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Abstract

We examine hitting probability problems for Ornstein-Uhlenbeck (OU) processes and Geometric Brow-
nian motions (GBM) with respect to exponential boundaries related to problems arising in risk theory and
asset and liability models in pension funds. In Section 2 we consider the OU process described by the
Stochastic Differential Equation (SDE) dXt = µXtdt + σdWt with X0 = x0 evolving between a lower
and an upper deterministic exponential boundary. Both the finite horizon “ruin probability” problem and
the corresponding infinite horizon problem is examined in the low noise case, using the Wentzell-Freidlin
approach in order to obtain logarithmic asymptotics for the probability of hitting either the lower or the
upper boundary. The resulting variational problems are studied in detail. The exponential rate character-
izing the ruin probability and the “path to ruin” are obtained by their solution. Logarithmic asymptotics
for the meeting probability in a pair of OU processes with different positive drift coefficients, driven by
independent Brownian motions is also obtained using Wentzell-Freidlin techniques. The optimal paths fol-
lowed by the two processes and the meeting time T are determined by solving a variational problem with
transversality conditions. In Section 3 a corresponding problem involving a Geometric Brownian motion
is considered. Since in this case, an exact, closed form solution is also available and we take advantage of
this situation in order to explore numerically the quality of the Large Deviations results obtained using the
Wentzell-Freidlin approach.

KEYWORDS: ORNSTEIN-UHLENBECK PROCESS, RUIN PROBABILITY, WENTZELL-FREIDLIN METHOD
GEOMETRIC BROWNIAN MOTION.

1 Introduction

We examine simple linear Stochastic Differential Equations (SDE) describing Ornstein-Uhlenbeck (OU) and
Geometric Brownian motion (GBM) processes with positive drift and consider the “ruin problem” of hitting
an upper or lower exponential boundary. This problem is not analytically tractable for the OU process in the
general case and we use the Wentzel-Freidlin approach in order to obtain Large Deviations estimates for the
ruin probability. More specifically, if the OU process describing the free reserves process {Xt} is the solution
of the SDE dXt = µXtdt+σdWt with X0 = x0 given, where µ > 0 and {Wt} is standard Brownian motion
and if V (t) := v0e

βt and U(t) := u0e
αt are two exponential (deterministic) boundary curves, assuming that

initially the free reserves lie between these values, i.e. 0 < v0 < x0 < u0 and that 0 < β < µ < α. Both
the finite horizon ruin probability problem and the infinite horizon problem are examined. These problems
may of course be formulated in terms of a second order PDE with curved (exponential) boundaries in the
plane and solved numerically. (An alternative approach, involving a time change argument is also discussed
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briefly.) The main thrust of the analysis however involves Large Deviations techniques and in particular the
Wentzell-Freidlin approach in order to obtain logarithmic asymptotics for the probability of hitting either the
lower or the upper boundary. These low-noise asymptotics are valid when the variance σ is small and hence
the event of hitting either boundary is rare. The exponential rate characterizing this probability is obtained
by solving a variational problem which also gives the “path to ruin”. We begin with a careful and detailed
analysis of the finite horizon problem of hitting a lower boundary. The infinite horizon problem both for
hitting the lower and the upper exponential boundary is treated using the transversality conditions approach
of the calculus of variations. In addition, for the OU process with a more general linear drift resulting from
the SDE dXt = (µXt + r)dt + σdWt, the probability of hitting an upper exponential boundary u0e

αt is
examined (with 0 < µ < α).

We also consider the problem of two independent OU processes, {Xt}, {Yt}, with initial values x0 > y0
and average growth rates α and β respectively such that α > β so that, in the absence of noise, it would hold
that Xt > Yt for all t > 0. We examine, again using the Wentzell-Freidlin approach, the probability that the
two processes meet. The optimal paths followed by the two processes and the meeting time T is determined
by solving a variational problem with trasversality conditions.

In section 4 a corresponding problem involving a Geometric Brownian motion described by the SDE
dXt = µXtdt + σXtdWt with X0 = x0 is examined, together with an upper and a lower exponential
boundary. Again the Wentzell-Freidlin theory is used. In this case however, an exact solution is also possible,
and therefore we are able to obtain an idea of the accuracy of the logarithmic asymptotics we propose. As
expected, when the variance constant σ becomes smaller, the quality of the approximation improves. The case
of two correlated Geometric Brownian motions is also discussed. These models are inspired by the Gerber
and Shiu model of assets and liabilities in pension funds.

Such models arise naturally when analyzing systems with compounding assets. Consider the following
collective risk model: Claims are i.i.d. random variables {Yi}, with distribution F on R+, and they occur ac-
cording to an independent Poisson process with points {Tn} and rate λ. We denote by N(t) :=

∑∞
i=1 1(Ti ≤

t) the corresponding counting process. Income from premiums comes at a constant rate c and the initial value
of the free reserves is x0. We assume further that free reserves accrue interest at a fixed rate β. If we denote
by Zt := ct−

∑N(t)
i=1 Yi, t ≥ 0, the process describing net income (i.e. premium income minus liabilities due

to claims), then the free reserves process is described by the stochastic differential equation

dXt = βXtdt− dZt, X0 = x0. (1.1)

Along the above lines, [6] considered a generalization of the classical model of collective risk theory in which
the net income process of a firm, {Zt}, has stationary independent increments and finite variance. Then the
assets of the firm at time t, X(t), can be represented by a simple path-wise integral with respect to the income
process Z as

X(t) = eβtx0 +

∫ t

0
eβ(t−s)dZ(s), t ≥ 0, (1.2)

with x0 positive level of initial assets and β positive interest rate. Harrison demonstrated that the Riemann-
Stieltjes integral on the right side of (1.2) exists and is finite for all t ≥ 0 and almost every sample path of Z.
Thus the process X is defined as a path-wise functional of the income process Z(t).

Typically Z(t) may be a Lévy process with finite variation so that the stochastic integral in (1.2) may
be defined pathwise. A model with Z(t) being Brownian motion with drift would be natural as a diffusion
approximation of such a model and this leads to the Ornstein-Uhlenbeck model we examine in detail in this
paper.

Models with compounding assets occur naturally in the study of pension funds as well. Gerber and Shiu
[4] have studied such models involving a pair of Geometric Brownian Motion processes with positive drift
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representing assets and liabilities over time and in this context ruin problems become relevant. With the
notable exception of some Geometric Brownian Motion problems, analytic solutions in closed form are not
possible in general and thus we will study ruin problems related to these systems using Large Deviations
techniques.

1.1 Large Deviation Results for the Paths of the Wiener Process

Recall that a function f is lower semicontinuous iff, for ever sequence {xn} such that limn→∞ xn = x,
lim infn→∞ f(xn) ≥ f(x). A rate function I : X → [0,∞] is a lower semicontinuous function which
implies that the level sets ΨI(y) := {x ∈ X : I(x) ≤ y} are closed subsets of X . A good rate function is one
for which all the level sets ΨI(y) are compact subsets of X . The effective domain of the rate function I is the
subset of X , DI := {x : I(x) < ∞ for which the rate function is finite. As usual, for any Γ ⊂ X , Γ̄ denotes
the closure and Γo the interior of Γ. With the above definitions one may give the following precise statement
of the Large Deviation Principle (LDP):

Definition 1. The family of measures on {µϵ} satisfies an LDP with rate function I if for all Γ ∈ B,

− inf
x∈Γo

I(x) ≤ lim inf
ϵ→0

ϵ logµϵ(Γ) ≤ lim sup
ϵ→0

ϵ logµϵ(Γ) ≤ − inf
x∈Γ̄

I(x). (1.3)

Recall that a function f : [0, T ] → R is absolutely continuous if for all ϵ > 0 there exists δ > 0 such
that, for all n ∈ N, 0 < s1 < t1 < s2 < t2 < · · · < sn < tn < T such that

∑n
i=1(ti − si) < δ implies∑n

i=1 |f(ti) − f(si)| < ϵ. Clearly, an absolutely continuous function is continuous but the converse is not
true. The set of all real, absolutely continuous functions on [0, T ] is denoted by AC[0, T ].

A fundamental result in sample path Large Deviations theory is the following theorem due to Schilder
[19]. Suppose that {W (t); t ∈ [0, 1]} is a Standard Brownian motion in R and define a family of processes
{Wϵ(t); t ∈ [0, 1]} via Wϵ(t) :=

√
ϵW (t) where ϵ > 0.

Theorem 2 (Schilder). The family of measures {µϵ} induced by the family of processes {Wϵ(t); t ∈ [0, 1]}
satisfies an LDP with good rate function

I =


1

2

∫ 1

0
f ′(s)2ds if f ∈ H1

+∞ otherwise

where H1 is the Cameron-Martin space {f ∈ AC[0, T ] : f(0) = 0,
∫ 1
0 f ′2(s)ds < ∞} of absolutely

continuous functions with square integrable derivatives.

2 Low Noise Asymptotics for the Ornstein-Uhlenbeck Process

In this section we examine an Ornstein-Uhlenbeck (OU) process with positive infinitesimal drift and con-
sider the probability of hitting an upper or a lower exponential boundary. The problem is approached using
the Wentzell-Freidlin theory for obtaining logarithmic asymptotics both for the finite and the infinite horizon
problem. An OU process with an additional constant term in the drift is also examined. Interestingly, depend-
ing on the value of the constant drift, the variational problem from which the rate function is obtained, may
or may not have a unique solution.
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2.1 The Ornstein-Uhlenbeck SDE and the time to exit from a deterministic boundary

Consider the Ornstein-Uhlenbeck Stochastic Differential Equation (SDE)

dXt = µXtdt+ σdWt, X0 = x0 (2.1)

where µ > 0. Note that its expectation increases exponentially with time according to EXt = x0e
µt, t ≥ 0.

Consider also the deterministic exponential function given by

V (t) = v0e
βt where 0 ≤ β < µ and 0 < v0 < x0. (2.2)

Let
p(x0, T ) = P(Xt > V (t); 0 ≤ t ≤ T ) (2.3)

denote the probability that the process {Xt} stays above the exponential boundary V (t). In this model 1 −
p(x0, T ) may be thought of as a type of ruin probability. We are interested in evaluating p(x0, T ) and the
limiting probability p(x0) := limT→∞ p(x0, T ) for the process given in (2.1) with boundary given by (2.2).
Due to the Markovian property of {Xt}, the “non-ruin probability” defined in (2.3) satisfies the PDE

1

2
σ2fxx + µxfx + ft = 0, in D := {(x, t) : 0 < t < T, x > v0e

βt} (2.4)

with boundary conditions f(v0eβt, t) = 0 for t ∈ [0, T ] and f(x, T ) = 1 for x > v0e
βT .

