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Abstract

We consider counters consisting of two or more parallel subsystems. Pulses (e.g. par-
ticles) to be counted arrive according to a Poisson process and are counted, provided that
all subsystems are operational. Two related models are examined. In the first, an arriving
pulse causes all subsystems to become inoperative for a period of time. Any pulse arriving
during this “dead time” is not counted but nontheless causes an additional (overlapping)
dead time. This model is analyzed by means of a Poisson point process in an appropri-
ate Euclidean space and the probability of registering a typical pulse is determined using
renewal theoretic techniques. The second type of multi-component counter examined
consists of two counters in parallel subject to a saturation effect that follows a shot-noise
process. A pulse is registered provided that the saturation level is below a given value.
The system is analyzed by considering the underlying two-dimensional shot noise pro-
cess and the joint Laplace transform of saturation levels is determined. Finally, sensitivity
analysis estimates are developed based on integration-by-parts methods in Poisson space
using the Malliavin calculus.

1 Introduction and model description

In this paper we examine generalizations of stochastic models known in the literature as type II
counters. Interest in these models originated with particle counters such as the Geiger-Mueller
counter counting neutrons arising from the disintegration of radioactive material. Typically,
after registering a particle, such a counter becomes momentarily inoperative. During this
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“dead time”, a particle hitting the counter is not registered. In counters of type I particles
that are not register do not initiate dead times. In type II counters even particles that are not
registered initiate dead times. One of the main problems that arise then is to estimate the
number of unregistered particles based on the number of registered particles and the statistics
of dead time duration. We refer the reader to the classic papers [21], [11], [19], and to [17,
p.49].

The first type of model we will examine here is a variation of the counter model corre-
sponding to exponential attenuation instead of a dead time. When a particle arrives, whether
it is registered or not, it causes a pulse of random magnitude which in turn decreases expo-
nentially in magnitude with time. The overall “saturation process” is the superposition of the
effects of these pulses. This model is known as the (Poisson) shot noise process. It originated
in the context of the analysis of noise in vacuum tube electrical circuits but it has become a
fundamental stochastic model with applications in many areas, including Insurance and Fi-
nancial Mathematics [18]. We examine a system where a particle is registered when at its
arrival epoch the saturation level is below a given threshold and we analyze this system using
level crossing methods [3], [13]. We also analyze such a system with two counters in par-
allel in which a particle is counted when both saturation levels are below a given threshold.
As an interesting by-product of this analysis a novel type of bivariate Gamma distribution is
obtained.

The second type of model, examined in section 4 is a classical counter of type II consist-
ing of M components in parallel. Each component in such a counter operates essentially as an
infinite server queue and thus we have parallel M/G/∞ queues driven by the same Poisson
input process and thus correlated. The performance criterion of interest in this model is the
probability that the ith arrival finds all systems idle. This probability is determined by a rep-
resentation of the vector with components equal to the number of customers in each system
at time t in terms of a Poisson process in a Euclidean space of dimension M + 1. A renewal
theoretic argument is used to obtain the distribution of the number of customers in a busy
period and thence the long term probability of registering an arriving particle.

In the final section of the paper the basic ideas of Malliavin calculus in Poisson space
are briefly sketched and used in order to obtain efficient sensitivity analysis estimates for
performance criteria of these Poisson drive systems. These techniques have been used for over
two decades in systems driven by Brownian motion in the context of problems in Mathematical
Finance (see for instance [7]). Following the approach of Privault [14], [15] we develop a
family of sensitivity analysis estimators for these systems.
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2 Single component type-II counter with exponential atten-
uation

Pulses arrive according to a Poisson process with rate λ. The ith arrival, occurring at Ti

is characterized by a shock of size ξi. Suppose that {ξi} is a sequence of positive random
variables with distribution function G, independent of the Poisson process {Ti}. Each shock
causes a “saturation effect” which decays exponentially with rate α > 0. Thus the saturation
effect of the ith shock at time t > Ti is ξie−α(t−Ti). Assuming these effects to be additive, the
overall saturation of the counter at time t is

Xt :=
∞∑
i=1

ξie
−α(t−Ti)

+

, t ≥ 0. (1)

The ith pulse arriving at time Ti is registered provided that the saturation process at time Ti−
is less than a fixed threshold u > 0. Whether it is registered or not the pulse contributes to the
saturation process. This behaves as a counter of type II with the difference that in the classical
counter models arriving pulses cause complete paralyzation for a (typically random) period of
time and pulses arriving during this “dead time” are not registered. For a description of the
classical counter models see for instance [16], [21], [22], and [17, p.49].

