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Abstract

In this paper we examine a queueing model with Poisson arrivals, service phases of random
length, and vacations, and its applications to the analysis of production systems in which material
handling plays an important role. A second area of application is systems with unreliable servers.
The length of a service phase is referred to as a “processing batch” and the analysis is carried out
separately for processing batch distributions with bounded and unbounded support. In the first case,
standard techniques from the analysis of batch service systems are used involving Rouché’s theo-
rem, while in the second the analysis proceeds via Wiener-Hopf factorization techniques. Processing
batches with size that is either geometrically distributed or distributed according to a combination of
geometric factors lead to particularly simple solutions related to Bernoulli vacation models. In all
cases, care is taken in the analysis in order to obtain the steady state distribution of the system under
minimal assumptions, namely the finiteness of the first moment of the service and vacation distribu-
tions together with the stability condition. This is in contrast to most of the literature where usually
the assumption that the service and vacation distribution is light-tailed is either explicitly stated or
tacitly adopted. Applications in manufacturing, materials handling, and reliability are indicated.

KEYWORDS: QUEUEING, MANUFACTURING, BULK SERVICE QUEUES, MATERIALS HANDLING.

1 Model description

We analyze an M/G/1 queue with service phases of random length and vacations in the service mech-
anism. Customers arrive according to a Poisson process with rate λ > 0 to the system and have i.i.d.
service requirements which we will denote by {σn;n ∈ N}. These are assumed to be independent of the
arrival process and their common distribution will be denoted by B(x) := P (σ ≤ x) with finite mean
Eσ. The capacity of the queue is assumed to be infinite. At specific time epochs the server initiates “va-
cation” periods during which he is unavailable to serve customers, while arriving customers accumulate
in the waiting area. Successive vacation periods form a sequence of i.i.d. random variables, independent
of the arrival process and service requirements, denoted by {Gm;m ∈ N}, with common distribution,
G(x), and finite mean, EG. The server’s operation alternates thus between service phases and vacation
phases.
∗Corresponding author: zazanis@aueb.gr
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At the beginning of each service phase its size, i.e. the number of customers to be served during that
phase, is set. Subsequently, and throughout this paper, we will be referring to the number of customers
to be served during a service phase as a processing batch. The use of the term processing batch in
this fashion here is consistent with its use in manufacturing practice. We should emphasize however
that in the queueing literature the term service batch is often interpreted to mean that all customers
belonging to the same batch are simultaneously admitted to the server and receive service as if they
where a single entity. Processing batches are assumed to be i.i.d. random variables, independent of the
arrival process, service requirements, and vacation lengths, and will be denoted by {Θm}. Their common
distribution will be denoted by θk = P (Θ = k), k = 1, 2, . . ., and will be assumed to have finite mean
EΘ =

∑∞
k=1 kθk <∞. During the service phase customers are served in a FIFO fashion until either the

number of customers served in the phase becomes equal to the processing batch size Θm or the queue
empties, whichever happens first. In both cases the server initiates a new vacation phase. We shall call
this the partial batch policy, since it is possible that fewer customers than required by the processing
batch are served during the service phase. When the server returns from the vacation a new processing
batch is set and a new service phase begins. If, upon returning from a vacation, the server finds the queue
empty then we will assume that he immediately takes a new vacation. (We thus allow service phases to
have zero duration.) Variations in the behavior of the server when, upon returning from a vacation, he
finds the queue empty are possible. For instance we may suppose that in such cases the server waits for
a fixed period of time and only if this elapses without arrivals he leaves again, or that he waits until a
fixed number of customers arrive etc. Such variations do not burden the analysis but, since they have
been studied extensively in the vacations literature, they will not be considered here.

We will also consider the complete batch policy according to which, when a service phase is initiated
and a processing batch is set, the server remains available, waiting for a customer to arrive if necessary,
and works until the processing batch is complete. After this, the vacation phase begins during which
the server is unavailable. At the end of the vacation a new cycle begins with a new processing batch
determined at random, independently of everything else, from the given distribution θk, k = 1, 2, . . ..

The system described above is a type of an M/G/1 queue in a random environment. Under the
assumption that the processing batch has fixed size, say Θm = N with probability 1, this system has
been studied in Coffman and Gilbert [11]. There, the fixed processing batch is interpreted as the capacity
of an output buffer or a cart, placed next to the processing station. Finished parts are placed in the
cart and when it is full it is taken by the server to its destination. Thus, server vacations in that model
correspond to the time it takes the server to deliver the cart. If we suppose that the same cart is used to
store the output of two or more stations served by the same server then the need for a cart with stochastic
capacity arises naturally.

The model we propose has also applications to queueing systems with unreliable servers. Indeed,
suppose that the server is subject to failures. These failures are assumed to manifest themselves at the
initiation of service and to be independent of the service requirements of the customers. Under these
conditions the random processing batch model proposed constitutes an accurate model. Vacation periods
correspond then to down time for the system while the server is being repaired. In this context the
complete batch policy described above is more appropriate. (The partial batch policy may be appropriate
if we assume that idle periods are used for preventive maintenance. In this case a model with vacations
whose duration distribution depends on whether the preceding processing batch has been completed can
be used. The analysis of such models will be sketched in section 4.4.)

Throughout the paper the analysis is carried out by distinguishing two cases, according to whether the
processing batch distribution has bounded or unbounded support. In the first case, where the support of
the processing batch size distribution is bounded above by a constant N (this could be the cart’s capacity
in the first model mentioned above) the analysis is based on an argument using Rouché’s theorem, typical
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of the analysis of queues with batch service (see [8]). In this respect attention has been paid in order to
establish our results under the natural conditions for the existence of a stationary version of the process
i.e. the finiteness of first moments plus the stability condition of the system. In contrast, much of the
literature of batch service queues either tacitely assumes or explicitly requires the service (and vacation,
where appropriate) distributions to be light tailed.

The second case, where the distribution of the processing batch size has unbounded support, is harder
and in general it can only be dealt with by Wiener-Hopf factorization techniques. We indicate how to
carry out this procedure and we also provide explicit solutions for the case of processing batches whose
distribution is either geometric or a combination of geometric factors.

In all cases the analysis of the system proceeds by first analyzing an embedded Markov chain by
means of generating functions and then using standard results from semi-regenerative processes in order
to obtain the stationary distribution of the number of customers in the system. For the most part, through-
out the paper, we will use the language of the queue-and-cart model introduced in [11]. In particular, in
section 8 we will derive the distribution of the number of customers in the waiting and departing cart, as
well as the joint distribution in stationarity for the number of customers in the queue and the cart. Finally,
in all cases, we discuss briefly the necessary modifications when customers do not arrive singly but in
i.i.d. batches.

2 The embedded chain and the stability condition

We consider the embedded point process of the epochs when the server returns to the queue at the
end of a vacation. We denote these points by {Tm;m ∈ Z}. Let us also denote by {Sm;m ∈ Z} the
corresponding epochs when the server leaves the queue to deliver the cart, i.e. the beginnings of vacations.
We shall think of the sample path of the process as consisting of cycles. Each cycle comprises a service
phase where the server is present and serving customers, and a vacation phase during which the server is
away, delivering the cart to its destination. The number of customers in the system at time t is denoted by
Xt and the process {Xt; t ∈ R} is assumed to have right–continuous sample paths. The mth cycle starts
at time Tm, with the end of the (m − 1)th vacation. We denote by Φm the number of customers in the
system at epoch Tm, (i.e. Φm = XTm). This means that at the start of the mth cycle, i.e. at the moment
when the server returns with the cart to the queue, he finds Φm customers waiting for service. Clearly,
(Tm,Φm), m ∈ Z, is a Markov–renewal process and {Xt; t ∈ R} is a semi–regenerative process with
respect to it. Also denote by Ψm the number of customers left behind in the queue at epoch Sm when the
server leaves the system to deliver the cart, i.e. Ψm = XSm . Finally we will denote by Lm the number
of services in the mth cycle which is equal to the contents of the cart when it leaves. Clearly we have
Lm ≤ Θm, and Ψm = 0 if Lm < Θm since we assume that a partial batch policy is used. Also recall
that, according to this policy, if Φm = 0 then the server does not stay in the queue at all but immediately
takes another vacation. Hence, in that case Sm = Tm, and Ψm = Φm = 0 = Lm. Figure 1 illustrates
these definitions.

In the next section we will obtain the stationary distribution of the embedded chain {Φm} by analyz-
ing the evolution of the system at subsequent departure epochs. Here we confine ourselves to a qualitative
study of the embedded chain {Φm} which will be used to derive the stability condition for the system
both under the partial and under the complete batch policy. The state space of the embedded chain is the
set of nonnegative integers and the chain is clearly irreducible. In what follows we will show that if the
condition

EΘ >
λEG

1− λEσ
(1)

is satisfied, then it is also positive recurrent. If the above condition holds with equality then we will
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Figure 1: Sample path of the queue.

show that the chain is null recurrent whereas if the sense of inequality (1) is reversed then the chain is
transient. These results have clear implications for the stability of the system as we will see in the sequel.

Let ∆Φm := Φm+1−Φm denote the increments of the process {Φm}. We will use standard Foster–
Liapunov criteria in order to show that (1) guarantees the positive recurrence of the chain. Indeed,
if A(s, t] denotes the number of Poisson arrivals in the interval (s, t], ∆Φm = A(Tm, Sm] − Lm +
A(Sm, Tm+1]. Suppose that the partial batch policy is used. Since Lm is a stopping time we have in fact
that

E[∆Φm | Φm = k] = (λEσ − 1)E[Lm | Φm = k] + λEG.