We will not attempt to obtain an expression for the solution of (2.4) due to the difficulties that arise as a result
of the shape of the domain D. One may obtain numerical results for the ruin probability based on the above
formulation. We will instead use Wentzell-Freidlin “low noise asymptotics” [5] in order to obtain a large
deviations estimate for the probability that Xt crosses the path of V (t) for some t ∈ [0, T ].

2.2 The Wentzell-Freidlin Framework - Finite Horizon Problem

Wentzell-Freidlin theory generalizes the ideas in Schilder’s Theorem to the paths of Stochastic Differential
Equations. To express the problem discussed in the previous section in the Wentzell-Freidlin framework we
consider the family of processes {Xϵ

t }

dXϵ
t = µXϵ

t dt+
√
ϵ σ dWt, Xϵ

0 = x0 (2.5)

together with the deterministic process

ẋ(t) = µx(t), x(0) = x0.

Denote by C[0, T ] the set of continuous functions on [0, T ], and by Cx0 [0, T ] the set of all continuous func-
tions f : [0, T ] → R with f(0) = x0. Consider the transformation F : C[0, T ] → Cx0 [0, T ] defined by

f = F (g) with f(t) :=

∫ t

0
µf(s)ds + σg(t), t ∈ [0, T ]. (2.6)

Let fi, denote the solution of (2.6) when the driving function is gi, i = 1, 2. We may then establish the
continuity of the map F by means of a Gronwall argument which shows that

∥f1 − f2∥ ≤ σ eµT ∥g1 − g2∥
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where ∥f∥ := sup{|f(t) : t ∈ [0, T ]} denotes the sup norm. Theorem 5.6.7 of [3, p. 214] applies and
therefore the solution of (2.5) satisfies a Large Deviation Principle with good rate function

I(f, T ) :=


1

2

∫ T

0

(
f ′(t)− µf(t)

)2
σ−2dt if f ∈ H1

x0

+∞ otherwise

(2.7)

where H1
x0
(T ) := {f : [0, T ] → R , f(t) = x0 +

∫ t
0 ϕ(s)ds , t ∈ [0, T ], ϕ ∈ L2[0, T ]} is the Cameron-

Martin space of absolutely continuous functions with square integrable derivative and initial value f(0) = x0.

Theorem 3. In the above framework, if the lower boundary curve is V (t) = v0e
βt,

lim
ϵ→0

ϵ logP
(

min
t∈[0,T ]

Xϵ
t − V (t) ≤ 0

)
= −IV (T ). (2.8)

The rate function IV (T ) is given by

IV (T ) =
µ

σ2

(
v0e

β(T∧toV ) − x0e
µ(T∧toV )

)2
e2µ(T∧toV ) − 1

(2.9)

where toV is the unique positive solution of the equation

ϕV (t) :=

(
1− β

µ

)
e(µ+β)t +

β

µ
e(β−µ)t =

x0
v0

. (2.10)

Similarly, for the upper boundary curve U(t) = u0e
αt,

lim
ϵ→0

ϵ logP
(

max
t∈[0,T ]

Xϵ
t − U(t) ≥ 0

)
= −IU (T ) (2.11)

with

IU (T ) =
µ

σ2

(
u0e

α(T∧toU ) − x0e
µ(T∧toU )

)2
e2µ(T∧toU ) − 1

(2.12)

where toU is the unique positive solution of the equation

ϕU (t) :=
α

µ
e(α−µ)t −

(
α

µ
− 1

)
e(µ+α)t =

x0
u0

. (2.13)

Proof. The proof is long and will be divided into three parts for clarity of exposition.

Part 1. We begin by fixing t > 0 and considering paths that start at x0 at time 0 and end at V (t) := v0e
βt

at time t: Consider the set

H1
x0,V (t) :=

{
h : [0, t] → R : h(s) = x0 +

∫ s

0
ϕ(u)du , s ∈ [0, t], h(t) = V (t), ϕ ∈ L2[0, t]

}
.

Then, for η > 0,

lim
ϵ→0

ϵ logP
(

sup
0≤s≤t

|Xϵ
s − h(s)| < η

)
= −J∗(t). (2.14)

where J∗(t) is the solution of the variational problem

J∗(t) := inf
{
J(x; t) : x ∈ H1

x0,V (t)

}
(2.15)
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with

J(x; t) =

∫ t

0
F (x, x′, s)ds, and F (x, x′, s) =

1

2σ2

(
x′ − µx

)2
. (2.16)

J(x; t) gives the rate function for a path x(·) that starts at x0 and meets the lower boundary at the point
(t, v0e

βt) i.e. satisfies the boundary conditions

x(0) = x0, x(t) = v0e
βt. (2.17)

The infimum in (2.15) is taken over all absolutely continuous functions on [0, t] with derivative in L2. The
function x ∈ H1

x0,Vt)
[0, t] that minimizes the integral defining the rate function is the solution of the Euler-

Lagrange equation (e.g. see [18], [2])

Fx −
d

ds
Fx′ = 0 (2.18)

and the boundary conditions (2.17). With the given form of F in (2.16) the Euler-Lagrange equation becomes

x′′(s) = µ2x(s) (2.19)

which has the general solution
x(s) = c1e

µs + c2e
−µs. (2.20)

The values of c1, c2 for which x satisfies the boundary conditions are given by

c1 =
v0e

βt − x0e
−µt

eµt − e−µt
, c2 =

x0e
µt − v0e

βt

eµt − e−µt
. (2.21)

Thus (2.20) with the constants c1, c2 given by (2.21) gives the optimal path

x(s) =
v0e

βt (eµs − e−µs) + x0
(
eµ(t−s) − e−µ(t−s)

)
eµt − e−µt

=
v0e

βt sinh(µs) + x0 sinh(µ(t− s))

sinh(µt)
. (2.22)

From (2.20) x′(s)− µx(s) = −2µc2e
−µs and, taking into account (2.16),

J∗(t) =
4µ2c22
2σ2

∫ t

0
e−2µsds =

µc22
σ2

(
1− e−2µt

)
.

Using the expression for c2 we have

J∗(t) =
µ

σ2

(
v0e

βt − x0e
µt
)2

e2µt − 1
. (2.23)

There remains to show that there is no path x(s) with piecewise continuous derivative which achieves a
smaller value of the criterion, i.e. that the optimal solution does not have corners. To this end we consider
the Erdeman corner conditions [2, p.33]. The first condition requires that Fx′ evaluated at the critical path be
a continuous function of s. Since Fx′ = 1

σ2 (x
′ − µx) and x(s) is necessarily continuous, the first Erdeman

condition implies the continuity of x′(s) as well. Therefore, by virtue of the first Erdeman condition alone
we may conclude that the optimal solution cannot have discontinuities in its derivative. For the sake of
completeness we mention that the second Erdeman condition requires that F − x′Fx′ evaluated at the critical
path be also a continuous function of u. Since F−x′Fx′ = − 1

2σ2

(
(x′)2 − µ2x2

)
and because of the continuity

of x(s), this second condition by itself would allow the existence of corners at which the first derivative
changes sign. (Such corners are of course precluded by the first condition.)
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The solution we have found corresponds to a global minimum. To see this we appeal to Theorem 3.16 of
[2, p.45] according to which it suffices to show that F (x, x′) := 1

2σ2 (x
′−µx)2 (abusing slightly the notation)

is a convex on R2. Indeed, we can show that, for any (x0, x
′
0) ∈ R2,

F (x, x′) ≥ F (x0, x
′
0) + Fx(x0, x

′
0) (x− x0) + Fx′(x0, x

′
0) (x

′ − x′0)

or
1

2

(
x′ − µx

)2 ≥ 1

2

(
x′0 − µx0

)2 − µ
(
x′0 − µx0

)
(x− x0) +

(
x′0 − µx0

)
(x′ − x′0).

This last inequality can be seen to be equivalent to(
x′ − µx

)2
+
(
x′0 − µx0

)2 − 2
(
x′ − µx

) (
x′0 − µx0

)
≥ 0

which is clearly true and thus the convexity of F and therefore the global optimality of x is established.

Part 2. In the first part we obtained the fixed time optimal solution under the boundary conditions (2.17). In
this part however we will solve the optimization problem

I(T ) := inf{J(x, t) : 0 ≤ t ≤ T, x ∈ H1
x0,V (t), i.e. x satisfies the conditions (2.17) } (2.24)

with finite time horizon t ∈ [0, T ], still ignoring the inequality path constraints (2.28). Clearly I(T ) =
inft∈[0,T ] J∗(t). From (2.23) we see that J∗(t) is a continuously differentiable function for t > 0. We will
establish that it is strictly convex on [0, T ]. Indeed

J ′
∗(t) =

2v0µ
2eµt

(
x0e

µt − v0e
βt
)

σ2(e2µt − 1)2

[(
1− β

µ

)
e(β+µ)t +

β

µ
e(β−µ)t − x0

v0

]
. (2.25)

Given the definition of ϕV in (2.10) we note that the quantity inside the brackets above is ϕV (t) − x0
v0

Since
0 < β < µ and 0 < v0 < x0, x0eµt − v0e

βt > 0 for all t ≥ 0 and thus the sign of J ′
∗(t) is that of ϕ1(t)− x0

v0
.

Note that ϕ′
V (t) =

µ−β
µ e(β+µ)t

[
µ+ β(1− e−2µt)

]
> 0 for all t ≥ 0 and thus ϕ1 is strictly increasing. Also,

given the definition of ϕV we have limt→∞ ϕV (t) = +∞, ϕV (0) = 1, and x0
v0

> 1, hence there exists a
unique toV > 0 such that

ϕV (t
o
V ) =

x0
v0

> 1. (2.26)

In view of the expression (2.25), J ′
∗(t) < 0 for 0 ≤ t < toV , J∗(toV ) = 0 and J ′

∗(t) > 0 for t > toV . Thus toV ,
the unique solution of (2.10), is a point of global minimum for J∗. Then

I(T ) = inf
t∈[0,T ]

J∗(t) =

{
J∗(T ) if T ≤ toV
J∗(t

o) if T > toV
. (2.27)

Figure 1 illustrates the behavior of the function J∗(t) and that of I(t).

Part 3. We complete the proof by showing that the optimal rate given by (2.27) remains valid even after
taking into account the additional path inequality constraint

x(s) ≥ V (s) for all s ∈ [0, t]. (2.28)

Define
J∗∗(t) := inf

{
J(x; t) : x ∈ H1

x0,V (t), x(s) ≥ V (s) for s ∈ [0, t].
}

(2.29)
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Figure 1: The dotted black line denotes the function J∗(t). The dotted red line denotes the rate function I(t).
Here µ = 2.5, β = 1.0, x0 = 4, u0 = 1 and toV ≊ 0.529.

