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Abstract

We analyze an M/G/1 system with batch Poisson arrivals and instantaneous Bernoulli feedback,
operating under a Multiple Vacation Policy. The system is subject to disasters that occur according to
an independent Poisson process and are followed by (random) repair periods with general distribution.
The analysis is carried out using the supplementary variable method. The Laplace transform of the time
between two consecutive disasters is obtained and the existence of the stationary regime for the system
is shown. Besides obtaining the stationary distribution for the number of customers in the system, we
use the information regarding the rates of occurrence of various events provided by the supplementary
variables solution to obtain a great variety of additional results. These include the Laplace transform of
the busy period distribution and the probability that a customer completes service. We indicate areas of
application of our model to real life systems, in particular in Vehicle ad hoc Networks (VANETs), and
we use the analytic results obtained to optimize such a system under a Quality of Service constraint.
Finally, we analyze a variant of the system subject to disasters even when the server is not busy.

KEYWORDS: BATCH-ARRIVALS, MULTIPLE VACATIONS, FEEDBACK, DISASTERS, OPTIMIZATION.

1 Introduction

We study a single server queue with batch Poisson arrivals, general service times, and Bernoulli feedback.
After completing service a customer either joins immediately the tail of the waiting line as a feedback
customer with probability r, or departs forever from the system with probability 1 − r, independently of
anything else. The system suffers from disasters which occur according to an independent Poisson process
with rate δ and which instantly remove all customers (both in the queue and in service) from the system.
Immediately after the occurrence of a disaster the server undergoes a repair of random duration. Further,
whenever a departing customer leaves the system empty, the server takes vacations of random length ac-
cording to a Multiple Vacation policy. We analyze in detail this model under the assumption that disasters
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affect the system only when the server is busy serving customers. We also examine a variation of this model
in which disasters affect the system when the server is under repair or on vacation as well. We will refer to
this modified model as a system with unconditional disasters.

The proposed model can be applied in the analysis of a storage area network (SAN) or an email contact
center subject to random failures. Storage Area Networks are highly reliable solutions for mass storage of
data and as such they can become primary targets of distributed denial-of-service-attacks (DDoS attacks)
Such attacks are assumed to occur according to a Poisson process with rate δ. Requests for obtaining data
arrive according to a Poisson arrival process with rate λ and we allow for batch arrivals to increase the
flexibility of the model. Each request, when processed, may result in the need for further data retrieval and
in this case the request joins the queue as a feedback customer. When the system becomes idle, maintenance
and other secondary operations are initiated, corresponding to vacations. When a disaster in the form of
a DDoS attack occurs, the system is down for the duration of the attack to which is added the duration of
restorative operations. This corresponds to the repair period of our model.

The combination of features we study, namely batch arrivals, multiple vacations, Bernoulli feedback,
and the presence of disasters has not been studied in the vast literature of such queueing systems. Of course
these features have been studied separately and in other combinations. When these features interact, new
difficulties and questions arise. The present paper addresses some of them. In the queueing literature during
the last two decades there has been a number of papers analyzing the interplay of feedback or retrials with
vacations. Among those we mention [3], [6], [14], [26], [35], [31]. Also, a number of papers have analyzed
the behavior of queueing systems with feedback or retrials, subject to disasters or unreliable servers. See
in particular [5], [11], [12], [23], [16]. Also [8], [25], are among the papers who have studied queueing
systems with vacations and disasters or unreliable servers.

The present paper is the first to study the interplay of vacations, Bernoulli feedback, and disasters with
subsequent repairs. We analyze the system using the supplementary variables technique and we obtain the
joint stationary distribution of the number of customers in the system and the supplementary variable, which
is the age of the service, vacation, or repair time, according to the state of the server. We take full advantage
of the additional information regarding the supplementary variables in order to obtain the rates of occurrence
of various events, and from these, the corresponding Palm (event-stationary) distributions. In particular, we
obtain the distribution of the number of customers at the epoch of a typical service completion in §3.2, and
at a typical busy period initiation epoch in §4.1. The Laplace transform of busy period is obtained in §4.2
and several performances measures in §5. In §6 we examine the cycle structure of the model and obtain the
Laplace transform of the time between two consecutive disasters and the stability condition for the system.
The case where system suffers from disasters not only when the server is operational but also during repair
and vacation periods is examined in §8. Finally in §7 and §9 we use of the performance measures and results
obtained to discuss the problem of determining the optimal service rate while satisfying a Quality of Service
constraint and to obtain numerical results.

