are exponential random variables with rate λ and σ has distribution G on R+ with Laplace
transform Ĝ, and are all independent, then the following hold:

E(σ|τ > σ) =
−Ĝ′(λ)

Ĝ(λ)

E(σ|τ ≤ σ) =
µ−1 + Ĝ′(λ)

1 − Ĝ(λ)

E(σ|τ1 + τ2 ≤ σ) =
µ−1 + Ĝ′(λ) − λĜ′′(λ)

1 − Ĝ(λ) + λĜ′(λ)

E(σ|τ1 ≤ σ, τ1 + τ2 > σ) =
Ĝ′′(λ)

−Ĝ′(λ)

E(τ|τ ≤ σ) =
λ−1
− λ−1Ĝ(λ) + Ĝ′(λ)

1 − Ĝ(λ)

E(τ1|τ1 + τ2 ≤ σ) =
λ−1
− λ−1Ĝ(λ) + Ĝ′(λ) − 1

2λĜ′′(λ)

1 − Ĝ(λ) + λĜ′(λ)

E(τ1|τ1 ≤ σ, τ1 + τ2 > σ) =
Ĝ′′(λ)

−2Ĝ′(λ)

q := P(τ1 + τ2 > σ|τ1 ≤ σ) =
−λĜ′(λ)

1 − Ĝ(λ)

16



Figure 13: Cases for K−2 ∈ {0, 1, 2} when K−1 = 2

Lemma 6. For ` ∈ {0, 1, 2},

E0(α(0)|K0 = `) =

2∑
i=0

2∑
j=0

E0(α(0)|K−2 = i,K−1 = j,K0 = `)Pr
` jP

r
ji (35)

where the transition probabilities of the time-reversed Markov chain K are Pr
ji = πiPi j/π j.

The conditional expectations

E0(α(0)|K−2 = i,K−1 = j,K0 = `) (36)

are evaluated in the following three lemmas.

Lemma 7. For i ∈ {0, 1},

E0(α(0)|K−2 = i,K−1 = 0,K0 = `) =


E(σ|τ > σ) if ` = 0
E(σ|τ1 ≤ σ, τ1 + τ2 > σ) if ` = 1
E(σ|τ1 + τ2 ≤ σ) if ` = 2

(37)

Proof. If K−1 = 0 then α(0) is just the service time of the first message arriving in [S−1,S0), irrespective of
the value i of K−2 which, however, cannot be equal to 2 (since P20 = 0 as is seen in (29)). �

Lemma 8. For i ∈ {0, 1},

E0(α(0)|K−2 = i,K−1 = 2,K0 = `) = E(τ1|τ1 + τ2 ≤ σ) +

{
E(σ|τ > σ) if ` = 1
E(σ|τ ≤ σ) if ` = 2 (38)

E0(α(0)|K−2 = 2,K−1 = 2,K0 = `) = E(τ|τ ≤ σ) +

{
E(σ|τ > σ) if ` = 1
E(σ|τ ≤ σ) if ` = 2 (39)

Proof. Given K−1 = 2, see Figure 13. If K−2 = i for i ∈ {0, 1}, there must be at least two message arrivals
during the service interval within [S−2,S−1), i.e., at T−1,T0. If there are only two arrivals, then α(0) = S0−T0,
but there may be more than two (black and green dots, where the green arrival is the one served in
[S−1,S0)), in which case α(0) is as indicated in the two left sub-figures. So (38), where the first term is by
time-reversibility of the Poisson arrival process. Similarly, if K−2 = 2,K−1 = 2 then there is at least one
arrival in [S−2,S−1) and so (39). �
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Figure 14: Cases for K−2 ∈ {0, 1} when K−1 = 1

Figure 15: Cases for K−2 = 2 when K−1 = 1

Lemma 9. For i ∈ {0, 1},

E0(α(0)|K−2 = i,K−1 = 1,K0 = `) = E(τ1|τ1 ≤ σ, τ1 + τ2 > σ) +


E(σ|τ > σ) if ` = 0
E(σ|τ1 ≤ σ, τ1 + τ2 > σ) if ` = 1
E(σ|τ1 + τ2 ≤ σ) if ` = 2

(40)

E0(α(0)|K−2 = 2,K−1 = 1,K0 = `) = qE(τ1|τ1 ≤ σ, τ1 + τ2 > σ) + (1 − q)E(τ1|τ1 + τ2 ≤ σ)

+ E(σ|τ > σ) +


E(σ|τ > σ) if ` = 0
E(σ|τ1 ≤ σ, τ1 + τ2 > σ) if ` = 1
E(σ|τ1 + τ2 ≤ σ) if ` = 2

(41)

Proof. First see Figure 14. Given K−1 = 1 again we condition on K−2. If K−2 ∈ {0, 1} then the message that
departs at S0 is the last one that arrives in the service interval within [S−2,S−1). So (40), where the first
term is by time-reversibility of the Poisson arrivals.