Consider the optimal path x(s) of Part 1 given in (2.21) , (2.20), (2.22), for all s ≥ 0. Note that c2 > 0 (since
µ > β and x0 > v0). The sign of c1 depends on t: c1 > 0 ⇔ v0e

(µ+β)t − x0 > 0 and this is equivalent to

t > t1 :=
1

µ+ β
log

x0
v0

. (2.30)

We also point out that
t1 < toV . (2.31)

This follows by the fact that ϕV is a strictly increasing function and

ϕV (t1) =

(
1− β

µ

)
e(β+µ)t1 + e−2µtβ

µ
e(β+µ)t1 =

x0
v0

(
1− β

µ
(1− e−2µt)

)
<

x0
v0

= ϕV (t
o
V ).

We distinguish three cases according to the relationship between t and t1.

Case 1: t < t1. This implies that c1 < 0. Because x(0) > V (0), x′(s) = µc1e
µs − µc2e

−µs < 0 for
all s ≥ 0, and lims→∞ x(s) = −∞, t is the unique intersection point of the paths x(·) and V (·) and the
inequality constraint (2.28) is satisfied.

Case 2: t = t1. Then, from (2.21) c1 = 0 and c2 = x0 and hence x(s) = x0e
−µs. Again, the paths x(·) and

V (·) intersect only once, at t, x(s) > V (s) for s ∈ [0, t), and the path inequality constraint is satisfied.

Case 3: t > t1. Here both c1 > 0 and c2 > 0 and thus x(s) > 0 for all s > 0. Therefore, as a result of
(2.19), x′′(s) > 0 and the function x is strictly convex for all s ≥ 0. In this case, as is shown in the Appendix,
the paths x(·) and V (·) intersect at precisely two points, one of which is of course t while the other will be
denoted by τ(t). Figure 2 shows that for specific values of the parameters µ, β, x0, v0. For the values of the
parameters in Figure 2 t0 = 1

2 log 8 ≈ 1.04. Hence in the figure in the left the path x(s) is decreasing and
eventually becomes negative. There is a single intersection between the curves x(s) and V (s). On the other
hand in the figure in the middle (t = 2) and in the right (t = 3) the path x(s) is strictly convex, as is V (s),
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Figure 2: The Three cases. In this example µ = 1, β = 0.5, x0 = 4, v0 = 0.5. These give t1 ≈ 1.39
and t2 ≈ 2.29. (a) shows the behavior when t = 1 < t1. This is case 1 and x(·) decreases monotonically.
The inequality constraints are satisfied. In (b) t = t1. This is case 2 and again the inequality conditions are
satisfied. The remaining tree plots illustrate case 3. In (c) and (d) t ≤ t2 and τ(t) ≥ t. Again the inequality
constraints are satisfied. In (e) however, when t > t2, τ(t) < t and (2.28) is not satisfied.

and thus the two curves intersect in two points. For t = 2 the path x(s) satisfies (5.9) and therefore (5.6) and
(2.28) while for t = 3 it does not.

The key remark is the following: If x′(t) < V ′(t) then the path x(·) intersects V (·) from above at t, then
again from below at τ(t) > t. If, conversely, x′(t) > V ′(t) then x(·) intersects V (·) from below below at t.
Since x(0) > V (0) this necessarily implies that there was an earlier crossing from above at τ(t) < t. (The
case x′(t) = V ′(t) corresponds to t = τ(t). The path x(·) is tangent to V (·) at t and x(s) > V (s) for all
s ̸= t.)

The situation in Case 3 is examined in more detailed in Section 5.2 of the Appendix where it is established
that there exists a time t2 such that t1 < t2 and the relationship between t and t2 determines whether the path
x(·) satisfies the inequality constraints (2.28) or not. Specifically

If t1 < t < t2 then x(·) intersects V (·) from above at t and hence it satisfies the inequality constraint
x(s) > V (s) for s ∈ [0, t). It crosses V (t) once again at τ(t) > t, this time from below.

If t = t2 then x(t) is tangent to V (t) at t. It satisfies the inequality constraint x(s) > V (s) for s ∈ [0, t)
(and in fact even beyond t though this is of no interest for our purposes).

If t > t2 then x(t) crosses V (t) from below. This means that there was a first crossing from above at
τ(t) < t. As a result x(s) < V (s) when s ∈ (τ(t), t] and the inequality constraint (2.28) is not satisfied
in this case.

Figure 3 illustrates these cases. For t = 0.25, 0.5, and 0.75 (black, red, and green paths) the paths
eventually become negative and intersect the dotted green line (i.e. the function V (·)) once. In the rest of the
cases the paths remain positive and intersect the dotted green line twice.
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Figure 3: Here µ = 1, β = 0.6, x0 = 2, v0 = 0.5. Thus to = 0.8664. The hitting times range from t = 0.25
to t = 1.50. Note that, for t = 0.25, 0.50, and 0.75 the path x(s) eventually becomes negative, after hitting
V (s), the thick green line. When the hitting times are greater than to, (i.e. t = 1, 1.25, and 1.5) the path x(s)
is a convex function and has two intersection points with the dotted green line.

Thus the optimal path of Part 1 also satisfies the constraint (2.28) iff t ≤ t2. In that case the path given by
(2.22) minimizes the functional J(x, t) in (2.16) under the boundary conditions (2.17) and the path inequality
constraints (2.28). Then

J∗∗(t) = J∗(t) when t < t2. (2.32)

If > t2 then t is the second point of intersection of x(s) with V (s) and (2.28) is not satisfied. This means
that the path x(s) is not feasible under the additional constraint x(s) > V (s) and therefore that the optimal
value J∗(t) obtained without taking into account the inequality constraint is smaller than J∗∗(t). Thus we
have

J∗∗(t) = J∗(t) if t ≤ t2
J∗∗(t) < J∗(t) if t > t2

(2.33)

Then, the rate function in (2.8), defined as

IV (T ) := inf
{
J(x; t) : x ∈ H1

x0,V (t), x(s) ≥ V (s) for 0 < s < t, 0 < t ≤ T.
}

(2.34)

can be obtained as
IV (T ) := min

t∈(0,T ]
J∗∗(t). (2.35)

If T ≤ t2 then J∗∗(t) = J∗(t) and hence IV (T ) = mint∈(0,T ] J∗(t) = J∗(t
o ∧ T ) due to the fact that J∗ is

strictly decreasing in (0, toV and strictly increasing in (toV ,∞).

Therefore we conclude that IV (T ) is also given by (2.23). This concludes the proof of the first part of
Theorem 3. The proof of the second part, pertaining to the upper boundary curve, is similar and will be
omitted.
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2.3 The infinite horizon problem – lower and upper bound

We now turn to the infinite horizon problem of obtaining a large deviations estimate for the probability
P(inft≥0Xt − v0e

βt ≤ 0) and P(inft≥0Xt − u0e
αt ≥ 0) in the same context as that of the previous section.

It is of course possible to solve first the corresponding finite horizon problem as we saw in the previous sec-
tion and then minimize this probability over T . Instead of this, we will use here the standard transversality
conditions approach of the Calculus of Variations in order to tackle in one step the infinite horizon problem.
These are necessary conditions for optimality in variational problems with variable end-points.

Theorem 4. Suppose {Xϵ
t }, ϵ > 0, is the family of diffusions described by the solution of the SDE (2.5).

Suppose also that the upper bounding curve U(t) = u0e
αt and lower bounding curve V (t) = v0e

βt satisfy
the inequalities v0 < x0 < u0 and β < µ < α. Then

a) The probability of ever hitting the lower boundary satisfies

− lim
ϵ→0

ϵ logP
(
inf
t≥0

Xϵ
t − v0e

βt ≤ 0

)
=: IV (∞) =

x20µ

σ2

1− e−2µTV(
1 + β

µ−β e−2µTV

)2 (2.36)

and TV is the unique root of equation (2.10). The optimal path x∗ hitting the lower bound is given by

x∗(t) = x0
e−µ(TV −t) +

(
µ
β − 1

)
eµ(TV −t)

e−µTV +
(
µ
β − 1

)
eµTV

. (2.37)

b) The probability of ever hitting the upper boundary satisfies

− lim
ϵ→0

ϵ logP
(
inf
t≥0

Xϵ
t − u0e

αt ≥ 0

)
= IU (∞) =

x20µ

σ2

1− e−2µTU(
1 + α

µ−α e−2µTU

)2 (2.38)

and TU is the unique root of the equation (2.13). The optimal path hitting the upper bound is given by

x(t) = x0
e−µ(TU−t) −

(
1− µ

α

)
eµ(TU−t)

e−µTU −
(
1− µ

α

)
eµTU

. (2.39)

Proof. Consider first the problem of hitting the upper boundary at some time TU before hitting the lower
boundary. We will obtain low noise logarithmic asymptotics for the probability of hitting the upper boundary
(without having first hit the lower). Because in the limit, as ϵ → 0, the probability of ever hitting either the
upper or the lower boundary goes to 0 exponentially (in 1

ϵ ) we expect that the presence of the lower boundary
(and the stipulation to avoid it) does not affect the probability of hitting the upper boundary.

The optimization problem for the action functional becomes

min

∫ TU

0
F (x, x′, t)dt, with F (x, x′, t) =

1

2σ2

(
x′ − µx

)2
, (2.40)

subject to the constraints

x(0) = x0, and x(TU ) = U(TU ) (2.41)

V (t) < x(t) < U(t) for 0 ≤ t < TU , (2.42)

In the above, both the optimal path x and the horizon TU are unknowns to be determined. Our approach
to dealing with the inequality path constraint, (2.42) x(t) > V (t) for all t ∈ [0, T ) will be to initially ignore
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it and obtain an optimal hitting time TU and an optimal path x∗ minimizing the criterion (2.40) and satisfying
the boundary conditions (2.41). We will then show that this optimal path satisfies the constraints (2.42).