Note that the process (1) can also be described by means of the stochastic differential
equation

dXt = −αXtdt+ dZt, X0 given. (2)

In the above, {Zt; t ≥ 0} is the compound Poisson process defined by Zt =
∑Nt

i=1 ξi where
Nt :=

∑∞
i=1 1(Ti ≤ t) is the number of Poisson shocks in the interval (0, t]. The above equa-

tion (a special case of a Lévy driven Ornstein-Uhlenbeck equation) can be solved pathwise to
obtain

Xt = e−atX0 +

∫ t

0

e−α(t−s)dZs. (3)

The process {Xt; t ≥ 0} becomes stationary by choosing X0, independent of the compound
Poisson process {Zt; t ≥ 0}, and with Laplace transform

E[e−sX0 ] = exp

(
−λ

∫ ∞

0

[1−G∗(se−αu)]du

)
. (4)

In the above expression G∗(s) :=
∫∞
0

e−sxdG(x) is the Laplace transform of the shock size
ξ1. We note that when the shock size distribution G is exponential with G∗(s) = µ

µ+s
, then

E[e−sX0 ] =

(
µ

µ+ s

)λ/α

, (5)

i.e. the stationary distribution is Gamma with shape parameter λ/α and rate µ.
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In order to obtain the stationary probability that a pulse will be registered, say pu can be
obtained using the level crossing method (see Brill [3]). Let λu denote the level crossing rate
at level u. This is the same whether we consider upcrossings or downcrossings. Applying
the level crossing methodology one sees that the density of the stationary distribution f(x) at
level x is given by f(x) = λxE[|X ′

t|−1|Xt = x].Due to the dynamics of the system expressed
by (3) E[|X ′

t|−1|Xt = x] = (αx)−1. Thus

f(x) =
λx

αx
.

On the other hand the rate of downcrossings is equal to the rate of upcrossings i.e. λx =∫ x

0
f(z)Ḡ(x − z)dz where Ḡ(x) = 1 − G(x). Thus, the level crossing argument shows that

the stationary density must satisfy the equation

f(x) =
λ

αx

∫ x

0

f(z)Ḡ(x− z)dz (6)

Proposition 1. The Laplace transform of the stationary distribution of {Xt} defined by F ∗(s) =∫∞
0

e−sxf(x)dx is given by

F ∗(s) = exp

(
−λ

α

∫ s

0

1−G∗(u)

u
du

)
. (7)

Proof. Taking Laplace transforms on both sides of (6) we obtain∫ ∞

0

e−sxxf(x)dx =
λ

α

∫ ∞

0

e−sx

∫ x

0

f(z)Ḡ(x− z)dzdx or

− d

ds
F ∗(s) =

λ

α

∫ ∞

z=0

e−szf(z)dz

∫ ∞

x=z

Ḡ(x− z)dx =
λ

α
F ∗(s)

1−G∗(s)

s
.

Thus the Laplace transform of the stationary density satisfies the differential equation

d

ds
F ∗(s) = −λ

α
F ∗(s)

1−G∗(s)

s

whose solution is (7).

This in principle determines the probability that a pulse is registered since the distribution
of the saturation level is obtained from the above theorem. For instance, when the pulse
distribution is exponential the saturation level is Gamma-distributed according to (5).

3 Paired Shot-noise Type II Counters

Consider now two counters of the type considered in the previous section in parallel. Particles
arrive according to a Poisson process {Ti} with rate λ. The ith particle causes a pulse of size
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ξ1i to the first counter and ξ2i to the second. We assume that {(ξ1i , ξ2i )} is a sequence of i.i.d.
vectors with joint distribution function G(z1, z2) := P(ξ1 ≤ z1, ξ

2 ≤ z2) and corresponding
Laplace transform ϕ(s1, s2) := E[e−s1ξ1+s2ξ2 ]. Again, the two saturation processes can be
expressed as the solution of the pair of generalized Ornstein-Uhlenbeck equations

dXj
t = −αjX

j
t dt+ dZj

t , Xj
0 given, independent of {(Z1

t , Z
2
t ); t ≥ 0}, j = 1, 2. (8)