The case given K−2 = 2,K−1 = 1 is interesting. See Figure 15 and recall q from Lemma 5. K−2 = 2 implies
at least one arrival in [S−3,S−2). Generally, there is a geometric number N ∼ geom(q) of consecutive
intervals like [S−3,S−2) of the left sub-figure with exactly one arrival.5 Just before these N intervals is
an interval with more than one arrival, where the second-last arrival (green dot) therein is serviced in
[S−1,S0). Recall that the definition of AoI is the time since the arrival of the most recently arrived message
which has been completely served, which at time t = S0 = 0 is not the (green) message served in [S−1,S0)
in this case. Note that N = 1 in the left sub-figure, N = 0 in the right one, and P(N > 0) = q. Also,

S−1 − S−2
d
= (σ|τ > σ). So (41). �

Note that in the case of Figure 15 at left, the message being served in [S−1,S0) could be very stale - a
geometric number of fresher messages have been served before it. This can also occur in Pm for m > 3 but
not in P2.

5That is, P(N = k) = qk(1 − q) for k = 0, 1, 2, ...
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Figure 16: For Poisson arrivals and deterministic service times with µ = 1

6.3 Comparing Eα(0) for different Pm policies

Here let αk be the AoI process for Pk.
Recall from Section 5 that for deterministic service times (Ĝ(λ) = e−λ/µ), P2 was shown to have lower

mean AoI than P1 (and B1 for sufficiently small traffic loads). See Figure 16 which shows that P2 has
smaller mean AoI than P1 or P3.

For exponential service times (Ĝ(λ) = µ/(λ + µ)), recall that P1 has lowest mean AoI, consistent with
Figure 17. Also, P2 has lower mean AoI than P3.

The preceding analysis is easily extended to compute the Laplace transform of the stationary AoI
distribution P3, as above for B2, and can be adapted in a straightforward way for Pm LIFO systems for
m > 3.

7 The P2,θ system - a hybrid P1/P2 policy

In this section, for the two-buffer case, we consider a causal service policy that is not “pure” pushout,
rather a hybrid of P1 and P2 policies. We numerically show that it can produce lower mean AoI than P1
or P2 for some service-time distributions.

That is, again suppose there is a buffer consisting of two cells. Cell 1 is reserved for the message
receiving service and cell 2 for the message waiting. If there is a message in cell 1 at time t we let u(t)
be the amount of service received by this message up to t; if the system is empty, we set u(t) = 0. Fix
θ ∈ [0,∞]. If a message arrives at time t and u(t) ≤ θ then the arriving message pushes-out the message in
cell 1 and takes its place. Otherwise, if u(t) > θ then the arriving message occupies cell 2 (pushing out
the message sitting there, if any). We call this system P2,θ. Note that P2,0 and P2,∞ make sense too and
that the collection P2,θ, 0 ≤ θ ≤ ∞, is a “homotopy” between these two systems. In fact, P2,0 = P2 and
P2,∞ = P1. (In the latter system, cell 2 will never be occupied, so, effectively, it has buffer of size 1.)

Thus, a contiguous service interval that ends with a message departure is a sequence of preempted
message-service periods followed by a completed/successful message-service period. During the successful
message-service period, any arriving messages obviously fail to preempt and, under queue pushout, the
last such arriving message is queued and begins service once the successful message-service period ends.

19



Figure 17: For Poisson arrivals and exponential service times with µ = 1

Again assume that the arrival process is Poisson with rate λ > 0 and that messages have i.i.d. service
times (independent of arrivals) distributed like a random variable σ such that σ > 0 a.s. with expectation
1/µ < ∞. Again let G be the distribution function of σ and set Ĝ(s) = Ee−sσ. Also assume that the system
P2,θ is in steady-state (again taking into account that there is a unique such steady-state, the reasons for
which are classical and will not be discussed here).