The necessary conditions for a minimum in the problem without the path inequality constraint are

Euler-Lagrange Equation: Fx −
d

dt
Fx′ = 0, (2.43)

Boundary Conditions: x(0) = x0, x(TU ) = U(TU ), (2.44)

Transversality Condition: F + (U ′ − x′)Fx′ = 0 at TU . (2.45)

Taking into account that Fx = −µσ−2 (x′ − µx), Fx′ = σ−2 (x′ − µx), d
dtFx′ = σ−2 (x′′ − µx′), the Euler-

Lagrange equation becomes

Fx −
d

dt
Fx′ = −σ−2

(
x′′ − µ2x

)
= 0

and thus
x′′ − µ2x = 0. (2.46)

This has the general solution
x(t) = C1e

µt + C2e
−µt. (2.47)

Taking into account the boundary conditions (2.44), we obtain

x(0) = C1 + C2 = x0, (2.48)

x(T ) = C1e
µTU + C2e

−µTU = u0e
αTU . (2.49)

The transversality condition (2.45) gives

1

2σ2

(
x′(TU )− µx(TU )

)2
+
(
u0αe

αTU − x′(TU )
) 1

σ2

(
x′(TU )− µx(TU )

)
= 0

or (
x′(TU )− µx(TU )

) (
−x′(TU )− µx(TU ) + 2u0αe

αTU
)

= 0. (2.50)

Taking into account (2.47), it follows that x′(TU ) − µx(TU ) = −2µC2e
−µTU and hence, if the first factor

of (2.50) were to vanish, this would imply that C2 = 0. This in turn implies, in view of (2.47), (2.48), and
(2.49), that x(T ) = x0e

µTU = u0e
αTU which is impossible since x0 < u0 and µ < α. Hence (2.50) implies

u0e
αTU =

µ

α
C1e

µTU . (2.51)

From (2.44) and (2.51) we obtain

C1 + C2 = x0

C1

(
1− µ

α

)
eµTU + C2e

−µTU = 0

whence it follows that

C1 =
x0e

−µTU(µ
α − 1

)
eµTU + e−µTU

, C2 =
x0
(µ
α − 1

)
eµTU(µ

α − 1
)
eµTU + e−µTU

. (2.52)

From (2.47) and (2.51) we obtain the following equation(
α

µ
− 1

)
e(µ+α)TU − α

µ
e(α−µ)TU +

x0
u0

= 0. (2.53)
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which must be satisfied by the optimal hitting time TU . In fact we will show that this equation has a unique
solution, i.e. TU is the unique solution of (2.13): Indeed, with ϕU (t) as defined in (2.13) we have ϕU (0) = 1,
limt→∞ ϕU (t) = −∞, and ϕ′

U (t) = −α−µ
µ e(µ+α)t

(
µ+ α(1− e−2µt)

)
< 0 for all t ≥ 0.

An alternative expression for C1, C2, taking into account (2.53) is

C1 = u0
α

µ
e(α−µ)TU , C2 = u0

(
1− α

µ

)
e(α+µ)TU . (2.54)

Using (2.47) and (2.52) we obtain the expression (2.39). If instead we use (2.54) we obtain the alternative
expression for the optimal path

x(t) = u0e
αTU

[
α

µ
e−µ(TU−t) −

(
α

µ
− 1

)
eµ(TU−t)

]
. (2.55)

From the above we obtain the rate function IU given in (2.38). and hence, on a practical note, the proba-
bility that the OU process reaches the upper boundary satisfies approximately

logP(sup
t≥0

Xt − u0e
αt ≥ 0) ≈ −IU .

The quality of this approximation improves as σ becomes smaller. Note in particular that the value of TU does
not depend on σ as is clear from (2.53). Alternative expressions for the rate IU , using (2.53) are, of course,
possible. For instance,

IU =
µ

σ2

(
u0e

(α−µ)TU − x0
)2

1− e−2µTU
=

µ

σ2
u20

(
1− µ

α

)2
e2αTU

(
e2µTU − 1

)
. (2.56)

There remains to show that the optimal path obtained in (2.55) also satisfies the inequality constraints
v0e

βt < x(t) < u0e
αt for t ∈ [0, TU ). Indeed

x(t)− x0e
µt = x0

e−µ(TU−t) −
(
1− µ

α

)
eµ(TU−t)

e−µTU −
(
1− µ

α

)
eµTU

− x0e
µt =

2
(
1− µ

α

)
eµTU sinhµt

e−µTU −
(
1− µ

α

)
eµTU

= 2u0

(
α

µ
− 1

)
e(µ+α)t sinhµt > 0 for t > 0.

Since v0e
βt < x0e

µt for all t > 0 the above inequality implies x(t) > v0e
βt = V (t) for t ∈ [0, TU ).

Next, define the function f(t) := u0e
αt − x(t) for t ∈ [0, TU ]. Note that f(0) = u0 − x0 > 0 and

f(TU ) = 0. Also f ′(0) = α
(
e−αTU − e−µTU

)
− (α − µ)eµTU < 0 (since µ < α). Finally, f ′′(t) =

−αµeµ(t−TU ) + α2eα(t−TU ) + µ(α − µ)eµ(TU−t) > 0 for all t ∈ [0, TU ]. Thus f is convex on [0, TU ] and
hence, since f(TU ) = 0, the inequality constraint f(t) > 0 holds on [0, TU ] provided that f ′(T ) < 0. Indeed
f ′(t) = −αe−µ(t−TU )+αeα(t−TU )− (α−µ)e(TU−t) and hence f ′(TU ) = −α+µ < 0. Therefore the critical
path x(t) satisfies the inequality x(t) < U(t) as well, for all t ∈ [0, T ).

Intuitively, the uniqueness of the solution of (2.53) makes sense. If TU is very small the noise factor Wt

must exhibit an extremely unlikely behavior in order for the OU process to rise to the level of the upper curve
U(t). So having more time available makes the rare event of hitting the upper boundary more likely. But if
TU is too large, because of the difference in the rates of the two processes, again hitting the upper boundary
becomes extremely unlikely. Also, in some cases, in the infinite horizon problem, an infimum may exist but
no minimum. The rate function I is not ”good” and compactness fails. In practical terms, the more time
available the more likely it is that the noise term will cause the diffusion path to hit the deterministic boundary
curve.
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Figure 4: An Ornstein-Uhlenbeck process evolving between an upper and a lower exponential bound.

Figure 5: The black line is a typical path of an OU process with µ = 1, σ = 1 and starting point x0 = 2.
The blue curve is the lower exponential bound v0e

βt with v0 = 1 and β = 0.8. The meeting T obtained by
solving numerically (2.10) is equal to 1.0621. Finally the red optimal (large deviation) path is obtained from
(2.37)

In Figures 6, 7, we consider the OU process dXt = Xt + dWt, with X0 = x0, (with the value of the
parameters µ = 1, σ = 1) and the lower and upper bounds v(t) = 0.5e0.5t, u(t) = 2e1.3t. (Thus α = 1.3,
u0 = 2, β = 0.5 and v0 = 0.5.) In Figure 5 the optimal value of T that corresponds to the solution of the
optimization problems of section 2.3 (equations (2.10) and (2.13)).

3 More general models

3.1 Ornstein-Uhlenbeck with a general linear drift

Here we consider the Ornstein-Uhlenbeck process with a more general drift. This is important since it arises
as a diffusion approximation in the risk models with interest rates considered in the Introduction. Consider
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Figure 6: The system under consideration is an OU process with µ = 1, σ = 1 and initial position x0. The
red line is the “optimal hitting time” for the upper curve u0e

αt with u0 = 2, α = 1.3, i.e. the solution of
(2.13). Note that this optimal time decreases to zero as x0 increases to u0 = 2. Respectively, the blue line
is the corresponding ”optimal hitting time” for the lower curve v0e

βt, β = 0.5, v0 = 0.5, i.e. the solution of
(2.10). In this case the optimal time increases as the distance of x0 from v0 increases.

Figure 7: The OU process and the upper and lower curves are as in Figure 6. The red line is a plot of the
optimal rate IU for hitting the upper curve in the infinite horizon problem given by (2.38). Correspondingly,
the blue line gives the plot of the optimal rate for hitting the lower curve, IV , given by (2.36). The point of
intersection of the two curves corresponds to the initial condition x0 for which the exponential rate for the
probability of hitting the upper curve is equal to that for the lower curve.

the SDE
dXt = (µXt + r)dt+ σdWt, X0 = x0.

The upper limit is U(t) = u0e
αt. We assume that u0 > x0 and µ < α. In the deterministic limit, when

σ → 0, one obtains the Ordrinary Differential Equation d
dtx(t) = µx(t) + r which has the solution x(t) =

x0e
µt + r

µ(e
µt − 1). To ensure that we remain in range of applicability of Large Deviation results we will
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need to ensure that the deterministic solution remains strictly below the upper bound, U(t) for all t ≥ 0. Let

ϕ(t) := U(t)− x(t) = u0e
αt −

(
x0 +

r

µ

)
eµt +

r

µ
. (3.1)

Then we must have
inf
t≥0

ϕ(t) > 0. (3.2)

We will make the additional assumption that

r < u0(α− µ). (3.3)

This assumption ensures that (3.2) holds. Indeed, ϕ(0) = u0 − x0 > 0 and

ϕ′(t) = eµt
[
u0αe

(α−µ)t − x0µ− r
]
.

Then,
u0αe

(α−µ)t − x0µ− r ≥ u0α− x0µ− r > u0α− x0α− r > 0

and hence (3.2) holds.

The action functional is
1

2σ2

∫ T

0

(
x′ − µx− r

)2
du.

The Euler-Lagrange differential equation Fx − d
dtFx′ = 0 reduces to

x′′ − µ2x− µr = 0.

Its general solution is
x(t) = C1e

µt + C2e
−µt − r

µ
. (3.4)

The boundary conditions are

x0 = C1 + C2 −
r

µ
(3.5)

u0e
αT = C1e

µT + C2e
−µT − r

µ
. (3.6)

The transversality condition that must be satisfied by a critical path meeting the curve U(t) := u0e
αt at T is

F + (U ′(T )− x′(T ))Fx′ = 0 or (x′ − r − µx)
(
−x′ − r − µx+ 2u0e

αT
)
= 0

which, using (3.4), reduces to
C2

(
u0αe

αT − µC1e
µT
)

= 0. (3.7)

The above equation leads to the examination of two cases:

Case 1. C2 = 0. Using this value in (3.5), (3.6), and eliminating C1 among them gives

u0e
αT −

(
x0 +

r

µ

)
eµT +

r

µ
= 0. (3.8)

This equation corresponds to the requirement ϕ(T ) = 0 for the function defined in (3.1) which is impossible.
Hence C2 = 0 is impossible.
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Case 2. u0αeαT − µC1e
µT = 0. This, together with (3.6) gives

u0

(
1− α

µ

)
eαT = C2e

−µT − r

µ
. (3.9)

Using this, (3.5), (3.6), give

C1 + C2 = x0 +
r

µ
(3.10)

C1e
µT + C2e

−µT = u0e
αT +

r

µ
. (3.11)

The above system has the solution

C1 =
e−µT

(
x0 +

r
µ

)
−
(
u0e

αT + r
µ

)
e−µT − eµT

, C2 =
u0e

αT + r
µ − eµT

(
x0 +

r
µ

)
e−µT − eµT

,

Using this, (3.9) reduces to

u0

(
α

µ
− 1

)
e(α+µ)T − u0

α

µ
e(α−µ)T − r

µ
eµT + x0 +

r

µ
= 0. (3.12)

Under Assumption (3.3) i.e. if the drift term r is either negative or, if positive, not too large the above equation
has a unique solution which determines T .