As in the previous section Zj
t are two compound Poisson processes with jump sizes ξji , and

jump points {Ti}. Also, αj > 0 for j = 1, 2.It is easy to see that, as t → ∞, the solution of
the pair of stochastic differential equations converges to a stationary random vector (X1, X2).
The distribution of this random vector is given by the following

Proposition 2. The joint Laplace transform of the stationary random vector (X1, X2), Φ(s1, s2)
:= E[e−s1X1−s2X2

], is given by

Φ(s1, s2) = exp

(
−λ

∫ ∞

0

[
1− ϕ(s1e

−α1u, s2e
−α2u)

]
du

)
(9)

Proof. Suppose that initially X1
0 = X2

0 = 0. Consider the time interval [0, t] and suppose
that there are Nt := n Poisson points in this interval. If Ui, i = 1, . . . , n are the randomized
occurrence times then these are uniformly distributed in [0, t] and independent of each other.
Thus Xj

t =
∑n

i=1 ξ
j
i e

−αj(t−Ui) Using the above representation consider now the conditional
expected value

E[e−s1X1
t −s2X2

t | Nt = n, U1, . . . , Un]

= E

[
n∏

i=1

e−s1ξ1i e
−α1(t−Ui)−s2ξ2i e

−α2(t−Ui) | Nt = n, U1, . . . , Un

]

=
n∏

i=1

ϕ(s1e
−α1(t−Ui), s2e

−α2(t−Ui))

and

E[e−s1X1
t −s2X2

t | Nt = n] =

(
1

t

∫ t

0

ϕ(s1e
−α1u, s2e

−α2u)du

)n

. (10)

Since P(Nt = n) = (λt)n

n!
e−λt, from the above (9) follows.

Equation (9) determines the stationary probability that a pulse is counted P(X1 ≤ u,X2 ≤
u) provided that the Laplace transform can be inverted numerically. A more explicit expres-
sion is possible in the case where (ξ1, ξ2) are independent and exponential with rates µ1 and
µ2 respectively. To further simplify the expressions, we will examine the symmetric system
with α1 = α2 = α. In that case ϕ(s1, s2) =

µ2

(µ+s1)(µ+s2)
and substituting this in (9) we obtain
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the joint Laplace transform

Φ(s1, s2) = exp

(
−λ

∫ ∞

0

[
1− µ1

µ1 + s1e−αu

µ2

µ2 + s2e−αu

]
du

)
= exp

(
−λ

∫ ∞

0

µ1s2e
−αu + µ2s1e

−αu + s1s2e
−2αu

(µ1 + s1e−αu) (µ2 + s2e−αu)
du

)
.

The change of variables x = e−αu, dx = −αe−αudu, in the integral above gives

Φ(s1, s2) = exp

(
−λ

∫ ∞

0

µ1s2e
−αu + µ2s1e

−αu + s1s2e
−2αu

(µ1 + s1e−αu) (µ2 + s2e−αu)
du

)
= exp

(
λ

α

∫ 0

1

µ1s2 + µ2s1 + s1s2x

(µ1 + s1x) (µ2 + s2x)
dx

)
. (11)

Analysis into partial fractions gives

µ1s2 + µ2s1 + s1s2x

(µ1 + s1x) (µ2 + s2x)
=

A1

µ1 + s1x
+

A2

µ2 + ssx

with

A1 =
s21µ2

s1µ2 − µ1s2
, A2 = − µ1s

2
2

s1µ2 − µ1s2
.

Hence, the Laplace transform is

Φ(s1, s2) = exp

(
−λ

α
A1

∫ 1

0

dx

µ1 + s1x
− λ

α
A2

∫ 1

0

dx

µ2 + s2x

)
= exp

(
−λ

α

µ2s1
s1µ2 − µ1s2

ln
µ1 + s1

µ1

+
λ

α

µ1s2
s1µ2 − µ1s2

ln
µ2 + s2

µ2

)
=

(
µ1

µ1 + s1

) λ
α

µ2s1
s1µ2−µ1s2

(
µ2

µ2 + s2

)− λ
α

µ1s2
s1µ2−µ1s2

. (12)

It should be noted that the Laplace transforms of the marginal distributions obtained by setting

s1 = 0 or s2 = 0 are given by
(

µi

µi+si

)λ/α
, i = 1, 2, Thus (12) is the Laplace transform of a

bivariate Gamma distribution with positive correlation. It is radically different from standard
bivariate Gamma distributions such as the Kibble-Moran distribution [12].