The stationary mean AoI can be obtained from the analysis of (50) in Appendix B again using a Markov
embedding approach. Note that it can be numerically minimized over θ for a given set of M/GI model
parameters, i.e., for an arbitrary service-time distribution G. The possibility of selecting an optimal θ using
perturbation analysis, e.g., [13], is left to future work. Again recall from Section 5 that for exponential
service times (dG(x) = µe−µxdx), θ = ∞ (P1) achieves minimal mean AoI. Also, for constant service time
(dG(x) = δ1/µ(dx)), θ = 0 (P2) achieves smaller mean AoI than P1 (and also smaller than B1 for sufficiently
small traffic loads).

Figure 18: Eα(0) for service-time distribution which is a mixture of deterministic and exponential with mean
µ−1 = 1.
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Now consider the mixture service-time distribution defined by dG(x) = 1
2δ1(x)dx + 1

2 e−xdx for x > 0,
and so µ = 1. From Figure 18, which was obtained numerically using (50), we see that in some cases Eα(0)
is not minimized at either θ = 0 or θ = ∞. That is, in some cases (specifically, traffic loads ≤ 0.8), the P2,θ
policy for a finite θ > 0 is better than P1, P2 and B1.

There are variations of the P2,θ policy one could consider. For example, consider the policy where
a message arriving at time t does not preempt the in-service message (but joins the queue in cell 2) if
0 < u(t) < θ, otherwise the message captures the server. The stationary AoI distribution of this policy is
similarly derived using the Markov embedding.

8 Summary and future work

In summary, we have newly derived the stationary AoI mean and distribution for the B2, P3 and P2,θ
queueing systems by method of Markov embedding for M/GI models. The same method can be used for
the Pn and Bn systems for any integer n > 1. In particular, the stationary AoI distribution was also thus
derived for P2 having been formerly derived in [7] by different means. Though we’ve shown how to
numerically establish whether stationary AoI is stochastically larger under Pn+1 than Pn for particular
service time distributions and n > 1, to our knowledge this has not yet been generally proved. (This can
be generally shown for the Bn cases by a simple pathwise argument.)

Based on the results herein and prior work (particularly [6, 3, 14, 7, 12]), rules of thumb for minimal
AoI of the M/GI model can roughly be summarized as follows: If the message sizes are deterministic
or nearly so then it is best to use B1 or P2, and P1 gives large AoI. On the other hand, if message sizes
are “very random” (i.e., close to exponentially distributed), we expect the opposite: P1 is stochastically
minimal (and this is so even for non-Poisson arrivals). Also, we showed that for some cases of service-time
distributions, the P2,θ policy for some finite θ > 0 gives smaller AoI than P1, P2 and B1.

Granted, the study in this paper has been done only for Poisson arrivals. For the GI/M cases, it’s not
surprising that the same method of Markov embedding shown above can be used to derive stationary
AoI distributions [4, 7]. Note that bounds are obtained in [5] the P2 system for the GI/GI model were
based on the approach of [7]. Analysis of the AoI distribution of, e.g., variations of the P2,θ policy, LIFO
blocking systems, processor sharing policies, or multiserver systems are left to future work.

Even under the assumptions of Poisson arrivals and a single dedicated server, given an arbitrary
service-time distribution G, determining which causal service policy will result in somehow “minimal”
AoI remains an open problem. This problem may be subject to technological constraints (e.g., whether
non-FIFO dequeueing or preemptive service policies are feasible, and what aspects of the queueing system
are observable). On the other hand, the choice may be simplified, e.g., B2 may be the best policy if LIFO
dequeueing, queue pushout, and service preemption are infeasible.