Define

f(t) = u0

(
α

µ
− 1

)
et(α+µ) − u0

α

µ
e(α−µ)t − r

µ
eµt + x0 +

r

µ

f(0) = x0 − u0 < 0.

Also limt→∞ f(t) = +∞.

f ′(t) = (α+ µ)u0

(
α

µ
− 1

)
et(α+µ) − u0

α

µ
(α− µ)e(α−µ)t − reµt.

f ′(0) = u0(α− µ)− r.

Under the assumption f ′(0) > 0. We will show that the condition implies f ′(t) > 0 for all t > 0.

e−µtf ′(t) =: g(t) = (α+ µ)u0

(
α

µ
− 1

)
eαt − u0

α

µ
(α− µ)e(α−2µ)t − r

g(0) = f ′(0) = u0(α− µ)− r > 0.

g′(t) =
α

µ
eαt(α− µ)u0

(
α+ µ− (α− 2µ)e−2µt

)
> 0 for all t ≥ 0.

This implies the uniqueness of the solution of (3.12).

Then

x′(T ) = µ
−2(x0 +

r
µ) +

(
u0e

αT + r
µ

) (
eµT + e−µT

)
eµT − e−µT

. (3.13)

The condition for this solution to satisfy the inequality constraints as well is

x′(T ) > u0αe
αT .
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This is written as

µ

(
u0e

αT + r
µ

) (
eµT + e−µT

)
− 2(x0 +

r
µ)

eµT − e−µT
> αu0e

αT .

This is equivalent to

r

µ

(
eµT + e−µT

)
+ u0e

T (α−µ) − 2(x0 +
r

µ
) > u0e

αT

[(
α

µ
− 1

)
eµT − α

µ
e−µT

]
=

r

µ
(eµT − 1)− x0

the last equation following from (3.12). Hence

r

µ
e−µT + u0e

(α−µ)T > x0 +
r

µ
.

This inequality however is true because it is equivalent to ϕ(T ) > 0 for the function ϕ defined in (3.1), which
is true.

The optimal path is in this case

x(t) =

(
x0 +

r
µ

)
sinh(µ(T − t)) +

(
u0e

αT + r
µ

)
sinh(µt)

sinh(µT )
− r

µ
.

The optimal rate can be obtained from the fact that x′(t)− µx(t)− r = 2C2e
µt and hence

I =
µ

σ2

∫ T

0
4C2

2e
µtdt =

µ

σ2

(
u0e

(α−µ)T − r
µ

(
1− e−µT

)
− x0

)2
1− e−2µT

.

Note, of course, that when r → 0 the above reduces to the value of I given in (2.56).

3.2 A Ruin Problem Involving Two Independent OU Processes

Here we generalize the problem examined in the previous section. The lower (or upper) deterministic expo-
nential boundary now is also considered to be stochastic - in fact another, independent, OU process. We may
thus study the following pair of SDE’s

dXt = αXtdt+ σdWt, X0 = x0 (3.14)

dYt = βYtdt+ bdBt, Y0 = y0. (3.15)

where β < α and y0 < x0. As a result of these inequalities, in the absence of noise, (σ = b = 0) we
would have Yt < Xt for all t. The presence of noise may cause the two curves to meet however. Again, an
exact analysis does not give results in closed form and we obtain low noise logarithmic asymptotics in the
Wentzell-Freidlin framework. Using again Theorem 5.6.7 of [3, p. 214] we obtain a two dimensional version
of (2.7) for the action functional to be minimized:

I =

∫ T

0
F (x, x′, y, y′)dt, F =

1

2

[
1

σ2
(x′ − αx)2 +

1

b2
(y′ − βy)2

]
, (3.16)

The boundary conditions x(0) = x0, y(0) = y0, and x(T ) = y(T ).

We will again tackle the infinite horizon problem directly and solve the moving boundary variational
problem using the appropriate transversality conditions. Thus the first order necessary conditions for an
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extremum are

Fx −
d

dt
Fx′ = 0, Fy −

d

dt
Fy′ = 0 (3.17)

x(T ) = y(T ) (3.18)

Fx′ + Fy′ = 0 at T, (3.19)

F − x′Fx′ − y′Fy′ = 0 at T. (3.20)

The Euler-Lagrange equations (3.17) give x′′−α2x = 0 and y′′−β2y = 0 and thus, x(t) = C1e
αt+C2e

−αt

and y(t) = C3e
βt + C4e

−βt with boundary conditions

C1 + C2 = x0, C3 + C4 = y0, and C1e
αT + C2e

−αT = C3e
βT + C4e

−βT . (3.21)

The first transversality condition, (3.19) gives
1

σ2
(x′(T )− αx(T )) +

1

b2
(y′(T )− βy(T )) = 0 (3.22)

or
α

σ2
C2e

−αT +
β

b2
C4e

−βT = 0. (3.23)

The second transversality condition (3.20), after routine algebraic manipulations, gives

x′Fx′ + y′Fy′ − F =
1

2σ2
(x′ − αx)(x′ + αx) +

1

2b2
(y′ − βy)(y′ + βy) = 0.

The above, in view of (3.22), becomes(
x′(T )− αx(T )

) (
x′(T ) + αx(T )− y′(T )− βy(T )

)
= 0.

If the first factor is zero then, in view of (3.22), we obtain

x′(T )− αx(T ) = 0, y′(T )− βy(T ) = 0.

In view of the fact that x′(T ) − αx(T ) = −2αC2e
−αT this translates into C2 = 0 and similarly y′(T ) −

βy(T ) = −2βC4e
−βT = 0 implies C4 = 0. Hence x(t) = x0e

αT , y(t) = y0e
βT , and x(T ) = y(T ) implies

that x0eαT = y0e
βT or e(α−β)T = y0

x0
. Since α− β > 0 and y0/x0 < 1 it is impossible to find T > 0 which

satisfies this last equation.

The alternative solution is
x′(T ) + αx(T ) = y′(T ) + βy(T ). (3.24)

Note that
x′(T ) + αx(T ) = 2αC1e

αT , y′(T ) + βy(T ) = 2βC3e
βT

and hence (3.24) gives
αC1e

αT = βC3e
βT . (3.25)

Determination of the optimal path. Displays (3.21), (3.23), and (3.25) provide the following five equa-
tions to determine the five unknown quantities, Ci, i = 1, . . . , 4, and T :

C1 + C2 = x0 (3.26)
α

β
e(α−β)T C1 −

α

β

b2

σ2
e−(α−β)T C2 = y0 (3.27)

C1e
αT + C2e

−αT =
α

β
eαT C1 −

α

β

b2

σ2
e−αT C2 (3.28)

C3 =
α

β
e(α−β)T C1 (3.29)

C4 = −α

β

b2

σ2
e−(α−β)T C2 (3.30)
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From the above we may obtain the values of Ci, i = 1, . . . , 4 in terms of T :

C1 = x0

(
1 + α

β
b2

σ2

)
e−αT(

1 + α
β

b2

σ2

)
e−αT +

(
α
β − 1

)
eαT

, C2 = x0

(
α
β − 1

)
eαT(

1 + α
β

b2

σ2

)
e−αT +

(
α
β − 1

)
eαT

,

(3.31)

C3 = y0

(
1 + β

α
σ2

b2

)
e−βT(

1 + β
α

σ2

b2

)
e−βT +

(
β
α − 1

)
eβT

, C4 = y0

(
β
α − 1

)
eβT(

1 + β
α

σ2

b2

)
e−βT +

(
β
α − 1

)
eβT

.

From these we obtain the following expression for the critical path

x(t) = x0

(
1 + α

β
b2

σ2

)
eα(t−T ) +

(
α
β − 1

)
eα(T−t)(

1 + α
β

b2

σ2

)
e−αT +

(
α
β − 1

)
eαT

(3.32)

y(t) = y0

(
1 + β

α
σ2

b2

)
eβ(t−T ) +

(
β
α − 1

)
eβ(T−t)(

1 + β
α

σ2

b2

)
e−βT +

(
β
α − 1

)
eβT

Of course, there remains the task to determine the optimal meeting time T . From the above, when t = T we
have

x(T ) = x0
α(b2 + σ2)

(α− β)σ2eαT + (βσ2 + αb2)e−αT
,

y(T ) = y0
β(b2 + σ2)

(β − α)b2eβT + (βσ2 + αb2)e−βT
.

At the meeting time T , x(T ) = y(T ) and therefore

x0α
[
(β − α)b2eβT + (βσ2 + αb2)e−βT

]
= y0β

[
(α− β)σ2eαT + (βσ2 + αb2)e−αT

]
(3.33)

Determination of the meeting time T . We will show that the above equation determines uniquely T . To
this end, define the function

f(t) := (α− β)
[
y0βσ

2eαt + x0αb
2eβt

]
+ (βσ2 + αb2)

[
y0βe

−αt − x0αe
−βt
]
, t ≥ 0.

It holds that

f(0) = (α− β)
[
y0βσ

2 + x0αb
2
]
+ (βσ2 + αb2) [y0β − x0α]

= αβ(σ2 + b2)(y0β − x0α) < 0

and also limt→∞ f(t) = +∞. Furthermore

f ′(t) = (α− β)αβ
[
y0σ

2eαt + x0b
2eβt

]
+ (βσ2 + αb2)αβ

[
−y0e

−αt + x0e
−βt
]

Clearly f ′(t) > 0 for all t ≥ 0 since
[
−y0e

−αt + x0e
−βt
]
= e−αt

[
−y0 + x0e

(α−β)t
]
> 0 because α > β

and x0 > y0.
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x(t) > y(t) when t ∈ [0, T ). A straight-forward computation (taking into account (3.32), (3.33)) gives

x′(T )− y′(T ) = − x0α(α− β)(σ2 + b2)

(αb2 + βσ2)e−αT + σ2(α− β)eαT
< 0 (3.34)

Thus it can be seen that the path x(·) starts above y(·) at 0, crosses it from above at T and (since α > β)
crosses it again once more at some T ∗ > T . In particular we note that x(t) > y(t) for t ∈ [0, T ), i.e. x
crosses y at T for the first time.