4 Classical Type II Counters and M/G/∞ systems in par-
allel

Consider now a system consisting of M infinite service systems in parallel. Customers arrive
according to a Poisson process with rate λ. The arrival epoch of the ith customer is de-
noted by Ti and to the ith customer there corresponds a vector of service times (ξ1i , . . . , ξ

M
i ).
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Upon arrival the customer splits into M parts, each part joining the corresponding infinite
server system. The jth component of the ith customer remains in system j for a period
of time given by ξji . Thus the total time in the system for the ith customer is given by
ζi := max1≤j≤M ξji . The sequence of vectors {(ξ1i , . . . , ξMi )}i=1,2,... is assumed to be i.i.d.
and independent of the Poisson process {Ti}. The joint distribution of each ξi is denoted by
G(z1, . . . , zM) =: P

(
ξ1 ≤ z1, . . . , ξ

M ≤ zM
)
.

The system can be analyzed by considering a Poisson process, N , on RM+1
+ with mean

measure λdt×G(dx1, . . . , dxM). For t > 0 consider the sets

At := {(u, x1, . . . , xM) : 0 ≤ u ≤ t, xj ≥ 0, xj + u < t, j = 1, . . . ,M} ,
Ct := {(u, x1, . . . , xM) : 0 ≤ u ≤ t, xj ≥ 0, j = 1, . . . ,M} .

The number of Poisson points in the set Ct \ At is equal to the number of customers that
are present in the system at time t because these points correspond to customers with at least
some components that have not completed service. Thus, Xt := N(Ct \ At) is the number of
customers present in the system at time t, whereas N(At) gives the number of departures in
the time interval (0, t].

Theorem 1. Suppose the above system is empty at time 0. The probability that the ith cus-
tomer, upon arrival finds the system empty, pi := P(XTi− = 0) is given by the expression

pi =
λi

(i− 1)!

∫ ∞

0

(∫ t

0

G(u, . . . , u)du

)i−1

e−λtdt. (13)

If g(z) denotes the probability generating function of the number of customers in a busy period
then

g(z) = 1−
(
λ

∫ ∞

0

e−λt+λz
∫ t
0 G(u,...,u)dudt

)−1

. (14)

Finally
lim
i→∞

pi = g′(1) = eλ
∫∞
0 [1−G(u,...,u)]du. (15)

Proof. The ith customer arrives at time Ti to the system. Due to the Poisson assumption for
arrivals Ti has Erlang-i density fi(t) = λiti−1

(i−1)!
e−λt. Due to the Poisson assumption for the

arrivals (together with a Lack of Anticipation property which holds for this system - see for
instance [23])

P(XTi− = 0|Ti = t) = P(Xt = 0|N(Ct) = i− 1)

Also, by the above definitions and the properties of the Poisson process [8]

P(Xt = 0|N(Ct) = i−1) = P(N(At) = 0|N(Ct) = i−1) =

(
1

t

∫ t

0

G(u, . . . , u)du

)i−1

.

Hence

pi =

∫ ∞

0

(
1

t

∫ t

0

G(u, . . . , u)du

)i−1
λiti−1

(i− 1)!
e−λtdt
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which yields (13). Next, let Qk denote the number of customers in the kth busy period with pgf
g(z) := E[zQk ]. Clearly, the number of customers in consecutive busy periods are independent
and thus, setting M1 = 1, Mk := Mk−1 + Qk−1, k = 2, 3, . . . we obtain a discrete time
renewal process with points corresponding to customers who, upon arrival, find the system
empty. Then {XTi− = 0} = {i = Mk for some k ∈ N} and hence

∞∑
k=1

zMk =
∞∑
i=1

1(XTi− = 0)zi.