For background on queues with vacations, a subject that has been studied thoroughly, we refer the reader
to the books of Takagi [30] and Tian and Zhang [32]. A brief summary of the research on vacation queueing
systems during the decade 2000-2010 is provided by Ke et al. [15]. For an account of the latest results on
vacation queueing systems in the past decade see Jain et al. [13] who also use the supplementary variables
technique (SVT).

Random events (failures) that occur during the busy period may cause a server breakdowns and service
interruptions. Various types of system failures with corresponding effects on the customers present have
been studied in the literature including simple failures that do not affect the customers present, and failures
that affect the customer in service, acting in essentially as “negative customers”. Such systems are known
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as G-systems. The type of server failures we consider here are disasters (also refereed to as catastrophes)
causing the removal of all customers from the system (queue and server). Queues with disasters are natural
models for communication or computer systems subject to catastrophic failures resulting in the loss of all
entities currently in process, or waiting to be processed. Jain and Sigman [10] analyzed M/G/1 queues in
the presence of disasters and derived a corresponding generalization of the Pollaczek-Khinchine formula.
Yechiali [39] studied M/M/c queues with disasters and customers that become impatient during the repair
periods following disasters.

Disasters may for instance represent Distributed Denial of Service (DDoS) attacks to the servers of Stor-
age Area Networks (SAN) used to provide high reliability mass storage of data. When these DDoS occur
they cause network resources and data to become unavailable to their intended clients. The client requests
affected by the DDoS correspond to customers that are removed by the disaster. This application is dis-
cussed in Kim and Lee [19] who analyze a queueing system with disasters and server breakdowns using the
supplementary variables technique. Communication systems using intrinsically unreliable channels subject
to clearing events may also be modelled as queues with disasters. In manufacturing systems disasters may
represent catastrophic failures resulting in machine breakdowns and damaging work in process inventory.

The busy period of M/G/1 queues (with processor sharing discipline) have been studied by Yashkov
and Yashkova [38]. Semenova [27] studied queues with hysteresis control in the presence of disasters that
occur according to a Markov Arrival Process (MAP). The transient behavior of markovian queues subject
to disasters have been studied by Kumar et al. [20] and recently by Jain and Singh [12] who consider a
markovian queue with feedback. Recently, Li and Wang [24] analyzed the equilibrium balking strategies
in markovian queues with retrials subject to disasters, while Sun et al. [28] compared systems with normal
failures and site-clearing disasters. Mytalas and Zazanis [25] analyzed a batch queueing model, operating
under a MAV (Multiple Adapted Vacations) policy and subject to disasters.

Queueing systems with feedback loops are natural models of many computing, communications, and
manufacturing systems. In communication systems for instance feedback arises in packet transmission in
error-prone channels and in segmented (batch form) message transmission. In computing systems the round-
robin service discipline results in feedback queues. In manufacturing systems feedback occurs when rework
of a part is required in a processing station, for instance when modeling the performance of a manufacturing
cell consisting of several CNC machines and inspection facilities. M/G/1 queues with Bernoulli feedback
were first analyzed in the seminal paper of Takács [29]. Bernoulli feedback queues with vacations were
studied by Takagi [30] and Wortman and Disney [35]. A batch arrival queueing system with feedback
and optional server vacations under single vacation policy was studied by Madan and Al-Rawwash [26].
A system using the multiple vacation policy for server and consider feedback and two phase service for
customers was studied by Thangaraj and Vanitha [31]. A general retrial queue with balking and feedback
together with a modified vacation policy was studied by Ke and Chang [14]. Recent research work, including
Bernoulli vacations, retrials. optional services and feedbacks given by Jain and Kaur [11]. Liu et al. [23]
studied a system with retrials, feedback, and server breakdowns due to “negative customers”. Also, Ke et
al. [16] studied retrial systems with feedback and disasters. For M/G/1 feedback queues with two classes
of customers and gated vacations, Boxma and Yechiali [3] and Choi et al. [6] derived the distributions of the
queue length and the waiting time. Kim et. al. [18] analyze a multiclass queueing system with markovian
feedback and its application to weighted round robin policies.