Determination of the rate I . Taking into account that x′(t) − αx(t) = −2αC2e
−αt and similarly y′(t) −

βy(t) = −2βC4e
−βt the rate function becomes

I =
1

2σ2

∫ T

0
4α2C2

2e
−2αtdt+

1

2b2

∫ T

0
4β2C2

4e
−2βtdt =

αC2
2

σ2

(
1− e−2αT

)
+

βC2
4

b2

(
1− e−2βT

)

=

α
σ2

(
1− e−2αT

)
x20

(
α
β − 1

)2
e2αT[(

1 + α
β

b2

σ2

)
e−αT +

(
α
β − 1

)
eαT
]2 +

β
b2

(
1− e−2βT

)
y20

(
β
α − 1

)2
e2βT[(

1 + β
α

σ2

b2

)
e−βT +

(
β
α − 1

)
eβT
]2

or equivalently

I =
α(α− β)2σ2x20

(
e2αT − 1

)
[(α− β)σ2eαT + (βσ2 + αb2)e−αT ]2

+
βy20b

2
(
e2βT − 1

)
(α− β)2

[(αb2 + βσ2) e−βT + (β − α) b2 eβT ]
2 . (3.35)

In particular, when b = 0 and α = µ then the lower OU process becomes a deterministic lower bound and
(3.35) reduces indeed to the right hand side of (2.38), as it should.

Again, as in the proof of Theorem 3 we will show that the solution obtained corresponds to a global
minimum using the fact that F : R4 → R is convex and appealing to Theorem 3.16 [2, p.45]. To establish the
convexity of F (x, x′, y, y′) := 1

2σ2 (x
′ − αx)2 + 1

2b2
(y′ − βy)2 we note that, for any (x0, x

′
0, y0, y

′
0) ∈ R4,

F (x, x′, y, y′)− F (x0, x
′
0, y0, y

′
0) ≥ F 0

x (x− x0) + F 0
x′ (x′ − x′0) + F 0

y (y − y0) + F 0
y′ (y

′ − y′0) (3.36)

where F 0
x is shorthand for Fx(x0, x

′
0, y0, y

′
0) and similarly for the other three such quantities. The above

inequality is equivalent to

1

2σ2

(
x′ − αx

)2
+

1

2b2
(
x′ − βx

)2 − 1

2σ2

(
x′0 − αx0

)2 − 1

2b2
(
x′0 − βx0

)2
≥ − α

σ2

(
x′0 − αx0

)
(x− x0) +

1

σ2

(
x′0 − αx0

)
(x′ − x′0)

− β

b2
(
y′0 − βy0

)
(y − y0) +

1

b2
(
y′0 − βy0

)
(y′ − y′0).

Elementary algebraic manipulations can show the above inequality to be true and therefore establish inequality
(3.36) which implies the convexity of F .

We may thus summarize the above long derivation as follows.

Theorem 5. Consider the pair of Ornstein-Uhlenbeck SDE’s depending on a parameter ϵ > 0

dXϵ
t = αXϵ

t dt+
√
ϵσdWt, Xϵ

0 = x0,

dY ϵ
t = βY ϵ

t dt+
√
ϵbdBt, Y ϵ

0 = y0.
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Assume that 0 < y0 < x0 and 0 < β < α. Let T ϵ := inf{t ≥ 0 : Xϵ
t = Y ϵ

t } (with the standard convention
that T ϵ = +∞ if the set is empty). Then

lim
ϵ→0

ϵ logP(T ϵ < ∞) = −I

where I is given by (3.35). If this rare event occurs then the meeting path followed by the two processes is
given by (3.32) and the meeting time T is the unique solution of (3.33).

4 Geometric Brownian Motion

In this section, an analysis of the problems we examined for the Ornstein-Uhlenbeck process is repeated for
the Geometric Brownian motion. The approach followed and the techniques used are analogous to those of
section 2. The reason for treating the Geometric Brownian motion in some detail here is due to its great
importance in applications but also to the fact that in this case an analytic solution for the types of ruin
problems we consider can be obtained. As a result, the accuracy and merit of the large deviation estimates we
obtain may be gauged. This is carried out in this section.

4.1 The Finite Horizon Problem

Suppose that {Xt; t ≥ 0} is a Geometric Brownian motion satisfying the Stochastic Differential Equation

dXt = µXtdt+ σXtdWt, X0 = x0 w.p. 1. (4.1)

As is well known this has the closed form solution

Xt = x0e
(µ− 1

2
σ2)t+σWt . (4.2)

Let u0 > x0 and α > µ. Then the event {Xt ≥ u0e
at for some t ≤ T} is an event whose probability goes

to 0 as σ → 0. Our goal is to obtain low variance Wentzell-Freidlin asymptotics for this finite horizon hitting
probability. For reasons of notational compatibility we introduce the parametrized process

dXϵ
t = µXϵ

t dt+
√
ϵσXϵ

t dWt, Xϵ
0 = x0 w.p. 1. (4.3)

Theorem 6. For the parametrized process {Xϵ
t },

lim
ϵ→0

ϵ logP

(
sup

0≤t≤T

(
Xϵ

t − u0e
αt
)
≥ 0

)
= −I(T ). (4.4)

The rate function I(T ) is given by
I(T ) := min

0≤t≤T
J∗(t) (4.5)

where J∗(t) is solution to the minimization problem

J∗(t) = min
{
J(x, t) : x ∈ H, x(0) = x0, x(t) = u0e

αt, x(s) < u0e
αs, s ∈ [0, t)

}
. (4.6)

where H =
{
h : [0, t] → R : h(s) = h(0) +

∫ s
0 ϕ(ξ)dξ , s ∈ [0, t], ϕ ∈ L2[0, t]

}
and J(x, t) is the action

functional

J(x, t) :=
1

2

∫ t

0

(
x′(s)− µx(s)

σx(s)

)2

ds =
1

2σ2

∫ t

0

(
(log x(s))′ − µ

)2
ds. (4.7)
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This theorem is of course a consequence of the Wentzell-Freidlin theory. The minimizing path x(t) can
be easily obtained in this case either using the full machinery of the Euler-Lagrange differential equations, or
simply by observing that the functional J(x, t) is minimized when (log x)′ is constant, say c, or equivalently
when log x(s) = B + cs for some B ∈ R and s ∈ [0, t]. This in turn implies that x(s) = Kecs with
x(0) = x0 = K and x(t) = x0e

ct = u0e
αt whence we conclude that the function that minimizes the action

functional under the boundary conditions is

x(t) = x0e
ct where c = α+

1

t
log

u0
x0

. (4.8)

It is easy to see that the above path satisfies the constraint x(s) < u0e
αs for s ∈ [0, t). The corresponding

minimum action is then

J∗(t) =
t

2σ2

(
α− µ+

1

t
log

u0
x0

)2

or

J∗(t) = t
(α− µ)2

2σ2
+ 2

(α− µ) log u0
x0

2σ2
+

1

t

(log u0
x0
)2

2σ2
.

The value of t that minimizes the above expression is

tmin =
log u0

x0

α− µ

and the corresponding minimum is
2(α− µ) log u0

x0

σ2
.

Thus the rate function is

I(T ) =


2(α−µ) log

u0
x0

σ2 if tmin < T

T
2σ2

(
α− µ+ 1

T log u0
x0

)2
if tmin ≥ T

(4.9)

and, based on Theorem 6, we conclude that

− logP

(
sup

0≤t≤T
(Xt − u0e

at) ≥ 0

)
≈ I(T ). (4.10)

The above approximation is satisfactory provided that σ is sufficiently small. We assess its quality in the next
subsection taking advantage of the fact that an exact, closed form solution also exists in this situation.

4.2 The exact solution

Consider the GBM Xt = x0e
(µ− 1

2
σ2)t+σWt and the corresponding finite horizon hitting probability

pT := P

(
sup

0≤t≤T
(Xt − u0e

at) ≥ 0

)
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where, as before α > µ and 0 < x0 < u0. Since the event (Xt−u0e
αt) ≥ 0 is the same as Xte

−αt−u0 ≥ 0,
we will determine, equivalently the probability

pT = P

(
sup

0≤t≤T
x0e

(µ− 1
2
σ2−a)t+σWt ≥ u0

)
= P

(
sup

0≤t≤T
(µ− 1

2
σ2 − α)t+ σWt ≥ log

u0
x0

)

= 1− Φ

 log
(
u0
x0

)
− (µ− α− 1

2σ
2)T

σ
√
T


+e

2
σ2 (µ−α− 1

2
σ2) log

(
u0
x0

)
Φ

− log
(
u0
x0

)
− (µ− α− 1

2σ
2)T

σ
√
T

 (4.11)

Here, Φ(x) :=
∫ x
−∞

1√
2π

e−
1
2
u2

du, the standard normal distribution function. The above exact formula for
pT allows us to evaluate the accuracy of the approximation (4.10). Figure 11 shows again −σ2 log pT together
with the Wentzell-Freidlin asymptotic result when σ → 0. One may see that approximation (4.10) may be
considered satisfactory, provided that σ is small.

4.3 The Infinite Horizon Problem

The exact value of the infinite horizon hitting probability can be obtained from (4.11) by letting T → ∞. This
gives

lim
T→∞

pT =: p∞ = exp

(
2

σ2
(µ− 1

2
σ2 − α) log

u0
x0

)
.

Returning to the parametrized version of the problem, concerning the family of processes {Xϵ
t } defined in

(4.3), the corresponding infinite horizon hitting probability is

pϵ∞ = exp

(
2

ϵσ2
(µ− 1

2
ϵσ2 − α) log

u0
x0

)
and therefore

lim
ϵ→0

ϵ log pϵ∞ = − 2

σ2
(α− µ) log

u0
x0

. (4.12)

This, as we will see, is the same as the result obtained from Wentzell-Freidlin theory.

Theorem 7. For the parametrized process {Xϵ
t },

lim
ϵ→0

ϵ logP
(
sup
t≥0

(
Xϵ

t − u0e
αt
)
≥ 0

)
= −I(∞) (4.13)

where the rate function I(∞) is the solution to the infinite horizon variational problem

inf
{
J(x, T ) : x ∈ H, x(s) < u0e

αs, 0 ≤ s < T, x(0) = x0, x(T ) = u0e
αT
}

(4.14)

where J(x, t) := 1
2

∫ t
0

(
(log x(u))′ − µ

)2
du and H is again the Cameron-Martin space of absolutely contin-

uous functions with square-integrable derivatives. In fact, the rate function for the infinite horizon problem
is

I(∞) = 2
α− µ

σ2
log

u0
x0

, (4.15)
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the optimal time horizon is

T =
log u0

x0

α− µ
, (4.16)

and the optimal path that achives the minimum is

x∗(t) = x0e
2α−µt, t ∈ [0, T ]. (4.17)

Figure 8 provides an illustration of the above result.