Taking expectations in the above and using the fact that E[z1+Q1+···+Qk−1 ] = zg(z)k−1 and that
E1(XTi− = 0) = pi we obtain

∞∑
k=1

zg(z)k−1 =
∞∑
i=1

piz
i

Using equation (13) we obtain

z

1− g(z)
=

∞∑
i=1

zi
λi

(i− 1)!

∫ ∞

0

(∫ t

0

G(u, . . . , u)du

)i−1

e−λtdt

= λz

∫ ∞

0

e−λt+λz
∫ t
0 G(u,...,u)dudt (16)

This establishes (14). Finally, from (14) it follows that the renewal process {Mk} is aperiodic.
We will next show that it is positive recurrent i.e. that E[Q1] = g′(1) < ∞. Indeed,

g′(1) = lim
z↑1

1− g(z)

1− z
=

(
lim
z↑1

λ(1− z)

∫ ∞

0

e−λt(1−z)−λz
∫ t
0 [1−G(u,...,u)]dudt

)−1

(17)

=

(
lim
z↑1

∫ ∞

0

e−x−λz
∫ x/(λ(1−z))
0 [1−G(u,...,u)]dudx

)−1

(with x = λ(1− z)t) (18)

This last limit is easily evaluated using the monotone convergence theorem and thus we obtain

g′(1) =

(∫ ∞

0

e−x−λ
∫∞
0 [1−G(u,...,u)]dudx

)−1

=

(
e−λ

∫∞
0 [1−G(u,...,u)]du

∫ ∞

0

e−xdx

)−1

= eλ
∫∞
0 [1−G(u,...,u)]du. (19)

Hence g′(1) < ∞ and therefore the renewal process is positive recurrent. Thus the (Erdös-
Feller-Pollard) renewal theorem and (19) show that (15) and positive recurrent. Hence the
statement limi→∞ pi = g′(1) follows from the renewal theorem [1]. Note that a direct compu-
tation of the limit from (13) is often harder to carry out.

For example if the service times are deterministic e.g. ξj = aj , j = 1, . . . ,M , then
pi = e−λa with a = max1≤j≤M aj and g(z) = ze−λa

1−z(1−e−λa)
(c.f. [20]).
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5 Sensitivity Analysis via Malliavin Calculus on the Poisson
Space

A detailed, rigorous account of the Malliavin calculus may be found in [9] and, in what regards
functionals of a Poisson processes in particular in [14].

Let T > 0 and {Nt; t ∈ [0, T ]} a Poisson process with intensity λ > 0 and jump times
{Tk}k≥1 defined on a probability space (Ω,F , P ). ST denotes the set of all smooth Poisson
functionals on [0, T ] of the form

F := f01(NT = 0) +
m∑

n=1

1(NT = n)fn(T1, . . . , Tn)

where f0 ∈ R and fn ∈ C1[0, T ]n. The functions fn are assumed to be symmetric in the
n variables. ST is an algebra of random variables dense in L2(Ω,FT , P ) (where FT is the
σ–field generated by the process {Nt; t ∈ [0, T ]}. (For a proof see [14] and [8].)

Suppose that F is a square integrable functional of the Poisson process {Nt, t ∈ [0, T ]},
depending on a real parameter α in such a way that ∂αF exists with probability 1 as an ele-
ment of L2(Ω,FT , P ) and h is a bounded, measurable function. Thus J(α) := E[h(F )] is a
function of α. We are interested in obtaining a Monte-Carlo estimator for the sensitivity J(α)
which does not rely on finite difference estimates since these are characterized by particularly
poor statistical properties, namely high variance, bias, and convergence rates lower than the
standard N1/2 one expects in Monte-Carlo estimation. In order to achieve this goal we will
use an integration-by-parts approach based on the Malliavin calculus for Poisson functionals
which has been pioneered by Privault [14], [15]. This is made possible by obtaining a weight
Wα such that

d

dα
E[h(F )] = E[Wαh(F )]. (20)

Thus if Fi, Wα,i are i.i.d. copies of these random variables, an efficient estimator for J ′(α) is

Ĵ ′(α) :=
1

N

N∑
i=1

Wα,ih(Fi) .

Denote by C0[0, T ] and C1
0 [0, T ] the space of all continuous functions respectively contin-

uously differentiable functions with w : [0, T ] → R with w(0) = w(T ) = 0.