Also, since the partial batch policy is used, Lm ≤ Θm w.p. 1 and hence, in view of the independence of
Θm from Φm, we have E[Lm | Φm = k] ≤ EΘ and

lim
k→∞

E[Lm | Φm = k] = EΘ.

Thus, if (1) holds then E[∆Φm | Φm = k] < 0 for all k sufficiently large. This is enough in order to
establish the positive recurrence of the Markov chain {Φm}. Using the same criterion we can show that
(1) implies the positive recurrence of {Φm} under the complete batch policy. (The argument is somewhat
more involved and is relegated to the Appendix.) The positive recurrence of the embedded Markov chain
{Φm} implies in turn the positive recurrence of the process {Xt; t ∈ R} since the mean cycle times
E[Tm+1 − Tm] are bounded above by EΘEσ + EG and thus are finite.

It remains to show that if (1) does not hold then {Φm} is either null recurrent (when the inequality in
(1) is replaced by equality) or transient (when the inequality is reversed). This analysis is also given in
the Appendix.

3 Analysis of the embedded Markov chain of the system under a partial
batch policy

3.1 Notation

Following the approach of Coffman and Gilbert [11] we let dmk be the epoch of the kth service completion
during the mth cycle. We will agree to set dm0 = Tm. Clearly, in the mth cycle we have Tm = dm0 <
dm1 < dm2 < · · · < dmLm

. Let Xdmk
be the number of customers left behind at the kth epoch of the

mth cycle and in particular note that Xdm0
= Φm. We will assume that the system is stationary and we
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will analyze its behavior over “a typical cycle”. Therefore, without risk of confusion, we will drop the
subscript m referring to a particular cycle in what follows. Suppose that the system has been operating
in stationarity and that time t = 0 coincides with dm0 = Tm (in other words consider the Palm version of
the process with respect to the point process {Tm}). Note that, under the partial batch policy,

{L ≥ k} = {Xd0 > 0, Xd1 > 0, . . . , Xdk−1
> 0} ∩ {Θ ≥ k} (2)

and

{L = k} = {Xd0 > 0, Xd1 > 0, . . . , Xdk−1
> 0} ∩ ({Θ = k} ∪ {Xdk = 0}) , k = 1, 2, . . . .

whereas {L = 0} = {Xd0 = 0}. We define the generating functions

Qk(z) = E[zXdk ;L ≥ k] (3)

and set
Fk = Qk(0) = P (Xdk = 0;L ≥ k) (4)

or, in view of the fact that under the partial batch policy as soon as the queue empties the server takes the
cart to be delivered

Fk = P (Xdk = 0;L = k) = P (Xdk = 0;L = k; Θ ≥ k)

= P
(
Xd0 > 0, Xd1 > 0, . . . , Xdk−1

> 0, Xdk = 0; Θ ≥ k
)
.

Note that Fk is the probability that the typical service phase consists of precisely k services and that the
next vacation phase starts with an empty queue. In section 8 their role in determining the statistics on the
cart contents is examined in detail. We also point out that, in view of (2) and (3),

Qk(z) = E[zXdk ;L ≥ k | Θ ≥ k] = E[zXdk ;L ≥ k | Θ = n] for n = k, k + 1, k + 1, . . . . (5)

Furthermore, withB denoting the service time distribution andB∗ the corresponding Laplace transform,

U(z) := B∗(λ(1− z)), (6)

is the p.g.f. (probability generating function) of the number of arrivals during a service time. Similarly,
with G and G∗ denoting the distribution and Laplace transform respectively of the vacation period for
the server,

D(z) := G∗(λ(1− z)) (7)

is the p.g.f. of the number of arrivals during a server vacation time. We also define for convenience the
quantities

α(z) := U(z)z−1, y(z) :=
1

α(z)
. (8)

3.2 Random processing batch size with finite support

In this subsection we assume that the processing batch size distribution {θn;n ∈ N} has bounded support
i.e. that N = sup{n : θn > 0} <∞. The “dynamics” of the process during a service period (i.e. during
intervals of the form (Sm, Tm+1), m ∈ Z) are described by the following basic recursive relationship
which involves the generating functions defined in (3) and (8)

Qk+1(z) = (Qk(z)− Fk)α(z), k = 0, 1, . . . , N − 1. (9)
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This recursion expresses the fact that the number of customers left behind at the end of the (k + 1)th
service completion is equal to the number left behind at the kth service completion minus one plus the
number that arrived during this service time, provided that the queue has not emptied and the processing
batch size is equal to k + 1 or greater. From it we readily obtain

Qn(z) = α(z)nQ0(z)−
n−1∑
k=0

Fkα(z)n−k, (10)

n = 1, 2, . . . , N . By definition

Q0(z) = E
[
zXd0 ;L ≥ 0

]
= E

[
zXd0

]
= E[zΦ] (11)

is the p.g.f. of the number of customers in the queue at an epoch when the service phase begins. (Of
course P (L ≥ 0) = 1.) Also, the p.g.f. of the number of customers left behind in the queue after the
server leaves in order to deliver the cart is given by

Π(z) := E[zΨ] =
n∑
n=1

θn

(
Qn(z) +

n−1∑
k=0

Fk

)
. (12)

Indeed, conditioning on the processing batch size to be equal to n, for the typical cycle in stationarity,
Fk, k = 0, 1, . . . , n − 1, is the probability that the server leaves behind an empty queue and the cart
contains k customers, i.e. a partial processing batch, while Fn = Qn(0) is the probability that the
server leaves behind an empty queue and the cart leaves with a complete batch of n customers. Thus
E[zΨ | Θ = n] = Qn(z)+

∑n−1
k=0 Fk and (12) follows by taking expectation over Θ. Taking into account

(10) we obtain

Π(z) =
n∑
n=1

θn

(
α(z)nQ0(z) +

n−1∑
k=0

Fk

(
1− α(z)n−k

))
. (13)

On the other hand the number of customers in the system at the beginning of the typical service phase
is equal to the number left behind at the end of the previous service phase plus the number of customers
who arrived during the intervening vacation phase. The p.g.f. of the number of these arrivals is D(z) and
thus we have, under stationarity,

Π(z)D(z) = Q0(z). (14)

From the above, in conjunction with (13) we obtain

Q0(z) =

n∑
n=1

θn

(
α(z)nQ0(z) +

n−1∑
k=0

Fk

(
1− α(z)n−k

))
D(z). (15)

Before proceeding we point out that in the sequel we will occasionally be dropping the dependence
of some generating functions on z for notational convenience. Thus we will be writing y instead of y(z),
D instead of D(z), and so forth. From (10), (15), and (8), we conclude that

Q0

(
yn −D

n∑
n=1

θny
N−n

)
= D

n∑
n=1

θn

n−1∑
k=0

Fk

(
yn − yN−n+k

)
(16)

or equivalently

Π(z) =

∑N−1
k=0 Fk

∑n
n=k+1 θn

(
yn − yN−n+k

)
yn −D

∑n
n=1 θny

N−n . (17)
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The above can also be written as

Π(z) =

∑N−1
k=0 Fk

∑n
n=k+1 θn

(
zn − zN−n+kUn−k

)
zn −D

∑n
n=1 θnz

N−nUn
. (18)

The N constants, F0, F1, . . . , FN−1, can be obtained from Rouché’s theorem as follows. It is shown in
the Appendix (cf. [11]) that the equation

zn −D(z)
n∑
n=1

θnz
N−nU(z)n = 0 (19)

has N complex roots, z0, z1, . . . , zN−1, where z0 = 1 and the remaining N − 1 roots are within the unit
circle, i.e. |zi| < 1 for i = 1, 2, . . . , N − 1, provided that the stability condition holds. We thus know
that equation (19) has precisely N zeros that satisfy |z| ≤ 1. One of them is z = 1 which obviously
satisfies zn − D(z)

∑n
n=1 θnz

N−nU(z)n = 0 and is a single root. Thus there remain N − 1 roots of
the denominator in the unit disk which we shall call zi, i = 1, 2, . . . , N − 1. Since Q0(z) does not have
any singularities within the unit disk these must also be zeros of the numerator of (18). Hence the N
unknown constants, F0, F1, . . . , FN−1 must satisfy the N − 1 equations

N−1∑
k=0

Fk

n∑
n=k+1

θn

(
zni − zN−n+k

i U(zi)
n−k
)

= 0, i = 1, 2, . . . , N − 1.

Let
yi :=

zi
U(zi)

, i = 1, 2, . . . , N − 1. (20)

Considering Q0 as a function of y, the yi’s must also be zeros of the numerator of (17), or equivalently,
taking into account (20), together with the fact that the zi’s satisfy (19), and U(zi) 6= 0 we have

N−1∑
k=0

Fk

n∑
n=k+1

θn

(
yni − yN−n+k

i

)
= 0, i = 1, 2, . . . , N − 1.

The polynomial in y

P (y) :=

N−1∑
k=0

Fk

n∑
n=k+1

θn

(
yn − yN−n+k

)
(21)

has degree N and its roots are 1, y1, y2, . . . , yN−1. Thus

P (y) = C(y − 1)
N−1∏
i=1

(y − yi) . (22)

The constant C can be determined by noting that

C

N−1∏
i=1

(1− yi) = lim
y→1

∑N−1
k=0 Fk

∑n
n=k+1 θn

(
yn − yN−n+k

)
y − 1

(23)

=
N−1∑
k=0

Fk

n∑
n=k+1

θn (n− k) , (24)
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where in the last equation we have used de l’ Hospital’s rule. The quantity on the right hand side of (23)
is obtained by determining the value of Q0(z) when z = 1 as follows. Letting z → 1 (or equivalently
y → 1) and applying de l’Hospital’s rule in (18), we obtain

N−1∑
k=0

Fk

n∑
n=k+1

θn (n− k) = EΘ− λEG

1− ρ
. (25)

From (22), (24), and (25) we obtain the value of the constant in (22)

C =
EΘ− λEG

1−λEσ∏N−1
i=1 (1− yi)

. (26)

We have thus established the following

Theorem 1. For a system under the partial batch policy, assuming that the batch size distribution has
bounded support, the p.g.f. of the number of customers left behind at the end of a typical service phase
in steady state is given by

Π(z) =
EΘ− λEG

1−λEσ
yn −D

∑n
n=1 θny

N−n (y − 1)
N−1∏
i=1

y − yi
1− yi

(27)

where D is given by (7), y by (8) and the yi’s by (20).