Finally, we mention that the AoI α defined in (3) may not be the most appropriate measure of freshness
as it incorporates information about the arrival process as well. In the notation of the processes introduced
in (1) and (2), a different measure is β(t) = A0(t) − A(t) where A0(t) is the most recent arrival prior to time
t (whether it is ultimately successful or not). The distribution of β may differ significantly from that of
α [12]. If the model allows, the Markov embedding approach can also be used to find the stationary
marginal distribution of β. Also, it may be interesting to study other performance criteria for AoI-sensitive
applications including Cost of Update Delay [15, 7] or message blocking probability.
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Appendix A: Proof of Theorem 2 by means of Markov embedding

We make use of (11) of Proposition 1 which needs computation of the quantities involving α(0) in its
right-hand side. The analog of Lemma 2 is Lemma 10 below which looks conspicuously the same. In fact,
the first two formulas are identical. The last two differ.
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Lemma 10. For P2,

E0[e−sα(S0); K−1 = 0,K0 = 0] = Ĝ(λ)Ĝ(s + λ), (42)

E0[e−sα(S0); K−1 = 0,K0 = 1] = Ĝ(λ)
(
Ĝ(s) − Ĝ(s + λ)

)
, (43)

E0[e−sα(S0); K−1 = 1,K0 = 0] =
λ

λ + s

(
1 − Ĝ(s + λ)

)
Ĝ(s + λ), (44)

E0[e−sα(S0); K−1 = 1,K0 = 1] =
λ

λ + s

(
1 − Ĝ(λ + s)

) (
Ĝ(s) − Ĝ(s + λ)

)
(45)

Proof. 1) When K−1 = 0,K0 = 0 or when K−1 = 0,K0 = 1 the AoI is the same as in the B2 system, the reason
being that the number of messages in the system is always at most 1, see Figure 3.
2) Suppose next that K−1 = 1,K0 = 0. In Figure 19 we depict the two scenaria corresponding to the possible
values of K−2, namely (K−2,K−1,K0) = (0, 1, 0) or (1, 1, 0). In both cases, (3) and the system dynamics imply
that

α(0) = S0 − S−1 + V,

V is the time elapsed between the last arrival in the interval (S−2,S−1) and S−1. If there is only one arrival
in this interval then V := S−1 − T0. In any case,

conditionally on {K−1 = 1,K0 = 0}, the random variables V and S0 − S−1 are independent.

Therefore,

E0[e−s(S0−S−1+V)
| K−1 = 0,K0 = 1] = E0[e−s(S0−S−1)

| K−1 = 0,K0 = 1]E0[e−sV
| K−1 = 0,K0 = 1]

and the first factor on the right is easy:

E0[e−s(S0−S−1)
| K−1 = 0,K0 = 1] =

∫
∞

0
e−sx e−λxdG(x)

Ĝ(λ)
=

Ĝ(s + λ)

Ĝ(λ)
.

To evaluate E0[e−sV
| K−1 = 0,K0 = 1] we note that, V is the distance of the last Poisson point inside the

interval (T−1,S−1) (in the left scenario of Figure 19) or the interval (T−1,S−1) in the right scenario. (In both
cases the length of the interval is that of a message size conditioned on containing at least one Poisson
point.) To obtain the Laplace transform of V look backward in time starting from S−1 until the first Poisson
point appears and condition on the event that this occurs between S−1 and S−2. Thus, the density of V at
v > 0 is

(1 − G(v))λe−λv

1 − Ĝ(λ)
,

which gives

E0[e−sV
| K−1 = 0,K0 = 1] =

∫
∞

0
e−svλe−λv(1 − G(v))

1 − Ĝ(λ)
dv =

λ
λ + s

1 − Ĝ(s + λ)

1 − Ĝ(λ)
. (46)

Putting these together we obtain (44).
3) Finally, assume that K−1 = 1,K0 = 1. This situation is similar to the previous one and thus will be
treated succinctly. We are guided by Figure 20. Firstly, we have

E0[e−s(S0−S−1)
| K−1 = 1,K0 = 1] =

∫
∞

0
e−sx 1 − e−λxdG(x)

1 − Ĝ(λ)
=

Ĝ(s) − Ĝ(s + λ)

1 − Ĝ(λ)
.
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Figure 19: Under P2, the segments [S−2,S−1), [S−1,S0) when K−1 = 1,K0 = 0 in the case where K−2 = 0 (left)
and K−2 = 1 (right).

Figure 20: Under P2, the segments [S−2,S−1), [S−1,S0) when K−1 = 1,K0 = 1 in the case where K−2 = 0 (left)
and K−2 = 1 (right).

Secondly, the argument used to derive (46) can be used here again with no changes to obtain

E0[e−sV
| K−1 = 1,K0 = 1] =

∫
∞

0
e−svλe−λv(1 − G(v))

1 − Ĝ(λ)
dv =

λ
λ + s

1 − Ĝ(s + λ)

1 − Ĝ(λ)
.

