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1. Abstract 
A fairly general method for sensitivity analysis of simula- 

tions is proposed involving the use of compensator identit,ies. 
The  case of a GI/GI/l  queue is discussed in some detail. 
Expressions for the derivatives of s ta te  probabilities tha t  pro- 
vide direct simulation estimates are given for single class closed 
queueing networks with markovian routing. 

2. Introduction 
The problem of sensitivity analysis of simulations has in 

the last few years attracted the attention of a number of 
authors. One of the methods proposed, infinitesitnal perturba- 
tion analysis (e.g. see Ho and Cao, 1983 and Suri and Zazanis. 
1988), involves the direct differentiation of sample performance 
measures. I t  is well known tha t ,  depending on the nature of the  
parameter and the performance measure, the estimates obtained 
in this way may be biased (Heidelberger et  al., 1988). An alter- 
native method using likelihood ratios was proposed by Reiman 
and Weiss (1989), Glynn (198G), and Rubinstein (1989). The  
estimators obtained by this method are unbiased for a wide 
class of systems but in many cases they have large variance. In 
this paper, a general method for derivative estimation is pro- 
posed for a large class of problems tha t  can be cast in a form 
involving stochastic integrals with respect to a counting process. 
I t  uses compensator identities in conjunction with infinitesimal 
perturbation analysis (IPA) techniques t o  provide low variance 
unbiased estimates a t  the expense of additional computational 
requirements. For an earlier paper on the same subject we refer 
the reader t o  Zazanis (1988). 

3. Compensators and sensitivity of simulations 
Let X,(O) be a real valued stochastic process depending on 

a parameter 0 ,  and A ,  a counting process (e.g. arrivals t o  or 
departures from the system), both defined on a filtered proba- 
bility space and adapted t o  {F,}t>o. Let X, be the Ft-  intensity 
of A ,  which may also depend on 8: We will assume throughout 
the paper tha t  X, < IC for all s a s .  and we will consider per- 
formance criteria of the form 
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and we will derive estimators for the derivative "J(6 ' ) .  Special 

emphasis will be given to the case f ( ~ )  = I B ( r ) ,  where 
B = [ x ,  CO) and we will show how t o  estimate - - P B ( ~ ) ,  where 

PB(6') is the steady state probability tha t  an arrival finds the 
system in B .  

The key idea in  the met.hod we propose here is the use of 
the compensator identity 
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which, assuming X, t o  be left continuous, holds for all f for 
which the  expectation exists (e.g. see Bremaud. 1981). (Here and 
in what follows we suppress the dependence 011 6' except when 
we want t o  draw attention t o  it,). While infinit(esima1 perturba- 

tion analysis (IPA) methods would use - ] J ( X B )  a,, 
evaluated along a sample path of the process, to estimate 

- -J(B) ,  the method we propose here uses - J J ( X 8 )  X,ds, 

which in many cases tha t  are important in applications can be 
evaluated along a sample path. T h e  estimators we propose here 
have increased computational requirements bu t  are unbiased in 
many cases where the IPA estimators are biased. T h e  reason for 
this is tha t  while i t  may not be permissible t o  differentiate with 
respect t o  0 inside the expectation on the left hand side of (I .?) ,  
i t  is often permissible t o  do  so on the right hand side as we will 
see in the examples given in the  next two sections. For a related 
but  not identical method we refer the reader to Gong ancl Ho 
(1987) and Gong and Glasserman (1989). 

T h e  method we proposed above is illustrated for the case 
of a GI/G/l  queue and a single class, single server closed queue- 
ing network with renewal service times. 

4. Derivative estimators for steady state probabilities in 
a G I / G / l  queue 

Consider a GI /G/ l  queue with input process (S i ,  Xi) 
i=l, 2: . . , where Si is the interarrival time between the if' 
and ( i + l ) f h  customers, and Xi is the load brought by the  ith 
customer t o  the  system. We will assume the input t o  be i.i.d. 
with distribution F(r ,O)  depending 011 a parameter 6'. We also 
assume tha t  the  distribution G of the interarrival times is 
absolutely continuous with density 9 ,  and tha t  the  correspond- 
ing hazard rate, *, is bounded by some I< < CO for all 

To be specific, suppose tha t  the first customer arrives t o  
an empty server a t  time t = 0. We will consider the number of 
customers in the system process Nt(6'), as 0 varies in an  interval 

[ a , b ] ,  such tha t  s u p  szdF(~,0) < E.41 ( to  ensure stability) 

and J z 2 d F ( z , 6 ' )  < 00. T o  construct a family of sample 

paths parametrized by 0 on the same probability y a c e  let 

x ' ( B + 6 )  = F - ' ( B + G , F ( O , S ) ) .  We will assume that 1 exists 

a s .  and tha t  sup E ( 2 ) '  < CO. Notice tha t  {N,(O) ; t _> 0 } 

determines {N,(q) ; t 2 0 )  for all 8 E [ a , b ] .  {N,(O) ; t > O  } 
is defined t o  be left continuous. We will denote by 
{ A ,  ; s 2 0 } and { D, ; s 2 0 } the count,ing processes associ- 
ated wit,h arrivals and departures from the  system. (These are 
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both defined t o  be right continuous). Let us define for conveni- 
ence three additional (left continuous) processes related t o  N,,  
namely (2, ; s a } ,  the time since the last arrival process, 
{A, ; s>O}, the  stochastic intensity process, and finally 
{Y, ; s a } ,  where 

Intuitively, if 6 is a small perturbation t o  0, Yf 6 is how much 
ahead (or behind) schedule would the server be as a result. of 
this. 