As we saw above, the explicit determination of the N constants, F0, . . . , FN−1, is not necessary
for the determination of Π(z). Nonetheless, these constants are useful in order to obtain, among other
things, statistics for the cart contents when it is delivered. Their computation is given in the appendix.
The detailed analysis of the statistics of the cart’s contents is undertaken in section 9. Here we confine
ourselves to the observation that the probability that a processing batch is delivered incomplete is equal
to pe :=

∑n
n=1 θn

∑n−1
k=0 Fk. Changing the order of summation and using the above equations we have

pe =
N−1∑
k=0

Fk

n∑
n=k+1

θn =
EΘ− λEG

1−λEσ∏N−1
i=1 (yi − 1)

N−1∑
i=1

yi.

The expected number of customers in the cart when it is delivered can be computed by first conditioning
on the size of the processing batch:

E [L | Θ = n] =
n−1∑
k=0

kFk + n

(
1−

n−1∑
k=0

Fk

)
= n−

n−1∑
k=0

Fk(n− k).

Taking expectation over the size of the processing batch, we then have

EL = EΘ−
n∑
n=1

θn

n−1∑
k=0

Fk(n− k) = EΘ−
N−1∑
k=0

Fk

n∑
n=k+1

θn(n− k)

=
λEG

1− ρ
(28)

where in the last equation we have made use of (25). Note that the expected contents of the cart i.e.
the expected “actual processing batch size” is of course less than EΘ (because of the occurrence of
incomplete processing batches when the queue empties) and does not depend on the processing batch
size distribution {θn}, provided that the stability condition (1) holds.

8



4 Processing batch size with unbounded support

The analysis of the previous section depended on the assumption that the processing batch size had a
distribution with finite support. As it will readily become clear, no conceptual difficulties are involved
in dropping this assumption. However, from a computational point of view, new difficulties arise as the
argument based on Rouché’s theorem can no longer be used.

Suppose that the cart capacity is, from transfer to transfer, a random variable with distribution P (Θ =
n) = θn, n = 1, 2, . . . and corresponding generating function Θ(z) :=

∑∞
n=1 θnz

n. The following
theorem provides the counterpart of equation (18) of the previous section.

Proposition 2. The probability generating function of the number of customers left behind when the cart
leaves the queue, denoted by Π(z) = E

[
zΨm

]
, is given by

Π(z) =

∑∞
k=0 Fk

∑∞
n=1 θn+k (1− α(z)n)

1−D(z)Θ(α(z))
. (29)

Proof: The analysis of the previous section applies again, with the same notation as before. Once more
the epochs when the server returns after delivering the cart back to queue for the mth time is denoted
by Tm while the epoch right after Tm when the server takes the cart (together with any customers that
it contains) to be delivered and starts a vacation is denoted by Sm. Here a typical cycle starts, say at
Tm, the server serves Lm customers (where Lm ≤ Θm and Θm is the size of the cart during the mth
cycle) and then departs to deliver the cart at time Sm. Let, as in the previous section, Q0(z) = E

[
zΦm

]
,

Qn(z) = E
[
zXdn ;L ≥ n

]
, and Fn = Qn(0). Then Π(z) = E

[
zΨm

]
, is given by (cf. equation 27)

Π(z) =
∞∑
n=1

(
Qn(z) +

n−1∑
k=0

Fk

)
θn. (30)

The basic recursion (9) still holds and thus we have (10) for n = 1, 2, . . . from which we obtain

∞∑
n=1

(
α(z)nQ0(z) +

n−1∑
k=0

Fk

(
1− α(z)n−k

))
θn = Π(z).

Also, (14) still holds as before and using Fubini’s theorem to change the order of summation we can
rewrite the above expression as

Π(z)D(z)Θ(α(z)) +
∞∑
k=0

Fk

∞∑
n=1

θn+k (1− α(z)n) = Π(z)

whence we obtain (29).
Note however that the numerator of (29) depends on a whole sequence of unknown constants Fk,

k = 0, 1, 2, . . .. Clearly the techniques of the previous section cannot be applied here. In this general
case a solution can be obtained, at least in principle, using the Wiener-Hopf decomposition technique as
described in the sequel.

4.1 Wiener-Hopf decomposition

From equation (8) we have
z = yU(z). (31)
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Using Lagrange’s series expansion (e.g. see Copson [10]) if D is an analytic function in a domain
containing the origin then D(z(y)) is an analytic function of y with series expansion around the origin
given by

D(z(y)) =
∞∑
n=0

ynκn (32)

where

κ0 = D(0) = G∗(λ) and κn =
1

n!

dn−1

dtn−1

(
D′(t)U(t)n

)∣∣∣∣
t=0

, n = 1, 2, . . . . (33)

In particular, when D(z) = z the above expression gives

z(y) =

∞∑
n=1

yn

n!

dn−1

dtn−1
U(t)n

∣∣∣∣
t=0

.

Theorem 3. Let us denote by κ∗n the n–fold convolution of the sequence {κm;m = 0, 1, 2, . . .} with
itself, i.e. κ∗1m = κm and κ∗nm =

∑m
l=0 κ

∗(n−1)
m−l κl, m = 0, 1, 2, . . ., and similarly let θ∗n denote the n–fold

convolution of {θm} with itself. Then the p.g.f. of the number of customers left behind by a typical cart
departure is given by

Π(z) = exp

( ∞∑
r=1

(
zrU−r(z)− 1

) ∞∑
n=1

1

n

∞∑
l=1

κ∗nl+rθ
∗n
l

)
. (34)

Proof: Using the change of variables from z to y and setting Π̃(y) := Π(z(y)) equation (29) becomes

Π̃(y) =

∑∞
k=0 Fk

∑∞
n=1 θn+k (1− y−n)

1−D(z(y))Θ(y−1)
. (35)

Note from (33) that κn ≥ 0 (D and U being p.g.f.’s they have non-negative derivatives of all orders)
and also from (31) that when y = 1 then z = 1. Thus, D(z(1)) =

∑∞
n=0 κn = 1 and hence κn,

n = 0, 1, 2, . . ., is a probability distribution on the non–negative integers with corresponding p.g.f. given
by

K(y) :=
∞∑
n=0

ynκn.

We can use the standard Wiener-Hopf decomposition argument as follows. We can write

1

1−K(y)Θ(y−1)
= exp

( ∞∑
n=1

1

n
Kn(y)Θn(y−1)

)

= exp

( ∞∑
n=1

1

n

∞∑
m=0

κ∗nm y
m
∞∑
l=0

θ∗nl y
−l

)

= exp

 ∞∑
r=−∞

yr
∞∑
n=1

1

n

∑
{l:m−l=r}

κ∗nm θ
∗n
l


= exp

( ∞∑
r=1

yr
∞∑
n=1

1

n

∞∑
l=1

κ∗nl+rθ
∗n
l

)
exp

( ∞∑
r=0

y−r
∞∑
n=1

1

n

∞∑
m=0

κ∗nm θ
∗n
m+r

)
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and thus
1

1−K(y)Θ(y−1)
=
J−(y−1)

J+(y)
(36)

where,

J+(ζ) := exp

(
−
∞∑
r=1

ζr
∞∑
n=1

1

n

∞∑
l=1

κ∗nl+rθ
∗n
l

)
, J−(ζ) := exp

( ∞∑
r=0

ζr
∞∑
n=1

1

n

∞∑
m=0

κ∗nm θ
∗n
m+r

)
,

are two functions that are analytic at least within the unit disk, |ζ| ≤ 1. Then from (35) and (36) we have

Π̃(y)J+(y) = J−(y−1)
∞∑
k=0

Fk

∞∑
n=1

θn+k

(
1− y−n

)
. (37)

Since the left hand side is obviously bounded for |y| ≤ 1 and the right hand side is bounded for
∣∣y−1

∣∣ ≤ 1
or |y| ≥ 1 it follows from Liouville’s theorem that both sides of (37) are equal to a constant, say Λ. Thus

Π̃(y) =
Λ

J+(y)

and

Π(z) =
Λ

J+(z/U(z))
= Λ exp

( ∞∑
r=1

zrU−r(z)

∞∑
n=1

1

n

∞∑
l=1

κ∗nl+rθ
∗n
l

)
.

Setting z = 1 in the above expression we readily determine the value of Λ from the requirement that
Π(1) = 1. Thus we obtain (34).

The above analysis parallels the analysis of M/G/1 queues with bulk service when the batch size has
unbounded support. We refer the reader to Prabhu [28, p. 164]. (See also Kemperman [24] and Keilson
[19], [20].)

While the above expression gives the p.g.f. in explicit form, in practice even computation of the first
moment would be very arduous. The situation however becomes much simpler if we assume that the
processing batch size is geometric or a combination of geometric factors. These cases will be examined
in the following subsections.