Definition 1. For w ∈ C0[0, T ] denote by Dw the Malliavin directional derivative in the direc-
tion w for random variables in ST which is defined by

DwF = −
m∑

n=1

1(NT = n)
n∑

i=1

w(Ti)∂ifn(T1, . . . , Tn).
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In the special case where the random variable F is given in terms of a stochastic integral
with respect to the Poisson process, F =

∫ T

0
g(t)dNt, where g ∈ L2[0, T ] it holds that ([15])

DwF = Dw

∞∑
n=1

1(NT = n)
n∑

i=1

g(Ti) = −
∞∑
n=1

1(NT = n)
n∑

i=1

w(Ti)g
′(Ti)

= −
∫ T

0

w(t)g′(t)dNt. (21)

When w ∈ C1
0 [0, T ] the operator Dw is closable and admits a closable adjoint D∗

w such
that

E[GDwF ] = E[FD∗
wG], F,G ∈ ST . (22)

For all F ∈ Dom(Dw) ∩ L4(Ω), it holds that F ∈ Dom(D∗) and

D∗
wF = F

∫ T

0

w′(t)dNt − DwF. (23)

Theorem 2. For any measurable function h for which h(F ) is square integrable, (20) holds
with

Wα =
∂αF

DwF

(∫ T

0

w′(t)dNt +
DwDwF

DwF

)
− Dw∂αF

DwF
. (24)

Proof. We will first establish (20) for infinitely differentiable functions with bounded deriva-
tives of all orders, h ∈ C∞

b . Then

∂α E[h(F )] = E [h′(F )∂αF ] = E
[
∂αF

DwF
Dwh(F )

]
, (25)

the last equation following from the fact that Dwh(F ) = h′(F )DwF . However, from (22),

E
[
∂αF

DwF
Dwh(F )

]
= E

[
h(F )D∗

(
∂αF

DwF

)]
. (26)

Expressing the adjoint of Dw in terms of Poisson stochastic integrals using (23) we obtain

D∗
(

∂αF

DwF

)
=

∂αF

DwF

∫ T

0

w′(t)dNt − Dw

(
∂αF

DwF

)
. (27)

Equations (25), (26), (27) establish (20) with W given by (24) for smooth functions h. To
establish the result for general functions h we need to use an approximation procedure con-
sidering a sequence hn is C∞

b converging pointwise to h following ([15]).

Consider now the shot noise counter discussed in section 2 with pulses of fixed size (say
equal to 1) and let

F =

∫ T

0

e−α(T−t)dNt (28)
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denote the “saturation level” of the counter at time T . It is easy to see that F ∈ L2(Ω). The
parameter of interest with respect to which we want to estimate sensitivities is the decay rate
α. Clearly

∂αF =

∫ T

0

(T − t)e−α(T−t)dNt w.p. 1. (29)

Also let w be an appropriate perturbation function vanishing at 0 and T . Then, using (21), we
obtain

DwF = −
∫ T

0

w(t)αe−α(T−t)dNt. (30)

We also have

DwDwF =

∫ T

0

w(t)α (w′(t) + αw(t)) e−α(T−t)dNt, (31)

Dw∂αF =

∫ T

0

w(t)(α(T − t)− 1)e−α(T−t)dNt. (32)

Then the following holds

Proposition 3. The sensitivity of the probability that F exceeds the threshold u with respect
to the decay rate α can be estimated using the estimator arising from

d

dα
P(F > u) = E[Wα1(F > u)] (33)

where the weight in the above equation is given by

Wα = −
∫ T

0
(T − t)e−α(T−t)dNt∫ T

0
w(t)αe−α(T−t)dNt

(∫ T

0

w′(t)dNt −
∫ T

0
w(t) (w′(t) + αw(t))αe−α(T−t)dNt∫ T

0
w(t)αe−α(T−t)dNt

)

−
∫ T

0
w(t) (α(T − t)− 1)αe−α(T−t)dNt∫ T

0
w(t)αe−α(T−t)dNt

. (34)

Remark: Appropriate perturbation functions are for instance w(t) = t(T − t), or w(t) =
sin(πt/T ).