The present paper is the first to study the interplay of vacations, Bernoulli feedback, and disasters with
subsequent repairs.

The model we consider has potential applications on satellite telecommunication systems. Consider
systems whose architecture consists of ground-based stations transmitting data packages to a central satellite
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system where data from all stations are processed (evaluated and prioritized). The integrated information
is then sent to other satellite systems and/or to the ground stations. Many application areas fall under
this scheme, including Vehicular ad hoc networks (VANETs) or military applications where state-of-the-art
fighter aircrafts operate as integrated platforms in the role of receiving and transmitting crucial information
to UAVs.

Here we focus on Vehicular ad hoc networks (VANET) which are systems developed in order to pro-
vide safe driving, enhance traffic efficiency, and make transportation efficient and economic in terms of
fuel/energy required. Such systems begun as Internet of Vehicles (IoV) applications with Road Side Units
(RSU) or Vehicle to Vehicle (V2V) communication and expanded their architecture to involve satellite sys-
tems to include services such as GPS. In such networks a key role is played by the Centralized Management
Control Unit (CMCU) of a satellite unit where data are transmitted from ground bases or other satellite units,
processed and the resulting signals/infromation transmitted to the vehicles. For a discussion of some of the
issues arising in such systems see for instance [40], [21], and [22].

In the context of the model analyzed in the present paper, the server corresponds to the CMCU, the
Poisson input of batch arrivals correspond to the stream of aggregated data transmitted to the satellite based
CMCU from the vehicles and ground based stations. After processing, data are transmitted back to the
stations. The possibility of feedback arises from the use of an ARP (Automatic Repeat reQuest) protocol,
according to which if the transmitting node does not receive an acknowledgment before timeout, it re-
transmits the frame/packet until the acknowledgement is received. Including a Poisson stream of disasters
in our model is essential in this case since satellite systems are subject to atmospheric and electromagnetic
disturbances which may wipe out data or, by causing long interruptions in communication, render the data
irrelevant. Finally, since the CMCU also performs secondary tasks, this necessitates the inclusion of vaca-
tions in the model. Models of satellite nodes of this type may be more effective if they can incorporate the
interplay of the above factors and the present paper is a step in that direction.

2 Model description and notations

Consider a single server queue with customers arriving in batches according to a Poisson process with rate
λ. Let χn denote the size of the nth batch. {χn}, n = 1, 2, . . ., is assumed to be an i.i.d. sequence. Let
χ(z) =

∑∞
n=1 P(χ1 = n)zn denote the corresponding probability generating function. We do not assume

the mean to be finite. When this assumption is necessary it will be stated explicitly and the mean batch size
will be denoted by mχ. The mean batch size, when finite will be denoted by mχ := Eχ. Service times are
assumed to be i.i.d. random variables with common distribution S, corresponding density S′ and hazard rate
function µ(x) = S′(x)

1−S(x) , x ≥ 0. The Laplace transform of S will be denoted by Ŝ(s) :=
∫∞
0 e−sxdS(x).

Again, its mean will not be assumed finite. When this assumption becomes necessary it will be stated clearly
and the mean will be denoted by mS := ES. When a customer completes service, he leaves the system with
probability 1−r (independently of everything else) or returns to the tail of the queue as a feedback customer.