Finally we compute the expected “actual processing batch size” i.e. the expected contents of the
cart each time it is delivered. The argument is the same as in the finite support case and thus EL =
EΘ −

∑∞
k=0 Fk

∑∞
n=k+1 θn(n − k). This expectation is can be explicitly computed from (29) since

Π(1) = 1 by an application of de l’Hospital’s rule. Again, EL = λEG
1−ρ regardless of the processing batch

distribution, provided that the stability condition holds.

4.2 Geometric processing batch size

As we saw in the previous subsection, the determination of Π(z) for a general processing batch distribu-
tion is computationally difficult. However, when the processing batch size is geometrically distributed,
one can obtain an explicit, computationally tractable solution. One can start in this case with the fac-
torization problem (36) which has a simple solution. Alternatively one could determine the unknown
constants Fk, k = 0, 1, 2, . . . in (29) directly as follows. Suppose that

θn = (1− γ)γn−1, n = 1, 2, . . . (38)
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with 0 < γ < 1 and thus Θ(z) = (1−γ)z
1−γz . Define also the generating function of the sequence {Fk} as

F (z) :=

∞∑
k=0

Fkz
k. (39)

Theorem 4. When the processing batch distribution is geometric the p.g.f. of the number of customers
left behind by a typical cart departure is given by

Π(z) =
(z − U(z))F (γ)

z − γU(z)− (1− γ)D(z)U(z)
(40)

where
F (γ) = 1− (1− γ)

λEG

1− ρ
. (41)

Proof: From (29) we obtain

Π(z) =
(1− γ)

∑∞
k=0 Fk

∑∞
n=1 γ

n+k−1 (1− α(z)n)

1−D(z) (1−γ)α(z)
1−γα(z)

which, using (39) simplifies into (40). The unknown quantity F (γ) in (40) is determined using de
l’Hospital’s rule and the fact that Π(1) = 1.

Once Π(z) has been determined, it is straightforward to evaluate the steady state distribution for the
number of customers in the system as we will see in the sequel. We point out that the above model
corresponds to the situation where, after each service completion the server “flips a coin” and with
probability γ he decides to serve another customer, if one is available or take a vacation if a customer
is not available. With probability 1 − γ the server takes a vacation regardless of whether there are
customers waiting in line or not. At the end of each vacation the server returns to the queue and, if
empty, he immediately takes another vacation whereas if not then the “coin-flipping procedure” begins
again. This is the Bernoulli vacation model (see Keilson and Servi [21] and Doshi [12]).

4.3 Linear combination of geometric factors

More generally, we may assume that the processing batch size is a linear combination of geometric
factors, i.e.

θn =

S∑
s=1

cs(1− γs)γn−1
s , n = 1, 2, . . . , (42)

where 0 < γs < 1, the γs’s are assumed to be different from each other, and the cs’s are such that cs 6= 0,∑S
s=1 cs = 1, and θn ≥ 0, ∀n ∈ N. Then

Θ(z) =

S∑
s=1

cs
(1− γs)z
1− γsz

and with the definition (39) we have the following

Theorem 5. The p.g.f. of the number of customers left behind is given by

Π(z) =
(z − U(z))

∑S
s=1 F (γs)cs

∏
r 6=s(z − γrU(z))

S∏
s=1

(z − γsU(z)) − D(z)U(z)
∑S

s=1 cs(1− γs)
∏
r 6=s(z − γrU(z))

. (43)
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The denominator of the above expression has precisely S roots inside the unit disk, |z| < 1, say
z1, z2, . . . , zs, and the S unknown constants F (γs), s = 1, 2, . . . , S, are obtained by the solution to
the following system

S∑
s=1

F (γs)
cs

zt − γsU(zt)
= 0, t = 1, 2, . . . , S − 1, (44)

S∑
s=1

F (γs)
cs

1− γs
= EΘ− λEG

1− ρ
. (45)

Proof: Substituting (42) into (29) we obtain

Π(z) =

∑∞
k=0 Fk

∑∞
n=1

∑S
s=1 cs(1− γs)γn+k−1

s (1− α(z)n)

1−D(z)
∑S

s=1 cs
(1−γs)α(z)
1−γsα(z)

=
(z − U(z))

∑S
s=1 F (γs)

cs
z−γsU(z)

1−D(z)
∑S

s=1 cs
(1−γs)U(z)
z−γsU(z)

whence (43) follows after some simplifications. The S unknown constants, F (γs), s = 1, 2, . . . , S, can
be determined from a standard argument using Rouché’s theorem as follows. If we set

f(z) :=
S∏
s=1

(z − γsU(z))

and

g(z) := − D(z)U(z)

S∑
s=1

cs(1− γs)
∏
r 6=s

(z − γrU(z)) = −D(z)U(z)Θ(z)f(z)

then, it is easy to see that the function f has precisely S roots within the disc |z| < 1. Indeed, when
γs ∈ (0, 1) the equation z = γsU(z) has a unique, real solution rs ∈ (γs, 1). On the circle |z| = 1 − ε
(where ε is chosen so small that the contour contains r1, . . . , rs) |g(z)| ≤ |D(z)| |U(z)| |Θ(z)| |f(z)| ≤
(1 − ε)3 |f(z)| < |f(z)| , thus Rouché’s theorem applies. Hence the denominator of (43) has precisely
S roots within the circle |z| = 1 − ε, say z1, z2, . . . , zs. These must also be roots of the numerator of
(43). The equation z = U(z) has precisely two roots, 1, and a real root greater than 1, when U ′(1) =
ρ < 1. Thus the factor (z − U(z)) in the numerator of (43) cannot vanish inside the circle |z| ≤ 1 − ε.
Furthermore,

S∏
s=1

(zt − γsU(zt)) 6= 0 for t = 1, 2, . . . , S. (46)

Indeed, if
∏S
s=1(zt1 − γsU(zt1)) = 0 for some t1, then zt1 − γs1U(zt1) = 0 for some s1. Since zt1 is a

root of the denominator of (43),

D(zt1)U(zt1)

S∑
s=1

cs(1− γs)
∏
r 6=s

(zt1 − γrU(zt1)) = 0

and hence, cs1(1 − γs1)
∏
r 6=s1(zt1 − γrU(zt1)) = 0. This implies in turn that zt1 − γs2U(zt1) = 0 for

some s2 6= s1. But then zt1 − γs1U(zt1) = 0 = zt1 − γs2U(zt1) which implies γs1 = γs2 which is
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impossible. Thus, dividing the numerator with the left hand side of (46) we have

S∑
s=1

F (γs)
cs

zt − γsU(zt)
= 0, t = 1, 2, . . . , S.

One of the above equations is in fact redundant and has to be replaced by the condition obtained by the
requirement that Π(1) = 1 which, applying de l’Hospital’s rule, gives

S∑
s=1

F (γs)
cs

1− γs
= EΘ− λEG

1− ρ
.

From (44) and (45) we obtain the values of the S unknown constants F (γs), s = 1, 2, . . . , S.

4.4 Vacation length depending on whether the processing batch is complete

Here we examine a variation of the above model according to which the distribution of the vacation
length depends on whether the server completed the processing batch that preceded it or whether it was
incomplete. In the context of the server failure model we suppose that, if Lm = Θm then a failure has
occurred and therefore the subsequent vacation period has distribution G (corresponding to full repair)
whereas if Lm < Θm this means that the subsequent vacation period will have distribution Ginc. One
easily sees that (30) still holds while now

Q0(z) =

∞∑
n=1

θn

(
Dinc(z)

n−1∑
k=1

Fk +D(z)Qn(z)

)
. (47)

which we can also write as

Q0(z) = (Dinc(z)−D(z))
∞∑
n=1

θn

n−1∑
k=1

Fk +D(z)Π(z)

Thus we have
∞∑
n=1

(
α(z)nQ0(z) +

n−1∑
k=0

Fk

(
1− α(z)n−k

))
θn = Π(z).

(
(Dinc(z)−D(z))

∞∑
n=1

θn

n−1∑
k=1

Fk +D(z)Π(z)

)
Θ(α(z)) +

∞∑
n=1

n−1∑
k=0

Fk

(
1− α(z)n−k

)
θn = Π(z)

or

Π(z) =
Θ(α(z)) (Dinc(z)−D(z))

∑∞
n=1 θn

∑n−1
k=1 Fk +

∑∞
n=1

∑n−1
k=0 Fk

(
1− α(z)n−k

)
θn

1−Θ(α(z))D(z)
.

In the case of geometric processing batches (i.e. constant probability of failure) where θn is given by
(38) we obtain

Π(z) =
((1− γ)U(z)(Dinc(z)−D(z)) + z − U(z))F (γ)

z − γU(z)− (1− γ)D(z)U(z)
.

The unknown F (γ) is again determined by de l’Hospital’s rule and is seen to be equal to

F (γ) =
1− ρ− (1− γ)λEG

1− ρ+ (1− γ)λ (EGinc − EG)
.

14



Of course, in a reliability context, preventive maintenance would be useless in this case and hence
Dinc(z) = 1 and EGinc = 0. The case of combination of geometric batches as well as the general
approach via the Wiener-Hopf decomposition can be treated by adopting the analysis of sections 4.3 and
4.1 mutatis mutandis.

5 Time-stationary distribution of the number of customers in the queue
and sojourn times

As we saw in the previous section (Tm,Φm), m ∈ Z, is a Markov–renewal process and that the pro-
cess {Xt; t ∈ R} is semi–regenerative with respect to this Markov–renewal process. Furthermore, it
is possible to see that, under the stability condition (1), the Markov chain {Φm;m ∈ Z} is positive
recurrent.