6 Numerical Results

We simulate the shot noise counter with pulses of fixed size and consider the performance
criterion P (F > u) where F is defined in (28). We simulate the process with α = 0.5, time
horizon T = 100, Poisson pulses of unit rate λ = 1. We perform N = 104 independent
replications and besides P (F > u) we also estimate the gradient ∂

∂α
P (F > u) using the

estimator 1
N

∑N
i=1Wα,i1(Fi > u). The weight Wα in the above estimator is given by (34).
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The first of the above estimators is obtained using the weight function w(t) = t(T − t) and
the second using w(t) = sin πt

T
.

u 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Der. Est. 0.07372 -0.55850 -0.67975 -1.08215 -1.15916 -1.42970 -1.59342
st. dev. 0.11849 0.11732 0.11360 0.11011 0.10300 0.09863 0.09141
Der. Est 2 0.17883 -0.58503 -0.68806 -1.01166 -1.30899 -1.19217 -1.40720
st. dev. 0.14142 0.13549 0.13362 0.12981 0.12593 0.11559 0.11131
E1(F > u) 0.97500 0.94320 0.90370 0.83850 0.77150 0.69750 0.60970
st. dev. 0.00156 0.00231 0.00295 0.00368 0.00420 0.00459 0.00488

u 1.8 2.0 2.2 2.4 2.6 2.8 3.0
Der. Est. -1.50717 -1.58173 -1.50320 -1.46432 -1.2361 -1.19499 -1.05961
st. dev. 0.08703 0.08036 0.07507 0.06808 0.06261 0.05702 0.05154
Der. Est 2 -1.53923 -1.51252 -1.58921 -1.39094 -1.23613 -1.0214 -1.03679
st. dev 0.10453 0.09399 0.09016 0.08111 0.07506 0.0654 0.05835
E1(F > u) 0.53620 0.4488 0.3760 0.31200 0.25060 0.20420 0.16010
st. def. 0.00499 0.0050 0.0048 0.00463 0.00433 0.00403 0.00367

u 3.2 3.4 3.6 3.8 4.0 4.2 4.4
Der. Est. -0.75207 -0.72924 -0.56096 -0.41407 -0.31755 -0.24445 -0.20168
st. dev. 0.04472 0.04102 0.03766 0.03106 0.02722 0.02353 0.02149
Der. Est. 2 -0.83723 -0.63393 -0.5857 -0.44039 -0.4077 -0.30665 -0.17447
st. dev. 0.05417 0.04479 0.0420 0.03682 0.0336 0.02960 0.02217
E1(F > u) 0.11600 0.09140 0.0689 0.05140 0.03470 0.02750 0.01900
st. dev. 0.00320 0.00288 0.0025 0.00221 0.00183 0.00164 0.00137

Table 1: Derivative Estimate 1 refers to the weight w(t) = t(T − t). Derivative Estimate 2
refers to the weight w(t) = sin(πt/T ).

In Figures 1 and 2 we show simulation results for a shot-noise counter with exponential
pulses. In this case F =

∑N(T )
i=1 ξie

−α(T−ti). Here {ti} is again a Poisson process with rate λ
and {xii} a sequence of i.i.d. exponentially distributed random variables with rate µ, indepen-
dent of the Poisson process. The estimator weight can, in this case be written as

Wα :=
∂αF

DwF

N(T )∑
i=1

ξiw
′(ti) +

D2wF

DwF

− Dw∂αF

DwF
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where

∂αF = −
N(T )∑
i=1

ξi(T − ti)e
−α(T−ti), DwF = −

N(T )∑
i=1

ξiαw(ti)e
−α(T−ti),

Dw∂αF =

N(T )∑
i=1

ξi(α(T − ti)− 1)e−α(T−ti), D2
wF =

N(T )∑
i=1

w(ti)ξiα [w′(ti) + αw(ti)] e
−α(T−ti).

Simulation experiments with λ = µ = 1, α = 0.5, and T = 100 are conducted to estimate
the derivative ∂αP (F > u) for various values of u. In Figure 1 results using the weight
function w(t) = t(T − t) are shown whereas Figure 2 shows the corresponding results for the
weight function w(t) = sin(πt/T ). In both cases the dots correspond to the exact value of the
derivative computed numerically whereas the red and green lines respectively the estimated
derivative values using the Malliavin calculus based estimator.
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Figure 1: The first estimator w(t) = t(T − t).

Figure 2: The second estimator w(t) = sin(πt/T ).
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