Figure 8: Simulated sample path for α = 1, x0 = 1, u0 = 2 and σ = 0.15. The red curve is the exponential
target curve u0eαt. The green curve is optimal path predicted by Large Deviations theory and given by x∗(t) =
x0e

(2α−µ)tt. Both a typical path and an extreme path of the Geometric Brownian motion are displayed. The
extreme path was generated by simulating a large number of paths (≈ 105) and selecting one that hit the
target, i.e. reached the red curve. As expected it follows closely the green curve. The smaller the variance the
smaller the probability of hitting the target and the closer the agreement with the theoretical path.

The optimization problem of Theorem 7 can of course be solved using the finite horizon analysis as a basis.
However we prefer to use standard techniques of the calculus of variations for infinite horizon problems with
the final value of the path constrained to lie on a prescribed curve using the transversality conditions

min

∫ T

0
F (x, x′, t)dt, with boundary conditions x(0) = x0, and x(T ) = u(T )

with F (x, x′, t) =
1

2σ2

(
x′

x
− µ

)2

. (4.18)

In the above u(t) = u0e
αt is a given boundary curve with x0 < u0 and x is a C1[0,∞) function which
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minimizes the “action” integral given the boundary conditions in (4.18). The conditions for a minimum is

Fx −
d

dt
Fx′ = 0 (4.19)

x(0) = x0 and x(T ) = u(T ) (4.20)

F + (u′ − x′)Fx′ = 0 at T. (4.21)

The first equation is the Euler-Lagrange DE of the Calculus of Variations. Equation (4.21) is known as the
transversality condition resulting from the fact that the end time T is not fixed but is itself to be chosen
optimally, under the restriction that x(T ) = u(T ). Then the Euler-Lagrange equation (4.19) becomes

2

x3
(
(x′)2 − x′′x

)
= 0

or equivalently

x′

x
=

x′′

x′
⇔

(
log x′

)′ − (log x)′ = 0 ⇔ log x′ − log x = c1 ⇔ x′

x
= γ.

Hence
x(t) = x0e

γt. (4.22)

The transversality condition (4.21) reduces to(
x′(T )

x(T )
− µ

) (
x′(T )

x(T )
− µ+

(
u0αe

αT − x′(T )
) 2

x(T )

)
= 0

and taking into account (4.22) we obtain either µ = γ or

γ − µ+ 2α
u0
x0

e(α−γ)T − 2γ = 0

or
2α

u0
x0

e(α−γ)T = µ+ γ. (4.23)

Equation (4.20) gives x0eγT = u0e
αT and therefore

e(α−γ)T =
x0
u0

. (4.24)

From (4.23) and (4.24) we have
γ = 2α− µ (4.25)

The solution of the variational process that minimizes the action functional I and satisfies the boundary
conditions yields the optimal path xt = x0e

(2α−µ)t and the rate function

I = 2
α− µ

σ2
log

u0
x0

and T =
log u0

x0

α− µ
.

It is worth pointing out that, in this case, a closed form analytic expression can also be obtained. The
solution of the SDE is Xϵ

t = x0e
(µ− 1

2
ϵσ2)t+

√
ϵσWt and one may show that

lim
ϵ→0

ϵ logP
(
sup
t≥0

(Xϵ
t − u0e

αt) ≥ 0

)
= − 2

σ2
(α− µ) log

u0
x0

.

The exact solution agrees with the Wentzell-Freidlin asymptotic result. In Figure 8 the extreme path was
selected by simulating a large number of paths and picking the largest among them.
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4.4 Two Correlated Geometric Brownian Motions

Suppose that Wt, Vt, are independent standard Brownian motions and ρ ∈ [−1, 1]. Set Bt = ρWt +√
1− ρ2 Vt. Then (Wt, Bt) are correlated Brownian motions with correlation ρ. Consider now the processes

dXt = αXtdt+ σXtdWt, X0 = x0,

dYt = βYtdt+ bYtdBt, Y0 = y0.

We will assume that α > β and x0 > y0 > 0. Thus, in the absence of noise one would have Xt > Yy for
all t > 0. In the presence of noise however the probability that XT = YT for some T > 0 is non-zero. The
second equation can be written equivalently as

dYt = βYtdt+ ρbYtdWt +
√

1− ρ2bYtdVt.

Using once more Theorem 5.6.7 of [3, p. 214] we obtain again a two dimensional version of (2.7) for the
action functional to be minimized:

I =
1

2

∫ T

0

(
x′ − αx

xσ

)2

+
1

1− ρ2

(
y′ − βy

yb
− ρ

x′ − αx

xσ

)2

dt (4.26)

This of course can be justified by appealing to the multidimensional version of (2.7) as we have already seen.
Set

F =
1

2σ2

(
x′

x
− α

)2

+
1

2(1− ρ2)

(
1

b

(
y′

y
− β

)
− ρ

σ

(
x′

x
− α

))2

(4.27)

The conditions for minimum are

Fx −
d

dt
Fx′ = 0 (4.28)

Fy −
d

dt
Fy′ = 0 (4.29)

x(T ) = y(T ) (4.30)

Fx′ + Fy′ = 0 at T, (4.31)

F − x′Fx′ − y′Fy′ = 0 at T. (4.32)

Then, after some routine algebraic operations, (4.28) becomes

1

x

[
b2

(
x′′

x
−
(
x′

x

)2
)

− ρbσ

(
y′′

y
−
(
y′

y

)2
)]

= 0

which gives b2(log x)′′ − ρbσ(log y)′′ = 0. Similarly (4.29) gives σ2(log y)′′ − ρbσ(log x)′′ = 0. These
equations together imply that (log x)′′ = (log y)′′ = 0 whence we obtain x′

x = c1 and y′

y = c2 for arbitrary
c1, c2, and hence

x(t) = x0e
c1t, y(t) = y0e

c2t. (4.33)

Condition (4.30) gives
x0e

c1T = y0e
c2T . (4.34)

Taking into account that x′

x = c1 and similarly y′

y = c2, condition (4.31) gives

1

x0ec1T
[
b2 (c1 − α)− ρbσ (c2 − β)

]
+

1

y0ec2T
[
σ2(c2 − β)− ρbσ(c1 − α)

]
= 0
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Setting u1 = c1 − α, u2 = c2 − β, we rewrite the above b2u1 − ρbσu2 + σ2u2 − ρbσu1 = 0. This gives

u2 = λu1 with λ =
b

σ

ρσ − b

σ − ρb
(4.35)

Finally, from (4.32),

b2u21 + σ2u22 − 2ρbσu1u2 − 2c1
[
b2u1 − ρbσu2

]
− 2c2

[
σ2u2 − ρbσu1

]
= 0

or
−u21

[
b2 + σ2λ2 − 2ρbσλ

]
+ 2u1

[
−αb2 + βρbσ − λβσ2 + λαbσρ

]
= 0.

Besides the solution u1 = 0 which means (c1 = α), we obtain

u1 = − 2

b2 + σ2λ2 − 2ρbσλ

(
αb2 + aλσ2 − ρbσ(a+ λα)

)
.

After routine algebraic manipulations we obtain

u1 = 2(β − α)
σ(σ − ρb)

σ2 + b2 − 2ρbσ
, u2 = 2(β − α)

b(ρσ − b)

σ2 + b2 − 2ρbσ
. (4.36)

From (4.27) and (4.36), together with the definition of u1, u2,

F =
1

2b2σ2(1− ρ2)

[
b2u21 + σ2u22 − 2ρbσu1u2

]
=

2(β − α)2

σ2 + b2 − 2ρbσ
. (4.37)

Thus, since

T =
1

α− β
log

(
x0
y0

)
,

the optimal rate is

I =
2(α− β) log

(
x0
y0

)
σ2 + b2 − 2ρbσ

. (4.38)

Exact analysis for two correlated Brownian motions

An exact analysis is again possible here. Suppose

Xϵ
t = x0e

(α− 1
2
σ2
ϵ )t+σϵWt , Y ϵ

t = y0e
(β− 1

2
b2ϵ)t+bϵBt ,

are two families of Geometric Brownian Motions, indexed by a positive parameter ϵ. We will assume that
σϵ = σ

√
ϵ and, similarly, be = b

√
ϵ. Assuming that α > β and x0 > y0 and that {Wt}, {Bt} are standard

Brownian motions with correlation ρ as in section 4.4, we are interested in obtaining an expression for the
probability

P(Tϵ < ∞) where Tϵ = inf{t > 0 : Y ϵ
t > Xϵ

t }. (4.39)

The condition Y ϵ
t > Xϵ

t is equivalent to(
α− β +

1

2
(b2ϵ − σ2

ϵ )

)
t+ σϵWt − bϵBt < log

y0
x0

.
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Figure 9: Two independent Geometric Brownian Motions.

Set log y0
x0

= −u, γϵ := α − β + 1
2(b

2
ϵ − σ2

ϵ ) and θϵ :=
√
σ2
ϵ + b2ϵ − 2ρbϵσϵ. If {W̃t} is standard Brownian

motion, then (4.39) becomes

P(Tϵ < ∞) = P
(
inf
t≥0

(γϵt+ θϵW̃t) < −u

)
. (4.40)

Since α > β, when ϵ is sufficiently small, γϵ > 0 regardless of the values of σ and b. Therefore (see [16])
(4.40) becomes

P(Tϵ < ∞) = e
−u 2γϵ

θ2ϵ = e
log

y0
x0

2(α−β)+(b2ϵ−σ2
ϵ )

σ2
ϵ+b2ϵ−2ρbϵσϵ .

It therefore follows that

lim
ϵ→0

ϵ logP(Tϵ < ∞) = log
y0
x0

lim
ϵ→0

2(α− β) + (b2ϵ − σ2
ϵ )

ϵ−1 (σ2
ϵ + b2ϵ − 2ρbϵσϵ)

= log
y0
x0

2(α− β)

σ2 + b2 − 2ρbσ
.

This result of course agrees with (4.38).

5 Appendix

5.1 A time-change approach to the Ornstein-Uhlenbeck ruin problem

Consider the two sided problem
dXt = µXtdt+ σdWt, X0 = x0

with an upper boundary given by the curve U(t) := u0e
αt and a lower boundary given by V (t) := v0e

βt. We assume
that 0 < v0 < x0 < u0 and 0 < β < µ < α. We are interested in the hitting time T = inf{t ≥ 0 : XT ≥
U(T ) or XT ≤ V (T )}. (Of course, if the set is empty, the hitting time is equal to +∞ corresponding to the case where
the process never exits from one of the two boundary curves.) The Ornstein-Uhlenbeck process has the solution

X0 = x0e
µt + σ

∫ t

0

eµ(t−s)dWs
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The condition
V (t) < Xt < U(t)

is equivalent to e−µtV (t) < e−µtXt < e−µtU(t) or

v0e
−(µ−β)t < x0 + σ

∫ t

0

e−sµdWs < u0e
(α−µ)t. (5.1)

The stochastic integral ξ(t) := σ
∫ t

0
e−sµdWs is a Gaussian process with independent intervals and variance function

Var(ξ(t)) = σ2

∫ t

0

e−2µsds =
σ2

2µ

(
1− e−2µt

)
.