Consider the basic epochs {Tm} when the server leaves the queue in order to deliver the cart and a
vacation period begins. Under the stability condition, it is clear that there exists a steady–state regime
since this is a semi–regenerative system. (Alternatively, we could identify ordinary regeneration cycles
corresponding to the epochs when the server leaves the queue empty to deliver the cart.) It is also pos-
sible to show that these regenerative cycles have finite mean and thus there exists a steady state random
variable, say X∞, such that Xt

d→ X∞ as t → ∞ (where d→ denotes convergence in distribution). We
shall establish the following

Theorem 6. The stationary number of customers in the system when the server uses a partial batch
policy has p.g.f. given by

EzX∞ = Π(z)G∗i (λ(1− z))(1− ρ)B∗(λ(1− z))
1− ρB∗i (λ(1− z))

, (48)

where Π(z) is the p.g.f. of the number of customers present in the system at the beginning of a typical va-
cation. Depending on whether the processing batch size distribution has bounded or unbounded support,
Π(z) is given by (27) or by (34).

Proof: We will establish the theorem assuming that the processing batch size distribution does not
necessarily have bounded support. We begin with a version of the process which satisfies the following
conditions: (i) The time origin coincides with the beginning of a “typical” cycle, i.e. · · · < T−2 < T−1 <
T0 = 0 < T1 < T2 < · · · and (ii) Φ0 = XT0 = X0 is distributed according to the (jump) stationary
distribution of the Markov Chain {Φm;m ∈ Z}. If we denote by λ∗ the rate of the process {Tm} we
then have the following formula connecting the distribution of X∞ to that of {Xt; t ∈ [T0, T1)}. For any
bounded function f : N→ R,

Ef(X∞) = λ∗E

∫ T1

T0

f(Xs)ds.

In particular, if we take f(x) = zx (where 0 ≤ z ≤ 1) we have the following expression for the p.g.f. of
the time stationary distribution of the number of customers in the queue:

EzX∞ = λ∗E

∫ T1

T0

zXsds. (49)

The formulae above can be thought of as consequence of the semi-regenerative nature of the system (see
[7]). Alternatively, if one is willing to use the language of stationary processes these are special cases of
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the Palm inversion formula (see Baccelli and Brémaud [3]). The integral on the right hand side of (49)
can be split into two parts,

I1 :=

∫ S0

T0

zXsds; and I2 :=

∫ T1

S0

zXsds.

The first term is analyzed by conditioning on the size of the processing batch. On the event {Θ = n} it
splits into a sum of n terms as follows

I1 =

n−1∑
i=0

1(L > i,Θ = n)

∫ di+1

di

zXsds.

Since Xs = Xdi + A(di, s] where A(di, s] is the number of Poisson arrivals in the interval (di, s], we
can write

EI1 =

∞∑
n=1

n−1∑
i=0

E

[
1(L > i,Θ = n)

∫ di+1

di

zXdi
+A(di,s]ds

]
.

Note that, because of the independent increments property of the Poisson arrival process,

E

[
1(L > i,Θ = n)

∫ di+1

di

zXdi
+A(di,s]ds

]
= E

[
1(L > i,Θ = n)zXdi

∫ di+1

di

e−λ(s−di)(1−z)ds

]
= E

[
1(L > i,Θ = n)zXdi

1− e−λ(di+1−di)(1−z)

λ(1− z)

]

=
1−B∗(λ(1− z))

λ(1− z)
E
[
1(L > i,Θ = n)zXdi

]
where, in the above derivation we have used the fact that E[e−s(di+1−di) | L > i,Θ = n] = B∗(s) and
di+1 − di is independent of Xdi on {L > i}. Also, taking into account (2), (3), (4), (5), and the fact that
i < n we have that

E
[
1(L > i,Θ = n)zXdi

]
= E

[
1(L ≥ i,Θ = n)zXdi

]
− E

[
1(L = i,Θ = n)zXdi

]
= E

[
1(L ≥ i)zXdi

]
P (Θ = n)− FiP (Θ = n)

= (Qi(z)− Fi) θn.

Hence, taking into account (6) and (8) we have

EI1 =
1− zy−1

λ(1− z)

∞∑
n=1

θn

n−1∑
i=0

(Qi(z)− Fi) . (50)

Using (9) (which as we saw holds regardless of whether the processing batch size has bounded support
or not) we obtain

n−1∑
i=0

(Qi(z)− Fi) =

n∑
i=1

Qi(z)y.

Elementary manipulations yield

n∑
i=1

Qi(z) = Qn(z)
yn − 1

y − 1
+

n−1∑
j=1

Fj
yj − 1

y − 1
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and thus (50) can be written as

EI1 =
y − z

λ(1− z)(y − 1)

∞∑
n=1

θn

Qn(z) (yn − 1) +
n−1∑
j=1

Fj
(
yj − 1

) .

Using (16) in the above expression, we can rewrite EI1 after some algebraic manipulations as

EI1 = (D − 1)
y − z

λ(1− z)(y − 1)

∞∑
n=1

θn

Qn(z) +

n−1∑
j=0

Fj

 =
1−D
λ(1− z)

y − z
1− y

Π(z)

where, in the second equation we have used (30).
On the other hand, the expectation of I2, is given by

EI2 = E[zΨ

∫ G

0
zA(0,s]ds] = Π(z)

1−D(z)

λ(1− z)
. (51)

Thus adding the two equations above term by term we have

EI1 + EI2 = Π(z)
1−D(z)

λ(1− z)

(
1 +

y − z
1− y

)
.

From the above, after some elementary manipulations we obtain

EzX∞ = λ∗(EI1 + EI2) = λ∗Π(z)G∗i (λ(1− z))EG B∗(λ(1− z))
1− ρB∗i (λ(1− z))

,

where the rate λ∗ can be computed from the normalization requirement by setting z = 1 in the above
relationship. Indeed,

λ∗ =
1− ρ
EG

(52)

and this completes the proof of the theorem.
Remark: The representation of the p.g.f. of the number of customers in stationarity can be interpreted
as a decomposition into three parts of the type one should expect in view of the well known properties
of M/G/1 queues with vacations (see [17] and also [12], [16], and [23]). The term (1−ρ)B∗(λ(1−z))

1−ρB∗i (λ(1−z)) is
of course the p.g.f. the number of customers in a steady state M/G/1 queue without vacations, the term
G∗i (λ(1 − z)) is the p.g.f. of the number of Poisson arrivals during the forward recurrence time of a
typical vacation, and finally Π(z) is the p.g.f. of the number of customers present in the system at the
beginning of a typical vacation. Of course, this decomposition holds because of the partial batch policy
used.

Corollary 7. In particular, when the processing batch size is geometric, i.e. θn = (1 − γ)γn−1, n =
1, 2, 3, . . ., the p.g.f. of the number of customers in the system in steady state is given by

EzX∞ =
1

λEG

(1− ρ)U(z)F (γ)(1−D(z))

z − γU(z)− (1− γ)D(z)U(z)
(53)

where F (γ) is given by (41).

Proof: Use (40) for Π(z) in theorem 2.
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5.1 Sojourn time distribution

The sojourn time is obtained easily from the above formula via the distributional version of Little’s law
(see [4], [22], [23], and [33].) Indeed, setting s = λ(1− z) in (48) we obtain

T (s) = Π(1− s/λ)G∗i (s)
(1− ρ)B∗(s)

1− ρB∗i (s)
, (54)

where, Π(1− s/λ) can be computed from (27). After the necessary simplifications, taking into account
that α(1− s/λ) = B∗(s) λ

λ+s , we have

Π(1− s/λ) =

∑N−1
k=0 Fk

∑N−1
n=k+1 θn

(
1−B∗(s)n−k

(
λ
λ−s

)n−k)
1−G∗(s)

∑n
n=1 θnB

∗(s)n
(

λ
λ−s

)n .

It should be pointed out that (54) gives the total time from the moment a customer enters the queue
to the moment he enters the cart. The additional delay due to the time the customer has to wait until the
cart is delivered is not included. In fact it is not possible to do this using the distributional version of
Little’s law, since the total sojourn time of a customer in this case depends on future arrivals as well.

In the case of the geometric batch transfer size, setting z = 1 − s/λ in (53) and carrying out the
necessary simplifications we obtain

T (s) =
(1− ρ)G∗i (s)B

∗(s)F (γ)

1− ρB∗i (s)− (1− γ)ρGB∗(s)G∗i (s)
.

6 The “complete batch” policy

So far we have carried out the analysis assuming a partial batch policy. Alternative strategies can also be
analyzed, as in [11]. In this section we sketch the analysis for the complete batch policy. According to
this policy, each time the server returns with the cart to the system, a random variable representing the
processing batch size is realized. The server keeps serving customers until this processing batch size is
completed (waiting for new arrivals if the queue empties) and as soon as the batch is completed he departs
to deliver the cart thus initiating a vacation period. Upon returning to the system, a new processing batch
is set and the whole process repeats itself. The starting point in our analysis is to realize that, with the
given policy, each service phase consists of a complete batch so that Lm = Θm. If we define

Rk(z) := E
[
zXdk |Θ ≥ k

]
= E

[
zXdk |Θ = k

]
,

the system dynamics in this case are described by

Rk(z) =

(
Rk−1(z)−Hk−1

z
+Hk−1

)
U(z), (55)

where Hk := Rk(0). This in turn with the notation of (8), upon iteration, gives

αnR0(z) = Rn(z) + (1− z)
(
H0α

n +H1α
n−1 + · · ·+Hn−1α

)
. (56)

Since we still have Π(z) =
∑∞

n=1 θnRn(z) and

R0(z) = Π(z)D(z), (57)
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from the above we obtain

Π(z) = (z − 1)

∑∞
n=1 θn

∑n−1
j=0 Hjα

n−j

1−D(z)Θ(α)
. (58)

When the batch size distribution has finite support, say the set {1, 2, . . . , N}, then the denominator is the
same as in the corresponding expression for the partial batch policy in section 3.2. Thus the N unknown
constants, H0, H1, . . . ,HN−1, on which Π(z) depends in this case are obtained by Rouché’s theorem,
as before.