The system is subject to disasters when the server is busy. These occur according to a Poisson process
with rate δ, independently of all other processes in the system. When a disaster occurs all customers present,
including the one in service, are removed from the system. Immediately after a disaster a repair period
begins. These periods have i.i.d. durations with distribution function R, density function R′, hazard rate
r(x) = R′(x)

1−R(x) , x ≥ 0, and Laplace transform R̂(s) =
∫∞
0 e−sxdR(x). The mean of the repair period,

which will be assumed finite throughout the paper is mR := ER < ∞. Any customers that may arrive
during a repair period wait in line.
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At the end of a busy period or at the end of a repair period if no customers are present, the server
takes a vacation. We assume that the system implements a multiple vacation policy, according to which the
server takes repeated vacations until at the end of a vacation there is at least one customer present, waiting
to be served. At this point a new busy period begins. Vacation durations are i.i.d. random variables with
common distribution function U , density U ′, and hazard rate u(x) = U ′(x)

1−U(x) , x ≥ 0. The corresponding

Laplace transform will be denoted by Û(s) =
∫∞
0 e−sxdU(x) and the mean mU := EU < ∞ is assumed

finite. Service times, vacation and repair durations, batch sizes, the Poisson arrival process, and the feedback
decision are assumed to be independent.

3 Supplementary Variables Analysis

In this section we derive the steady-state differential-difference equations for the system by treating the
elapsed service time, the elapsed repair time, and the elapsed vacation time as supplementary variables.
Consider the processes

Nt : number of customers in the system at time t

St : elapsed service time at time t (if server is busy, otherwise 0)

Rt : elapsed repair time at time t (if server under repair, otherwise 0)

Ut : elapsed vacation time at time t (if server on vacation otherwise 0)

and the process {ξt} taking values in the set {s, r,v}, whose elements correspond to the server being busy
serving customers, being under repair, and being on vacation respectively. Due to the presence of disasters
the system has a regenerative structure with the epochs of consecutive disasters acting as regeneration points.
In section 6 the Laplace transform of the time between two consecutive disasters is derived and it is shown
to have a finite mean. Therefore a stationary version of the process exists by virtue of standard results on
regenerative processes (e.g. see [1]). Suppose the process is stationary under the probability measure P and
define the densities

Pn(x) := lim
h↓0

1

h
P(N0 = n, ξ0 = s; x < S0 ≤ x+ h),

Wn(x) := lim
h↓0

1

h
P(N0 = n, ξ0 = r; x < R0 ≤ x+ h), (1)

Vn(x) := lim
h↓0

1

h
P(N0 = n, ξ0 = v; x < U0 ≤ x+ h).

The balance equations satisfied by the stationary distribution are

d

dx
Pn(x) + (λ+ δ + µ(x))Pn(x) = λ

n−1∑
k=1

χkPn−k(x), x > 0, n ≥ 1 (2)

d

dx
W0(x) + (λ+ r(x))W0(x) = 0 (3)

d

dx
Wn(x) + (λ+ r(x))Wn(x) = λ

n∑
k=1

χkWn−k(x), x > 0, n ≥ 1 (4)

d

dx
V0(x) + (λ+ u(x))V0(x) = 0, (5)

d

dx
Vn(x) + (λ+ u(x))Vn(x) = λ

n∑
k=1

χkVn−k(x), x > 0, n ≥ 1 (6)
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The boundary conditions of the above system of differential equations are

Pn(0) = (1− r)

∫ ∞

0
Pn+1(x)µ(x)dx+ r

∫ ∞

0
Pn(x)µ(x)dx

+

∫ ∞

0
Vn(x)u(x)dx+

∫ ∞

0
Wn(x)r(x)dx, n ≥ 1 (7)

V0(0) = (1− r)

∫ ∞

0
P1(x)µ(x)dx+

∫ ∞

0
V0(x)u(x)dx+

∫ ∞

0
W0(x)r(x)dx (8)

Vn(0) = 0, n ≥ 1, (9)

W0(0) = δ

∞∑
n=1

∫ ∞

0
Pn(x)dx, (10)

with normalization condition
∞∑
n=1

∫ ∞

0
Pn(x)dx+

∞∑
n=0

(∫ ∞

0
Wn(x)dx+

∫ ∞

0
Vn(x)dx

)
= 1. (11)

Define the generating functions

P (x; z) :=
∞∑
n=1

znPn(x), W (x; z) :=
∞∑
n=0

znWn(x), V (x; z) :=
∞∑
n=0

znVn(x).