Putting these together we obtain (44) as well. �

The formula for Ee−sα(0) in Theorem 2 is now clear:

Proof. Adding up (42) and (43) of Lemma 10 and similarly (44) and (45) we obtain

E[e−sα(S0); K0 = 0] = Ĝ(s + λ)
[
Ĝ(λ) +

λ
λ + s

(
1 − Ĝ(s + λ)

)]
E[e−sα(S0); K0 = 1] =

(
Ĝ(s) − Ĝ(s + λ)

) [
Ĝ(λ) +

λ
λ + s

(
1 − Ĝ(λ + s)

)]
.

Substituting these expressions in the numerator of (11), and recalling the definition (19) of GI, we obtain
(25). �

An alternative expression for (25) is:

E[e−sα(0)] =
Ĝ(s)

(
Ĝ(λ) + λ

µ ĜI(s + λ)
) (

λ
λ+s Ĝ(s + λ) + λ

µ ĜI(s)
)

λ
µ + Ĝ(λ)

. (47)

Corollary 4. For P2 with exponential message sizes,

E[e−sα(0)] =
µ

µ + s

(
µ

µ + λ
+

λ
λ + µ + s

) (
µ2

λ2 + λµ + µ2
λ

λ + s
λ + µ

λ + µ + s
+

λ2 + λµ

λ2 + λµ + µ2

µ

µ + s

)
, (48)

E[α(0)] =
2λ5 + 7λ4µ + 8λ3µ2 + 7λ2µ3 + 4λµ4 + µ5

λµ
(
λ + µ

)2 (
λ2 + λµ + µ2) , (49)
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and, with ρ = λ/µ, the standard deviation of α(0) under P is

sdP(α(0)) =
1
µ

√
2ρ10 + 12ρ9 + 35ρ8 + 60ρ7 + 66ρ6 + 56ρ5 + 45ρ4 + 34ρ3 + 18ρ2 + 6ρ + 1

ρ
(
ρ + 1

)2 (
ρ2 + ρ + 1

) .

The expectation and variance have been computed by summing up the expectations and variance of
the three independent random variables comprising α(0). Inverting Ee−sα(0) shows that α(0) has density
(5), i.e., when µ = 1:

fP2(t) = q1(t)e−t + q2(t)e−(λ+1)t
−

λ
λ − 1

e−λt,

if λ , 1 where

q1(t) =
(λ3 + λ2

− 2λ)t − λ2 + λ + 3
(λ2 + λ + 1)(λ − 1)

, q2(t) =
(λ2 + λ)t + λ2 + 3λ + 3

λ2 + λ + 1
,

else if λ = 1,
fP2(t) = 1

3 (7 + 2t)e−2t + 1
3 (6t − 7)e−t.

It is easy to see from (48) that limλ→∞E[e−sα(0)] = (µ/(s + µ))2, the sum of 2 i.i.d. exponentials.

Appendix B: Analysis of the P2,θ system

We now analyze the system described in Section 7.
Given K−1 = 0, consider Figure 21 at right.

Figure 21: Number of messages in the system (black line) when K−1 = 0,K0 = 0 (left) and K−1 = 0,K0 = 1
(right). A black dot indicates a (successful) message departure. A green dot indicates an arrival of a message that
will successfully depart. A red dot indicates an arrival of an unsuccessful message. If the fate of an arrival is not
indicated in the figure, then it has no indicating dot.

A message service period is successful with probability

1 − q := P(τ > θ ∧ σ) = (1 − G(θ))e−λθ +

∫ θ

0
e−λsdG(s).

So, considering the successful service period which concludes at S0:

P(K0 = 0|K−1 = 0) = P(τ > σ | τ > θ ∧ σ) = (1 − q)−1Ĝ(λ) = 1 − P(K1 = 1|K−1 = 0).

Given K−1 = 1, consider Figure 22 below.

Figure 22: K−1 = 1,K0 = 1 cases.
.

25



Use the memoryless property of interarivals to similarly obtain

P(K0 = 0|K−1 = 1) = (1 − q)−1Ĝ(λ) = 1 − P(K0 = 1|K−1 = 1)

So, Kn is an i.i.d. Bernoulli sequence with

p0 := P(Kn = 0) = (1 − q)−1Ĝ(λ) = 1 − P(Kn = 1) =: 1 − p1.