When the batch size distribution has infinite support, in general one has to resort to Wiener-Hopf
factorization techniques in order to determine Π(z). Of course one can analyze easily the case where
the batch size distribution is a combination of geometric factors as in section 4.3. Here we will restrict
ourselves to the analysis of the case of geometric batches, i.e. θn = (1 − γ)γn, n = 1, 2, . . .. Then,
arguing as in section 4.2 we see that

Π(z) =
(z − 1)U(z)(1− γ)H(γ)

z − γU(z)− (1− γ)D(z)U(z)

where
H(γ) =

1− ρ
1− γ

− λEG

as can be seen from an argument using the fact that Π(1) = 1 and de l’Hospital’s rule.
Finally we determine the stationary distribution of the number of customers in the system (excluding

the cart) under the complete batch policy. We indicate the differences in this case, illustrating the case of
geometric processing batches. With the notation of the section 5 we have

EI1 =
∞∑
n=1

θn

n−1∑
i=0

E

[∫ di+1

di

zXsds
∣∣Θ = n

]

=
∞∑
n=1

θn

n−1∑
i=0

(
λ−1

(
1 + z 1−U(z)

1−z

)
P (Xdi = 0|Θ = n) + E

[
zXdi1(Xdi > 0)

∣∣Θ = n
]
λ−1 1−U(z)

1−z

)
=

∞∑
n=1

θn

n−1∑
i=0

(
λ−1

(
1 + z

1− U(z)

1− z
− 1− U(z)

1− z

)
Hi +Ri(z)λ

−1 1− U(z)

1− z

)

=

∞∑
n=1

θn

n−1∑
i=0

(
λ−1U(z)Hi +Ri(z)λ

−1 1− U(z)

1− z

)
Recall that, by definition Ri(z) := E[zXdi |Θ = i] and Hi = P (Xdi = 0 | Θ = i). Rewrite (55) as
yRi = Ri−1 + (z − 1)Hi−1 and obtain

n−1∑
i=0

Ri(z) =
y

1− y
(Rn(z)−R0(z))− z − 1

1− y

n−1∑
i=0

Hi.

Thus we have

EI1 = λ−1

(
U(z) +

1− U(z)

1− y

) ∞∑
n=1

θn

n−1∑
i=0

Hi + λ−1 1− U(z)

1− z

∞∑
n=1

θn
y

1− y
(Rn(z)−R0(z))

= λ−1U
1− z
U − z

C ′ + λ−1 1− U(z)

1− z
z

U − z

∞∑
n=1

θn (Rn(z)−R0(z))

= λ−1U
1− z
U − z

C ′ + λ−1 1− U
1− z

z

U − z
(1−D) Π(z)
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where we have set C ′ :=
∑∞

n=1 θn
∑n−1

i=0 Hi and taken into account that Π(z) =
∑∞

n=1 θnRn(z) and
R0(z) = Π(z)D(z). On the other hand (51) still holds and thus

λ∗(EI1 + EI2) =
λ∗

λ
U

1− z
U − z

C ′ +
λ∗

λ
Π(z)

1−D
U − z

. (59)

The value of C ′ can be determined from (58) using the observation that Π(1) = 1 and de l’ Hospital’s
rule:

C ′ = (1− ρ)EΘ− λEG.
Since, as in section 5 EzX∞ = λ∗(EI1 +EI2), we can determine λ∗ by setting z = 1 in (59) and using
once more de l’ Hospital’s rule. Thus we obtain

λ

λ∗
= EΘ. (60)

Putting things together we obtain

EzX∞ = (1− ρ)U
1− z
U − z

(
1− λEG

1− ρ

)
+

1

EΘ
Π(z)

1−D
U − z

= (1− ρ)U
1− z
U − z

(
1− λEG

EΘ(1− ρ)

)
+

λEG

EΘ(1− ρ)
Π(z)

1−D
λEG(1− z)

(1− ρ)
1− z
U − z

or
EzX∞ = (1− p)(1− ρ)U

1− z
U − z

+ pΠ(z)G∗i (λ(1− z))(1− ρ)
1− z
U − z

(61)

where p = λEG
EΘ(1−ρ) , Π(z) as given in (58) is the p.g.f. of the number of customers left behind at the

end of the typical service phase, G∗i (λ(1 − z)) the p.g.f. of the number of Poisson arrivals during the
residual service time of a vacation period and finally (1− ρ)U 1−z

U−z is the p.g.f. of the stationary number
of customers in the corresponding M/G/1 system without vacations (in that case the size of the processing
batch becomes irrelevant). Note that the second term on the right hand side of (61) includes the term
(1 − ρ) 1−z

U−z which is the generating function of the number of Poisson arrivals during the waiting time
in the corresponding M/G/1 system without vacations.

7 Bulk arrivals

There are no significant changes in the above analysis if we assume that customers arrive not singly but
in batches. Arrival epochs are still Poisson (λ) and the arriving batches are an i.i.d. sequence of random
variables {βn}, independent of the Poisson arrival process, with common distribution P (β = k) = bk,
k = 1, 2, 3, . . .. The corresponding p.g.f. will be denoted by b(z) :=

∑∞
k=1 bkz

k and the mean batch size
by mb =

∑∞
k=1 kbk. In order not to obscure the main features of the problem we will introduce here the

simplifying assumption that the processing batch size sequence {Θm} is deterministic and equal to the
cart capacity N . In this case, the stability condition becomes N > λEG

1−λEβEσ .
We can analyze this system in precisely the same way as the single customer arrival case. Indeed,

equations (10) and (15) hold unchanged, if we substitute for U(z) and D(z) the p.g.f.’s

Ub(z) := B∗(λ(1− b(z))), Db(z) := G∗(λ(1− b(z))).

Then Πb(z), the p.g.f. of the number of customers left behind in the queue at a typical vacation start is
given by the relationship

Πb(z) =

∑N−1
k=0 Fb,kz

k
(
zN−k − Ub(z)N−k

)
zn −Db(z)Ub(z)n

. (62)
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where, as before, the N constants Fb,k, k = 0, 1, 2, . . . , N − 1 are obtained by Rouché’s theorem.
An analysis entirely analogous to that of section 5 gives the following expression for the p.g.f. of the

stationary number of customers in the system, X∞.

EzX∞ = Πb(z)G
∗
i (λ(1− b(z)))(1− ρmb)B

∗(λ(1− z))
1− ρB∗i (λ(1− z))

,

which assumes again the form of a three way decomposition. The term (1−ρmb)B∗(λ(1−z))
1−ρB∗i (λ(1−z)) is the p.g.f.

of the time-stationary number of customers in an M/G/1 queue with bulk arrivals and without vacations,
the term G∗i (λ(1− b(z))) is the p.g.f. of the total number of arrivals during the forward recurrence time
of a typical vacation; and finally Πb(z) is the p.g.f. of the number of customers present in the system at
the beginning of a typical vacation.

8 The contents of the cart when it is delivered

When the partial batch policy is used the contents of the cart when it is delivered or “actual processing
batch size” is a random variable stochastically smaller than the processing batch size. Its distribution in
stationarity is given by the following

Theorem 8. The typical contents of the cart when it is delivered has distribution given by

P (L = n) =

{
F0 if n = 0

θn

(
1−

∑n−1
k=0 Fk

)
+ FnP (Θ > n) if n ≥ 1

. (63)

Proof: Define the generating functions Υ(z, w) :=
∑∞

k=0Qk(z)w
k and F (w) :=

∑∞
k=0 Fkw

k =
Υ(0, w). Then, from (9) it follows that

Υ(z, w)−Q0(z) =

∞∑
k=0

Qk+1(z)wk+1 = wα

( ∞∑
k=0

Qk(z)w
k −

∞∑
k=0

Fkw
k

)

or, recalling definition (8), after some elementary manipulations,

Υ(z, w) =
zQ0(z)− F (w)wU(z)

z − wU(z)
. (64)

The above expression involves the unknown function F (w) which can be determined as follows. Suppose
that |w| < 1. The equation z−wU(z) = 0 has for each fixed value of w in the unit disk a unique solution
ζ(w). (This can be seen by an application of Rouché’s theorem, see Takács [30]). In fact

ζ(w) =

∞∑
n=1

1

n!
wn (d/dt)n−1Un(t)

∣∣
t=0

according to the Lagrange inversion formula. The numerator of (64) must also vanish when z = ζ(w)
and thus ζ(w)Q0(ζ(w)) = F (w)wU(ζ(w)) or F (w) = Q0(ζ(w)). Taking into account (14) as well we
have

F (w) = Π(ζ(w))D(ζ(w)). (65)
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As we saw in section 4.1,D(ζ(w)) =
∑∞

n=0 κnw
n with κ0 = D(0) and κn = 1

n! (d/dt)n−1D′(t)Un(t)
∣∣
t=0

,
n = 1, 2, . . .. Using (34) and the fact that ζ(w)/U(ζ(w)) = w we thus obtain the generating function
for the sequence {Fn} as follows

F (w) = exp

( ∞∑
r=1

(wr − 1)

∞∑
n=1

1

n

∞∑
l=1

κ∗nl+rθ
∗n
l

) ∞∑
n=0

κnw
n. (66)

Once the sequence {Fn} has been determined, the number of customers in the actual processing batch
size is obtained by first conditioning on the processing batch size as follows. We have

E
[
wL |Θ = n

]
=

n−1∑
k=0

wkFk + wn

(
1−

n−1∑
k=0

Fk

)
= wn +

n−1∑
k=0

Fk

(
wk − wn

)
and thus

EwL = Θ(w) +
∞∑
k=0

wkFk

∞∑
n=k+1

θn −
∞∑
n=1

wnθn

n−1∑
k=0

Fk

= Θ(w) +
∞∑
k=0

wkFkP (Θ > k)−
∞∑
n=1

wnθn

n−1∑
k=0

Fk

= F0 +
∞∑
n=1

wn

(
θn

(
1−

n−1∑
k=0

Fk

)
+ FnP (Θ > n)

)
. (67)

which gives (63).
Things of course become simpler when the processing batch size is geometric, as in section 4.2.