The partial probability generating functions (pgf) for the number of customers in the system in stationarity
regardless of the value of the supplementary variables are then given by

P (z) :=

∫ ∞

0
P (x; z)dx, W (z) :=

∫ ∞

0
W (x; z)dx, V (z) :=

∫ ∞

0
V (x; z)dx. (12)

Proposition 1. The partial pgf for the number of customers in the system when the server is busy is given
by

P (z) = P (0; z)
1− Ŝ(δ + α(z))

δ + α(z)
(13)

where

P (0; z) = z
δP (1)R̂(α(z))− V0(0)

(
1− Û(α(z))

)
z − (1− r + rz)Ŝ(δ + α(z))

. (14)

and α(z) := λ(1− χ(z)).

Proof. Multiplying (2), (4), (6), and (7) by zn and adding we obtain the linear first order PDE’s

∂P (x; z)

∂x
+ (α(z) + δ + µ(x))P (x; z) = 0,

∂W (x; z)

∂x
+ (α(z) + r(x))W (x; z) = 0, (15)

∂V (x; z)

∂x
+ (α(z) + u(x))V (x; z) = 0,

and the equation
∞∑
n=1

znPn(0) =

∫ ∞

0

∞∑
n=1

znVn(x)u(x)dx+ (1− r)

∫ ∞

0

∞∑
n=1

znPn+1(x)µ(x)dx

+

∫ ∞

0

∞∑
n=1

znWn(x)r(x)dx+ r

∫ ∞

0

∞∑
n=1

znPn(x)µ(x)dx (16)
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which, taking into account that
∑∞

n=1 Vn(x)z
n = V (x; z)− V0(x),

∑∞
n=1Wn(x)z

n = W (x; z)−W0(x),
and

∑∞
n=1 Pn+1(x)z

n = z−1P (x; z)− P1(x), gives

P (0; z) = z−1(1− r)

∫ ∞

0
P (x; z)µ(x)dx− (1− r)

∫ ∞

0
P1(x)µ(x)dx+ r

∫ ∞

0
P (x; z)µ(x)dx

+

∫ ∞

0
V (x; z)u(x)dx−

∫ ∞

0
V0(x)u(x)dx+

∫ ∞

0
W (x; z)r(x)dx−

∫ ∞

0
W0(x)r(x)dx. (17)

The PDE’s (15) have the solution

P (x; z) = P (0; z)(1− S(x))e−(δ+α(z))x,

W (x; z) = W (0; z)(1−R(x))e−α(z)x, (18)

V (x; z) = V (0; z)(1− U(x))e−α(z)x.

Since no customers are present when a vacation or a repair period starts, it holds that

V (0; z) = V0(0) and W (0; z) =W0(0). (19)

Also, from (3) and (5) we obtain

W0(x) =W0(0)(1−R(x))e−λx, V0(x) = V0(0)(1− U(x))e−λx. (20)

From (18) we obtain∫ ∞

0
P (x; z)µ(x)dx =

∫ ∞

0
P (0; z)(1− S(x))e−(δ+α(z))xµ(x)dx = P (0; z)Ŝ(δ + α(z)), (21)∫ ∞

0
W (x; z)r(x)dx =

∫ ∞

0
W (0; z)(1−R(x))e−α(z)xr(x)dx = W (0; z)R̂(α(z)), (22)∫ ∞

0
V (x; z)u(x)dx =

∫ ∞

0
V (0; z)(1− U(x))e−α(z)xu(x)dx = V (0; z)Û(α(z)). (23)

Similarly from (20) we have∫ ∞

0
W0(x)r(x)dx = W0(0)

∫ ∞

0
e−λxdR(x) = W0(0)R̂(λ), (24)∫ ∞

0
V0(x)u(x)dx = V0(0)

∫ ∞

0
e−λxdU(x) = V0(0)Û(λ). (25)

Using (21)–(25) in (17) we obtain

P (0; z) = V (0; z)Û(α(z)) + z−1(1− r)P (0; z)Ŝ(δ + α(z)) +W (0; z)R̂(α(z))

−V0(0) + rP (0; z)Ŝ(δ + α(z)).