Theorem 1: Let 

Then J ( 0 , t )  is di'erentiable 011 [ a ,  b ]  and 

(2.2) 

(2.3) 

Sketch of Proof: Let { U ; }  and { v i }  be the sequences of 
upcrossings from level k-1 t o  k and downcrossings from level k 

t o  k-1 respectively. Also, let A = sX,ds be the  compensator 

associated with the  arrival process. Using the identity (1.2) we 
have 

0 

1 
t { i : o < u , < t )  i:O<u, < f ) 

= - 1 c Au, - c A", 1 
Differentiate with respect to b' taking into account tha t  only the 
vi 's  in the  above expression depend on 8. From an easy dom- 
inated convergence argument and the fact tha t  

d d --AU,=Au,-v~ we obtain: 
d0 db' 

d d --J(8,t) = 1 [ X,,,-q ] 
db' t ( i : O < u , < r )  db' 

This,  together with the fact t h a t  Yu, = d u i  establishes (2.3). 
dO 

Theorem 2: Let Pk be the customer stutioiiccry probability 
of k or more customers in the system. Then 

TI 
d 1 

-Ph = - E [  Jx, Y,l,N,-~)dD, ] . (2.4) 
db' EQi o 

where Q1 and T l  is the number of custoiners in the first 6usy 
period 'and i ts  the length respectively. 

Sketch of proof: It  is enough to show tha t  
- lim J ( 0 , t )  = lim -J(b',t), the  rest following from a stan- db' t+w t-aa db' 
dard regenerative argument. This  is guarranteed from a stan- 
dard theorem (e.g. see Bartle, 1976, p.204) provided tha t  
lim J(Oo,t)  exists for some BoE[a,b] and that, z J ( 0 , t )  con- 

verges uniformly in [ a , b ]  to some limit. T h e  first condition is 
obviously satisfied because of the regenerative nature of the sys- 
tem and the  second using a modification of Lorden's inequality 
for renewal-reward processes (Zazanis, 1990). 

d d 

d 
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: 
If di = EX? is the i ' t h  departure time, (2.4) can be written in 

a form suitable for regenerative simulation: 
j = l  

Let us note here tha t  the application of the Dominated Conver- 
gence Theorem in (2.2) to get (2.3) would not have been possi- 
ble had we not used the compensator identity (1.2). T h u s  the 
IPA estimate would be biased in tha t  case. 

5. A Single Class Closed Queueing Network 
Consider a single server, single class CQN with M stations, 

N customers, and renewal service times. To simplify the nota- 
tion we restrict ourselves t o  the case of tandem networks (The 
extension to general markovian routing is straightforward). Let 
N''' be the number of customers a t  station m a t  time t (again 
left continuous). Let A;" (D;") be the arrival (departure) count- 

for ing process a t  station m .  Clearly A;" = OF-' 
m=2, 3, . . M, and A,' = D:! Let F, be the service time 
distribution of the m ' t h  server. We will assume tha t  the 
corresponding hazard rates exist and are bounded by a finite 
constant IC as in 52 and we will denote the stochastic intensity 
associated with {A/}8>o bj: {h;}s>o. Suppose tha t  the service 
time distribution of server z ,  Fi(8,F) depends on a parameter 8. 
Define 

1 

(3.1) Yl" = JYF-1 l(N$"+i: 
0 

where Xi is the k ' th service time of the i ' t h  service station 

(3.2) 

Theorem 4: Let P/' be the steady state probability that an 
arriving customer to  a station 111 finds k or more customers. 
Then 

d d -P/' = lim --J(8,t) . 
d8 t-m d 0  (3.3) 
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6 .  A p p l i c a t i o n s  to d e r i v a t i v e  e s t i m a t i o n  for s i m u l a t i o n s  
In Zazanis and Suri (1986), and Fox and Glynn (1987) it 

has been shown tha t  the classical finite difference estimators 
have very poor performance compared with direct estimators 
such as the one described in 52. Hence, when available and easy 
to implement these estimators are preferable. In particular, 
notice tha t  (2.5) can be used t o  estimate -Pk while observing 
a single sample path of the system by simply keeping track of 
two quantities, namely the age of the busy period, Y,,  and the  
age of the arrival process, 2,. When 8 is a location (scale) 
parameter of F ( 8 , 5 ) ,  Yd, becomes the discrete (continuous) age 
of the busy period a t  the i’ th departure epoch, making the 
implementation of (2.5) and (3.1) very simple. 

Here of course we take advantage of the  fact tha t  the  stc- 
chastic intensity is simply the hazard rate, and the only par t  of 
the history of the  process necessary t o  determine A, is the  age 
of the arrival process a t  time t .  For most models used in prac- 
tice, one would be able t o  compute the  stochastic intensity 
easily. This  would be the case for instance for superpositions of 
renewal processes (in which case one would of course need to 
know the ages of all the arrival processes involved), for Markov 
renewal processes (in which case one would need t o  know the  
s ta te  of the underlying Markov chain and the time since the  
last arrival), for interrupted renewal processes (such as the out- 
put from an upstream server) etc. 

d 
dB 
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