Then, setting K(w) := D(ζ(w)) =
∑∞

n=0 κnw
n (65) becomes

F (w) = K(w)
(ζ(w)− U(ζ(w)))F (γ)

ζ(w)− γU(ζ(w))− (1− γ)K(w)U(ζ(w))
=

F (γ)K(w)(1− w)

−w + γ + (1− γ)K(w)

with F (γ) given by (41). The mean of the probability distribution {κn} is given by K ′(0) = D′(0)ζ ′(0)
and of course ζ ′(0) = U(0) = 1, thus K ′(0) = λEG. Hence, if we define the distribution function

Ki(w) :=
1

K ′(0)

1−K(w)

1− w

we have

F (w) =
F (γ)K(w)

1− (1− γ)λEGKi(w)
. (68)

When the processing batch size is geometric (67) simplifies into the following expression

EwL =
1− γ + (1− w)F (γw)

1− γw

which, together with (68) gives the generating function of the number of items delivered.
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9 The contents of the cart in steady state

In this section we will use the interpretation that refers to the queue and cart system and we will assume
that the cart has random capacity. We are interested in the cart as long as it is “next to the server”,
receiving customers, so we will suppose that the number-in-the-cart process, {Yt; t ∈ R}, becomes equal
to zero as soon as the server takes the cart to deliver it (see figure 2). Random cart capacity processing
batches can be analyzed in a similar fashion as in the previous sections. In the first subsection we examine
the marginal distribution of the cart contents under the partial batch policy, in the second the marginal
distribution of the cart contents under the complete batch policy, while in the third the joint distribution
of the number of customers in the queue and the cart under the partial batch policy. The joint distribution
under the complete batch policy can be obtained by similar arguments and this derivation is omitted.

9.1 The marginal distribution under the partial batch policy

If we denote by Y∞ a random variable with the steady state distribution of the number of customers in
the cart

Proposition 9. The steady–state number of customers in the cart is given by

P (Y∞ = n) =


(1− ρ)

(
1 +

Eσ

EG

)
if n = 0

ρ
∑∞

m=n

(
θm

(
1−

∑m−1
k=0 Fk

)
+ FmP (Θ > m)

)
if n ≥ 1

.

The expected number of customers in the cart in steady state is then equal to

EY∞ =

∞∑
n=1

θn

n−1∑
k=1

k
ρ

EL

(
1−

k∑
i=0

Fi

)
= ρ

E[L(L− 1)]

2EL
.

Proof: Denote by C(w) := EwY∞ the p.g.f. of the number of customers in the cart in steady–state. The
cycle formula gives

C(w) = EwY∞ =
E
∫ T1
T0
wYsds

E(T1 − T0)
=
EG+ EσE

[∑L
k=1w

k−1
]

EG+ ELEσ
. (69)

An application of Fubini’s theorem gives

E

[
L∑
k=1

wk−1

]
= E

∞∑
k=1

1(L ≥ k)wk−1 =

∞∑
m=0

wmP (L > m).

Also, taking into account that EL = λEG
1−λEσ (this is equation 28) and hence EG

EG+ELEσ = 1 − ρ and
Eσ

EG+ELEσ = ρ
1

EL
= (1− ρ) EσEG we obtain

C(w) = 1− ρ+ ρ
∞∑
m=0

wm
P (L > m)

EL
. (70)

The above, together with (69) and (63), establishes the proposition.
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Figure 2: Sample path of cart contents.

9.2 The marginal distribution under the complete batch policy

Under the complete batch policy we have the following

Proposition 10. The steady–state number of customers in the cart is given by

P (Y∞ = k) =


1

EΘ
(λEG+ ρ+H0) if k = 0

1

EΘ
(ρ+Hk)P (Θ > k) if k ≥ 1

.

Proof: With the same notation as in section 9.1 we have

C(w) = EwY∞ =
E
∫ T1
T0
wYsds

E(T1 − T0)
. (71)

The numerator above is given by

E

∫ T1

T0

wYsds = EG+ Eσ
∞∑
n=1

θn

n−1∑
k=0

wk + λ−1
∞∑
n=1

θn

n−1∑
k=0

Hkw
k (72)

while the denominator is

E(T1 − T0) = EG+

∞∑
n=1

θnnEσ + λ−1
∞∑
n=1

θn

n−1∑
k=0

Hk = λ−1EΘ (73)

where we have taken account that
∑∞

n=1 θn
∑n−1

k=0 Hk = (1− ρ)EΘ− λEG. Substituting (71) and (72)
into (73) we obtain

C(w) =
λEG

EΘ
+

1

EΘ

∞∑
n=1

θn

n−1∑
k=0

wk(ρ+Hk)

or

C(w) =
λEG

EΘ
+

1

EΘ

∞∑
k=0

P (Θ > k)wk(ρ+Hk).

By expanding this last expression for the p.g.f. of the stationary number of customers in the cart com-
pletes the proof of the proposition.
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9.3 Joint distribution of the number of customers in the queue and the cart under the
partial batch policy

Proposition 11. The joint p.g.f. of the queue and cart contents is given by

V (z, w) = (1− ρ)Π(z)

(
G∗i (λ(1− z)) +

Eσ

EG
B∗i (λ(1− z))D(z)wα

1−Θ(wα)

1− wα

)
(74)

−(1− ρ)
Eσ

EG
B∗i (λ(1− z))

∞∑
j=0

Fjw
j
∞∑
k=1

(wα)kP (Θ ≥ k + j).

Proof: Arguing as above, we can obtain with a little more effort the joint distribution of the number of
customers in the queue and the cart, V (z, w) := EzX∞wY∞ by using the same method as in the analysis
of §5. With the notation of §5 we have

V (z, w) = λ∗
(
E

∫ S0

T0

zXtwYtdt+ E

∫ T1

S0

zXtwYtdt

)
. (75)

The integral over the vacation phase, where Yt = 0, is

E

∫ T1

S0

zXtwYtdt = Π(z)
1−G∗(λ(1− z))

λ(1− z)
,

where, as in §5, Π(z) =
∑∞

n=1 θn(Qn(z) +
∑n−1

j=0 Fj). Taking into account that at the beginning of
a cycle, when the server returns with the cart to the queue and starts serving, YT0 = 0 (i.e. the cart is
empty) we have

E

∫ S0

T0

zXtwYtdt = E

∞∑
n=1

θn

n−1∑
k=0

1(L > k)wk
∫ dk+1

dk

zXtdt (76)

=
1− U(z)

λ(1− z)

∞∑
n=1

θn

n−1∑
k=0

wk(Qk(z)− Fk)

=
1− U(z)

λ(1− z)

∞∑
n=1

θn

n−1∑
k=0

wkQk+1(z)y

Using also the recursion (9) together with (8) we can write the last sum in the above equation as∑n−1
k=0 w

kyQk+1(z) = w−1
∑n

k=1w
kyQk(z). Also, from (10) Qk(z) = αkQ0(z) −

∑k−1
j=0 Fjα

k−j

and hence the right hand side of (76) can be written as

y − z
wλ(1− z)

∞∑
n=1

θn

n∑
k=1

wkQk =
y − z

wλ(1− z)

∞∑
n=1

θn

n∑
k=1

wk

αkQ0 −
k−1∑
j=0

Fjα
k−j


=

y − z
wλ(1− z)

Π(z)D(z)wα
1−Θ(wα)

1− wα
−
∞∑
j=0

Fjy
j
∞∑

l=j+1

(wα)lP (Θ ≥ l)


where we have used the fact that y = α−1 and (14). Upon substitution in (75), taking into account (52),
we obtain after some simplifications, (74).
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10 Appendix

10.1 Stability

In this section of the Appendix we complete the discussion on the stability of the system by furnishing
the proofs of the assertions made in the last paragraphs of section 2. We begin by recalling Foster’s
criterion for positive recurrence (see [2, p.19])

Theorem 12. Suppose that Pij is the transition probability matrix of a discrete time Markov chain with
countable state space E which is irreducible and let E0 be a finite subset of E. Then:

(i) the chain is recurrent if there exists a function h : E → R which is not bounded on E and satisfies∑
k∈E

Pjkh(k) ≤ h(j), j /∈ E0.

(ii) the chain is positive recurrent if for some h : E → R and some ε > 0 we have infx∈E h(x) > −∞
and ∑

k∈E
Pjkh(k) < ∞, j ∈ E0∑

k∈E
Pjkh(k) < h(j)− ε, j /∈ E0.

We will apply the above theorem to the embedded Markov chain {Φm} of the number of customers at
the beginning of each active period which has state space N and is clearly irreducible. Taking h(x) = x
to be the identity function we shall establish that {Φm} is positive recurrent by showing that E[Φ1 −
Φ0 |Φ0 = k ] < 0 for all k greater than some k0.