The queueing process over consecutive intervals [Si−1,Si) and [Si,Si+1) are conditionally independent given
Ki. Thus, {Si,Ki}i∈Z is Markov-renewal with renewal times Si and the queueing process is semi-Markov
[4]. In particular, α(Si) and Si+1 − Si are conditionally independent given Ki.

As Proposition 1, we have:

Proposition 3. The Laplace transform of the stationary AoI distribution is

Ee−sα(0) =

∑1
i=0E

0(e−sα(0)
|K0 = i)

(
1 − E0(e−s(S0−S−1)

|K−1 = i)
)
pi

sE0(S1 − S0)
, (50)

where P0 and E0 are respectively probability and expectation given S0 = 0.

Proof. By the Palm inversion formula [2],

Ee−sα(0) =
E0

∫ S1

S0
e−sα(t)dt

E0(S1 − S0)
,

where the numerator

E0
∫ S1

S0

e−sα(t)dt = E0
∫ S1

S0

e−s(α(S0)+t−S0)dt

= E0
∫ S1

S0

1∑
i=0

(e−sα(0)
|K0 = i)E0(e−s(t−S0)

|K0 = i)pidt

=

1∑
i=0

E0(e−sα(0)
|K0 = i)E0

(
1 − e−s(S1−S0)

s

∣∣∣∣∣∣K0 = i
)
pi

�

To calculate the terms in (50) we need to follow the steps outlined in the lemmas below. Let
F̂0(s) = Ĝ(s + λ)/Ĝ(λ) and Ĵ(s) =

∫
∞

0 e−sydJ(y) where J(y) = 1 for y ≥ θ and, for 0 ≤ y < θ,

dJ(y) = q−1λe−λy(1 − G(y))dy

Lemma 11.

E0(e−s(S0−S−1)
| K−1 = 0,K0 = 0) =

λ
λ + s

·
1 − q

1 − qĴ(s)
F̂0(s) (51)

E0(e−sα(S0)
| K−1 = 0,K0 = 0) = F̂0(s) (52)

Proof. See Figure 21 at left and consider the interval [S−1,S0). Let τ−1 be first message arrival time in
this interval minus S−1, so that τ−1 ∼ exp(λ) by the memoryless property. Note that there is a geometric
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number N of interarrival times each of which is smaller than both θ and the associated service time; N = 2
in Figure 21. Again, the probability of such unsuccessful service is

P(τ < θ ∧ σ) = q.

So, P(N = k) = (1 − q)qk for k = 0, 1, 2, .... Let Y
(d)
= (τ|τ < θ ∧ σ) so that P(Y ≤ y) = J(y). Finally, let

τ0 ∼ exp(λ) be the duration between the arrival time (green dot) of the message that departs at S0 and the
next arrival time. The service time (from the green dot to S0) σ0 is independent of τ0. Considering the
prior N unsuccessful service completions, we are given that τ0 > σ0 or τ0 > θ. Given K0 = 0, τ0 > σ0. Let

X0
(d)
= (σ0|τ0 > σ0) which has distibution

dF0(x) = Ĝ(λ)−1e−λxdG(x), x > 0,

with Ee−sX0 = F̂0(s). So,

(S0 − S−1 | K−1 = 0,K0 = 0)
(d)
= τ−1 +

N∑
n=1

Yn + X0,

a sum of independent terms with Yn
(d)
= Y. Also α(S0)

(d)
= X0 in this case. �

Define

dF1(x) =
(e−λθ − e−λx)dG(x)∫
∞

θ
(e−λθ − e−λz)dG(z)

, x > θ

F̂1(s) =

∫
∞

θ
e−sxdF1(x).

Lemma 12.

E0(e−s(S0−S−1)
| K−1 = 0,K0 = 1) =

λ
λ + s

·
1 − q

1 − qĴ(s)
F̂1(s) (53)

E0(e−sα(S0)
| K−1 = 0,K0 = 1) = F̂1(s). (54)

Proof. See Figure 21 at right. The difference between this and the previous case is that here σ0 > τ0 > θ.

So, the distribution of X1
(d)
= (σ0 | σ0 > τ0 > θ) is dF1(x). �

Define

dH(v) =
λe−λv(1 − G(v + θ))dv∫
∞

θ
(1 − e−λ(x−θ))dG(x)

, v ≥ 0,

Ĥ(s) =

∫
∞

0
e−svdH(v).