Note that the limit limt→∞ Var(ξ(t)) = σ2

2µ is finite. Consider the time change function τ(t) defined by

τ(t) =
σ2

2µ

(
1− e−2µt

)
, t ∈ [0,∞) (5.2)

The inverse function (which necessarily exists since Var(ξ(t)) is an increasing function) is

t(τ) = log

(
1− 2µτ

σ2

)
, τ ∈

[
0,

σ2

2µ

)
(5.3)

Applying this change of time to the double inequality (5.1) we obtain

v0e
−(µ−β) log(1− 2µτ

σ2 ) < x0 + σ

∫ log(1− 2µτ

σ2 )

0

e−sµdWs < u0e
(α−µ) log(1− 2µτ

σ2 ), τ ∈
[
0,

σ2

2µ

)
.

However, W̃τ := σ
∫ log(1− 2µτ

σ2 )
0 e−sµdWs is standard Brownian motion. (It can easily be seen that it is a continuous

martingale with quadratic variation function ⟨W̃ ⟩τ = τ .) Thus we have the equivalent problem

v0

(
1− 2µτ

σ2

)µ−β
2µ

< x0 + W̃τ < u0

(
1− 2µτ

σ2

)−α−µ
2µ

, τ ∈
[
0,

σ2

2µ

)
. (5.4)

In general, the passage time – hitting probability problem associated with (5.4) must be solved numerically. Of
course the time change transformation may have computational advantages. There is a great deal of work, both theo-
retical and applied, regarding passage times and hitting probabilities of Brownian motion with curving boundaries. In
the special case where α = β = µ an exact solution exists. In general we have not been able to obtain closed form
expressions even with a single boundary even in the few cases where exact solutions are known, such as for a parabolic

boundary: When β = 0 then the time-changed lower bound is v0

√
1− 2µτ

σ2 . While this is a parabolic boundary, the
results that have obtained for this case, [23], [24], apply when it acts as an upper and not a lower boundary. Therefore,
the exact solution in this case is not known, to the best of our knowledge.

A two–boundary case: α = β = µ. In that case (5.4) becomes

v0 − x0 < W̃τ < u0 − x0, τ ∈
[
0,

σ2

2µ

)
.

The exact probability of never exiting either boundary, can be obtained from the well known expression for the den-
sity of standard Brownian motion (starting at zero) with absorbing boundaries at a, b, (a, b > 0). If p(x, t)dx :=
P (Wt ∈ (x, x+ dx); −b < Ws < a, 0 ≤ s ≤ t), then, (see [16, p.222])

p(x, t) =

∞∑
n=1

2

a+ b
sin

(
nπb

a+ b

)
e−λnt sin

(
nπ

x+ b

a+ b

)
,

where λn =
1

2

n2π2

(a+ b)2
, n = 1, 2, . . . .
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Figure 10: Time-change in an Ornstein-Uhlenbeck ruin problem.

Then

P (−b < Ws < a, for 0 ≤ s ≤ t) =

∫ a

−b

p(x, t)dx,

and in our case −b = v0 − x0, a = u0 − x0, t = σ2

2µ . Hence,

P
(
−b < Ws < a, 0 ≤ s ≤ σ2

2µ

)
(5.5)

=

∞∑
k=0

4

(2k + 1)π
exp

(
− (2k + 1)2π2σ2

2(u0 − v0)2µ

)
sin

(2k + 1)π(x0 − v0)

u0 − v0
.

5.2 The paths x(·) and V (·).

Here we refer to part 3 of the proof of Theorem 3. The comparison between the slope of the optimal path x(·) and V (·)
at the intersection point t is given by the following

Proposition 8.

sgn(x′(t)− V ′(t)) =

 −1 if t < t2
0 if t = t2

+1 if t > t2

(5.6)

where t2 is the unique solution of the equation ϕ2(t) = 2x0

v0
with

ϕ2(s) :=

(
1− β

µ

)
e(β+µ)s +

(
1 +

β

µ

)
e(β−µ)s. (5.7)

Also,
t1 < toV < t2 (5.8)

where t1 is defined in (2.30) and toV in (2.26).

Proof. Taking into account (2.22), x′(t)− V ′(t) = µ
v0e

βt(eµt+e−µt)−2x0

eµt−e−µt − βv0e
βt and hence

x′(t)− V ′(t) < 0 ⇔
(
1− β

µ

)
e(β+µ)t +

(
1 +

β

µ

)
e(β−µ)t < 2

x0

v0
. (5.9)
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Defining the function ϕ2 via (5.7) we note that ϕ′
2(s) = (µ2 − β2) 2µe

βs sinh(µs) > 0 for all s ≥ 0 and ϕ2(0) = 2.
Hence, the equation ϕ2(s) = 2x0

v0
has a unique, positive solution, say t2. Since the function ϕ2(s) is continuous and

strictly increasing this establishes (5.6).

Next we will show that
toV < t2. (5.10)

Indeed, using the definition of ϕ1 and to,

ϕ2(t
o
V ) =

(
1− β

µ

)
e(β+µ)toV +

(
1 +

β

µ

)
e(β−µ)toV

= ϕ1(t
o
V ) + e(β−µ)toV <

x0

v0
+ 1 < 2

x0

v0
= ϕ2(t2).

where we have used the fact that β − µ < 0 and that x0 > v0. Then (5.10) follows from the fact that ϕ2 is increasing.

Finally note that ϕ2(t1) = x0

v0

(
1− β

µ +
(
1 + β

µ

)
e−2µt

)
< 2x0

v0
which implies, since ϕ2 is strictly increasing,

(5.8).

Define the function h(s) := x(s)−V (s). We have h(0) = x(0)−V (0) = x0−v0 > 0. Also h(t) = x(t)−V (t) = 0.
We will show that, when t > t1, there are precisely two zeros of the function h on [0,∞), t and τ(t). When t ∈ (t1, t2)
τ(t) > t whereas when t > t2, τ(t) < t. In the special case t = t2, τ(t2) = t2 is the single zero of h at which h′ also
vanishes.

We have
h′(s) = µc1e

µs − µc2e
−µs + βv0e

βs. (5.11)

The following proposition gives some qualitative properties of this function.

Proposition 9. Suppose t > t1. Then there exists s1(t) > 0 such that h′(s) < 0 when s < s1(t), h′(s1) = 0, and
h′(s) > 0 when s > s1(t). Also lims→∞ h′(s) = +∞ and the following holds: There are precisely two values for
which the function h vanishes. One is t while the second we denote by τ(t). If t < s1(t) then τ(t) > t while if t > s1(t)
then τ(t) < t. When t = s1(t) then t = τ(t) and h(t) = h′(t) = 0.

Proof. First we will show that h′(0) < 0. Indeed,

h′(0) = µ(c1 − c2)− βv0 = µ
2v0e

βt − x0(e
µt + e−µt)

eµt − e−µt
− βv0

=
2µ

e2µt − 1
v0e

(β+µ)t − v0β − µx0
e2µt + 1

e2µt − 1

=
2µ

e2µt − 1
v0

(
e(β+µ)t − 1

)
− v0β + v0

2µ

e2µt − 1
− µx0 − x0

2µ

e2µt − 1

=

∫ t

0
e(β+µ)ξdξ∫ t

0
e2µξdξ

(β + µ)v0 − v0β + v0
2µ

e2µt − 1
− µx0 − x0

2µ

e2µt − 1

The ratio of integrals above is seen to be less than one (since β < µ) and hence

h′(0) ≤ (β + µ)v0 − v0β + v0
2µ

e2µt − 1
− µx0 − x0

2µ

e2µt − 1

= (v0 − x0)

(
µ+

2µ

e2µt − 1

)
< 0.

From (5.11) we see that h′(s) = eµsh1(s) with h1(s) := µc1 − µc2e
−2µs + βv0e

−(µ−β)s. Clearly h′(s) and h1(s)
have the same sign. Also, h1(0) = h′(0) < 0 and since c1 > 0, c2 > 0, (the first because t > t2) and µ > β, it follows
that h1(s) is strictly increasing in s and satisfies h1(s) ↑ µc1 > 0 as s ↑ ∞. Therefore there exists a unique s1 > 0 such
that h1(s1) = 0.

We have course h(t) = 0. Since the value of s2 determined in Proposition 8 depends on t we will use the notation
s2(t). Then,
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• If t ∈ (t1, t2) then, from Proposition 8, h′(t) < 0 which implies, in view of the above analysis that s2(t) > t.
This in turn means that τ(t) > s2(t) and hence that t < τ(t).

• If t = t2 then h′(t2) = 0 which implies that s2(t2) = t2.

• If t > t2 then h′(t) > 0 which implies that s2(t) < t and hence that τ(t) < s2(t). Thus in this case τ(t) < t.

This concludes the proof of the proposition.
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Figure 11: Logarithm of Hitting Probability and Comparison with the Wentzell-Freidlin low variance limit

Figure 12: Probability of hitting the upper boundary as a function of time horizon based on the exact solution
(4.11). Here σ = 0.5, x0 = 1, u0 = 1.3, µ = 1. The function is plotted for α = 1.1, 2, 2.5, 3, 3.5.
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Figure 13: Probability of hitting the upper boundary as a function of time horizon based on the exact solution
(4.11). Here x0 = 1, u0 = 1.3, µ = 1 α = 1.1. The function is plotted for σ = 0.2, 0.5, 1, 2, 3.

Figure 14: Probability of hitting the upper boundary as a function of time horizon based on the exact solution
(4.11). Here x0 = 1, α = 1.1, µ = 1 σ = 0.5. The function is plotted for u0 = 1.3, 2, 2.5, 3, 3.5.
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Figure 15: −log Probability of hitting the upper boundary based on the exact solution (4.11). Here x0 = 1,
u0 = 1.3, µ = 1. The upper graph was obtained for σ = 0.05 while the lower for σ = 0.5. The magenta
dotted line gives the value of (the exponent of) the Wentzell-Freidlin approximation.

37



Figure 16: −log Probability of hitting the upper boundary based on the exact solution (4.11). Here x0 = 1,
µ = 1, α = 1.3. The upper graph was obtained for σ = 0.05 while the lower for σ = 0.5. The magenta
dotted line gives the value of (the exponent of) the Wentzell-Freidlin approximation.
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Figure 17: −log Probability of hitting the upper boundary based on the exact solution (4.11). Here x0 = 1,
u0 = 1.3, µ = 1, α = 1.1. The magenta dotted line gives the value of (the exponent of) the Wentzell-Freidlin
approximation.
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