10.1.1 Stability under the complete batch policy

We first show that when the stability condition (1) is satisfied then the system under the complete batch
policy is stable. To this end, as we have already seen, it suffices to show that the embedded Markov chain
{Φm} is positive recurrent.

With the notation of section 3 let Xdmn be the number of customers in the system immediately after
the nth service completion of the mth cycle. Let us set Xdmn := χmn and denote by ξmn the number of
arrivals during the nth service time of the mth cycle (but excluding the arrival that initiates the service
time if the server happens to be idle and waiting for a new arrival). Also, let ζm denote the number of
Poisson arrivals during the vacation phase of the mth cycle. Then we clearly have

χmn+1 = (χmn − 1)+ + ξmn for n = 0, 1, 2, . . . ,Θm − 1, (77)

χm0 = Φm,

and hence

Φm+1 =

∞∑
n=1

1(Θm = n)χmn + ζm. (78)
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From (77) we have χmn+1 − χmn = −1(χmn > 0) + ξmn and hence (78) can be written as

Φm+1 = Φm +
∞∑
n=1

1(Θm ≥ n)(χmn − χmn−1) + ζm

= Φm + ζm +

∞∑
n=1

1(Θm ≥ n)
(
ξmn−1 − 1(χmn−1 > 0)

)
. (79)

Thus

E[∆Φm | Φm = k] = λEG+
∞∑
n=1

P (Θm ≥ n)
(
ρ− E[1(χmn−1 > 0) | Φm = k]

)
= λEG+ ρEΘ−

∞∑
n=0

P (Θm > n)E[1(χmn > 0) | Φm = k].

Now, using the Dominated Convergence Theorem, we have

lim
k→∞

∞∑
n=1

P (Θm > n)E[1(χmn > 0) | Φm = k] =

∞∑
n=0

P (Θm > n) lim
k→∞

E[1(χmn > 0) | Φm = k]

=
∞∑
n=0

P (Θm > n) = EΘ (80)

where in the last equation we have used the fact that limk→∞E[1(χmn > 0) | Φm = k] = 1. Thus, (80)
together with (1) implies that there exists k0 ∈ N such that E[∆Φm | Φm = k] < 0 for all k ≥ k0. This
in turn implies the positive recurrence of {Φm}. Again, the fact that the expected cycle time is finite
implies the stability of the system itself.

It remains to show that, when the inequality in (1) is reversed, then the system is unstable. To
establish this it is enough to show that the Markov chain {Φm} is transient. We do this by means of a
stochastic dominance argument as follows. Consider an auxiliary Markov chain {Φ̃m} defined by means
of the recursion

Φ̃m+1 =

(
Φ̃m +

Θm∑
n=1

ξmn −Θm

)+

+ ζm. (81)

We will now argue inductively that, if Φ̃0 = Φ0 with probability 1, then

Φ̃m ≤ Φm w.p. 1 for each m ∈ N. (82)

Indeed, suppose that (82) holds for a given value of m. Note that (79) can be written also as

Φm+1 = Φm + ζm +

Θm∑
n=1

ξmn−1 −
Θm∑
n=1

1(χmn−1 > 0).

Then,

Φm+1 = ζm +

(
Φm +

Θm∑
n=1

ξmn−1 −
Θm∑
n=1

1(χmn−1 > 0)

)+

≥ ζm +

(
Φm +

Θm∑
n=1

ξmn−1 −Θm

)+

≥ ζm +

(
Φ̃m +

Θm∑
n=1

ξmn−1 −Θm

)+

= Φ̃m+1
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and thus we establish the inductive step.
{Φ̃m} can be thought of as the Markov chain describing the queue length in a system with batch

arrivals and batch services. The stability condition for this system is−EΘ+Eu+Ev < 0 or equivalently
(1 − ρ)EΘ + λEG < 0 which is precisely (1). Thus, when the inequality in (1) is reversed, the
auxiliary system is unstable (the Markov chain {Φ̃m} is transient–see Meyn and Tweedie [26]). The
stochastic ordering relation between the auxiliary chain and the original system implies thus that (1) is
also necessary for the positive recurrence of the Markov chain {Φm} for the complete batch policy.

10.1.2 Stability under the partial batch policy

When the partial batch policy is used,

Φm+1 = Φm + ζm +

Lm∑
n=1

(ξmn−1 − 1)

where Lm = min
(

Θm, inf{i ≥ 0 : Φm +
∑i

n=1(ξmn−1 − 1) = 0}
)

. Thus, if we define again the pro-

cess {Φ̃m} by means of (81) and we assume that Φ̃m ≤ Φm then

Φm+1 ≥ ζm +

(
Φm +

Lm∑
n=1

(ξmn−1 − 1)

)+

≥ ζm +

(
Φ̃m +

Θm∑
n=1

(ξmn−1 − 1)

)+

= Φ̃m+1.

This establishes inductively the stochastic ordering relationship (82) in the case where the partial batch
policy is used. Thus when (1) holds with the sense of the inequality reversed {Φ̃m} is transient and the
stochastic inequality just established implies that {Φm} is transient as well.

10.2 Roots within the unit disk

Here we show that equation (19) has N roots within the unit disk. Variations of this equation abound in
the bulk service literature. (See for instance Chaudhry and Templeton [8] and also Coffman and Gilbert
[11].) However in these treatments it is (either explicitly or tacitly) assumed that the service and vacation
distributions are light-tailed, i.e. that the corresponding moment generating functions exist in an open
interval containing the origin. We assume only the natural conditions for the existence of a stationary
version of the process i.e. the finiteness of first moments plus the stability condition. We will use the
following theorem established in Boudreau, Griffin, and Kac [6]. (See also the recent paper by Adan,
van Leeuwaarden and Winands [1].)

Theorem 13. Suppose that ϕ(z) :=
∑∞

n=0 fnz
n is the p.g.f. of fn, n = 0, 1, 2, . . . , a non-degenerate

probability distribution on the non-negative integers with finite mean µ :=
∑∞

n=0 nfn andN is a natural
number. If the condition

N > µ (83)

holds, then the equation
zn − ϕ(z) = 0 (84)

has N roots within the unit disk {z ∈ C : |z| ≤ 1}. z = 1 is a single root of (84) while the remaining
N − 1 roots have modulus strictly smaller than 1.

The main idea of the proof is to show that the equation zn − wϕ(z) = 0 has N roots within the unit
disk when 0 < w < 1 and then use a continuity argument to show that this remains true as w → 1. In
our case, ϕ(z) = D(z)

∑n
n=1 θnz

N−nU(z)n and µ = ϕ′(1) = EG − (1 − ρ)EΘ + N, thus (83) is
equivalent to the stability condition for the system (1).
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10.3 Determination of the constants

In this section of the Appendix we give an explicit procedure for the computation of the N constants,
F0, . . . , FN−1 in terms of the quantities yi, i = 1, 2, . . . , N − 1, defined in (20), and C, defined in (26),
in the case of the partial batch policy with finite cart capacity. These constants can be obtained from
the identity (22) as follows. Let us denote by Sk := Sk(y1, y2, . . . , yN−1), k = 1, 2, . . . , N − 1 the
elementary symmetric functions in N − 1 variables defined as

Sk =
∑

1≤i1<i2<···<ik≤N−1

yi1yi2 · · · yik , k = 1, 2, . . . , N − 1.

Then P (y) := C(y − 1)
∏N−1
i=1 (y − yi) can be expressed as

P (y) = Cyn − yN−1C(1 + S1) + yN−2C(S1 + S2)− yN−3C(S2 + S3) + · · ·
+(−1)N−1yC(SN−2 + SN−1) + (−1)nCSN−1,

where the constant C is given in (26). On the other hand, from (21),

P (y) = yn

N−1∑
k=0

Fk

n∑
j=k+1

θj

− yN−1

(
N−1∑
k=0

Fkθk+1

)
− · · · − yN−i

(
N−i∑
k=0

Fkθk+i

)
− · · ·

−y2 (F0θN−2 + F1θN−1 + F2θN−2)− y (F0θN−1 + F1θn)− F0θn.

Equating the coefficients of yi, i = 0, 1, . . . , N − 1, in the above equations we obtain the following
triangular linear system which allows us to determine the constants Fk.

θnF0 = (−1)N−1CSN−1

θnF1 + θN−1F0 = (−1)N−2C (SN−1 + SN−2)

...

θnFi + · · ·+ θN−i−1F1 + θN−iF0 = C(−1)N−i−1 (SN−i + SN−i−1)

...

θnFN−2 + · · ·+ θ3F1 + θ2F0 = −C (S2 + S1)

θnFN−1 + θN−1FN−2 + · · ·+ θ2F1 + θ1F0 = C (S1 + 1)

(One additional equation, namely F0 (θ1 + · · ·+ θn)+ · · ·+Fk (θk+1 + · · ·+ θn)+ · · ·+FN−1θn = C,
which is obtained by equating the coefficients of yn, is redundant since it can be obtained by adding all
the N equations above and noting that the right hand side reduces to C.)
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[3] F. Baccelli and P. Brémaud (2003). Elements of Queueing, 2nd edition, Springer Verlag, New York.

[4] D. Bertsimas and D. Nakazato (1995). The distributional Little’s law and its applications, Opera-
tions Research 43, 298–310.

29



[5] W. Bischof (2001). Analysis of M/G/1 queues with setup times and vacations under six different
service disciplines, Queueing Systems, 39, 265-301.

[6] P.E. Boudreau, J.S. Griffin, Jr., and M. Kac (1962). An elementary queueing problem, American
Mathematical Monthly 69, 8, 713-724.
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