Lemma 13.

E0(e−s(S0−S−1)
| K−1 = 1,K0 = 0) =

1 − q

1 − qĴ(s)
F̂0(s) (55)

E0(e−sα(S0)
| K−1 = 1,K0 = 0) = qF̂0(s) + (1 − q)Ĥ(s) × (55) (56)

Proof. See Figure 23 below.

27



Figure 23: K−1 = 1,K0 = 0 cases.
.

For α(S0) there are two subcases depending of whether there are initial unsuccessful arrivals in the
interval [S−1,S0), i.e., whether N > 0. When N > 0 (Figure 23 right), this case is like when K−1 = 0,K0 = 0.
Otherwise (Figure 23 left),

α(S0) = V + S0 − S−1,

where V is the duration between S−1 the last arrival before S−1 (green dot), and V and S0 − S1 are
independent given K−1 = 1. Starting from S−1, look backward in time until the first Poisson point appears
(green dot) and condition on the event that this occurs at least θ units of time before the service time ends.

Thus, V
(d)
= (τ|τ < σ − θ, σ > θ) with distribution H. Also, S0 − S−1 is distributed as for the case where

K−1 = 0,K0 = 0 except the first interarrival time is absent. �

Lemma 14.

E0(e−s(S0−S−1)
| K−1 = 1,K0 = 1) =

1 − q

1 − qĴ(s)
F̂1(s) (57)

E0(e−sα(S0)
| K−1 = 1,K0 = 1) = qF̂1(s) + (1 − q)Ĥ(s) × (57) (58)

Proof. See Figure 22. For S0 −S−1, this case is a combination of the previous two cases, and for α(S0) follow
the previous case except use (54) instead of (52). �

The final stage: The formulas obtained in the lemmas above must now be substituted into (50) as follows:

E0(e−s(S0−S−1)
|K−1 = 0) = (53) × p1 + (51) × p0 (59)

E0(e−s(S0−S−1)
|K−1 = 1) = (57) × p1 + (55) × p0. (60)

So,

E0(S1 − S0) = −
d
ds
E0e−s(S0−S−1)

∣∣∣∣∣∣
s=0

= −
d
ds

(p1 × (60) + p0 × (59))

∣∣∣∣∣∣
s=0

.

Moreover,

E0(e−sα(0)
|K0 = 0) = p0 × (52) + p1 × (56)

E0(e−sα(0)
|K0 = 1) = p0 × (54) + p1 × (58).

Appendix C: High traffic asymptotics

“High traffic asymptotics” refers to the regime ρ = λ/µ→∞. Even though we have no explicit formulas
for Pn or Bn when n ≥ 3, we can easily obtain asymptotics from the system dynamics.

Proposition 4. Let σ, σ1, σ2, . . . be i.i.d. copies of σ. Let σI be distributed as ĜI as in (19). Then

αPn

d
−−−−→
ρ→∞

σ + σI, n ≥ 2,

while
αBn

d
−−−−→
ρ→∞

σ1 + · · · + σn + σI, n ≥ 1.
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Sketch of proof. In both systems, the buffer consists of n cells. The message being processed sits in cell 1. In
Pn, the freshest message is either in cell 1, in which case all other cells are empty, or in cell 2. When ρ is
high there is always a message being processed in cell 1 and the freshest message is in cell 2. Hence, at
any time t, the AoI αPn(t) equals the service time of the message in cell 2 plus the remaining service time
of the message in cell 1. These are two independent random variables. The first one is distributed as σ.
The second is distributed as σI since the system is stationary. For B1, we can obtain the limit from the

Laplace transform of (28). It is easy to to see that limρ→∞E[e−sαB1 ] = Ĝ(s) ĜI(s) and so αB1

d
−−−−→
ρ→∞

σ + σI.

For general n, when ρ is high, the AoI αBn(t) equals the remaining service time of the message in cell 1 (in
distribution equal to σI) plus the time elapsed until the beginning of its service which is, in distribution,
equal to the sum of n independent service times. �

Remark 2. When σ = 1 with probability 1, σI is a uniform random variable in the interval [0, 1]. Hence
σ1 + · · ·+ σn + σI = n + σI and the variance of this random variable is 1/12. Similarly, for P2, the asymptotic
variance is again 1/12.
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