Using (18) we write (10) as

W0(0) = δ
∞∑
n=1

∫ ∞

0
Pn(x)dx = δ

∫ ∞

0
P (x; 1)dx = δP (1) (26)

whence we obtain (14).

We can prove using Rouche’s theorem (see the Appendix) that the denominator of P (0; z) (given in (14))
has a unique root, z0, in the open unit disk |z| < 1. However, for δ > 0, the system is stable for all values of
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the other parameters due to the presence of disasters. This implies that the power series that defines P (0; z)
converges uniformly on the closed unit disk |z| ≤ 1 and defines an analytic function there. Therefore, the
numerator of P (0; z) must also vanish at z0 which implies that the, as of yet, unknown constants P (0) and
V0(0) are connected by the relationship

V0(0)
(
1− Û(α(z0))

)
= δP (1)R̂(α(z0)).

Setting

γ :=
R̂(α(z0))

1− Û(α(z0))
(27)

and taking into account (26) we thus have

V0(0) = γW0(0). (28)

Since from the above, γ is the ratio of the rate of vacation initiation to the rate of repair initiation. This
means that γ gives the relative frequency of vacation periods to repairs. Also, It will be shown in section
4.2 (see (50)) that z0 can be interpreted as the probability that a busy period of the system, starting with a
single customer, will be completed without the occurrence of a disaster. Also, as can be readily seen from
(28), γ is the relative frequency of occurrence of vacation periods relative to that of repairs.

3.1 Partial pgf’s

Here we derive the stationary partial pgf’s for the number of customers in the system according to the state
of the server (working, under repair, or on vacation).

Server is working. From Proposition 1, (26), (28),

P (z) = δP (1) z
R̂(α(z))− γ

(
1− Û(α(z))

)
z − (1− r + rz)Ŝ(δ + α(z))

1− Ŝ(δ + α(z))

δ + α(z)
. (29)

Server is under repair. Taking into account (12), (18), and (26) we obtain

W (z) = δ
1− R̂(α(z))

α(z)
P (1). (30)

The probability that the server is under repair in stationarity can be obtained from the above using de l’
Hôpital’s rule as

W (1) = P (1)δmR. (31)

Server is on vacation. Taking into account (12), (18), and (28) we obtain

V (z) = δγ
1− Û(α(z))

α(z)
P (1). (32)

The probability that the server is on vacation, again using de l’ Hôpital’s rule is

V (1) = δP (1)mUγ. (33)

The above expression (with P (1) given by (34) below) gives in practice the fraction of time the system will
be available to perform the auxiliary tasks performed during the vacation time. In §7 this fraction of time is
one of the factors taken into account in the optimization problem examined.
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The probability that the server is busy. The probability that the server is busy, P (1), is determined by the
normalization condition P (1) +W (1) + V (1) = 1 which gives

P (1) = (1 + γδmU + δmR)
−1 . (34)

(The dependence of P (1) on the service time distribution and λ comes through z0 and γ which depends on
z0.)

The pgf of the number of customers in the system in stationarity. The pgf of the number of customers
in the system in stationarity, Φ(z) :=

∑∞
n=0 z

nP(N0 = n), is obtained by adding the above marginal pgf’s.
Setting

K(z) := R̂(α(z))− γ
(
1− Û(α(z))

)
(35)

and using (29), (30), and (32), we have Φ(z) = P (z) +W (z) + V (z) which gives

Φ(z) =
δ

1 + γδmU + δmR

×

[
1− Ŝ(δ + α(z))

z − (1− r + rz)Ŝ(δ + α(z))

zK(z)

δ + α(z)
+mRR̂e(α(z)) + γmU Ûe(α(z))

]
. (36)

In the above, Ûe(s) := 1−Û(s)
smU

and R̂e(s) := 1−R̂(s)
smR

denote the Laplace transform of the corresponding
equilibrium (integrated tail) distributions of the vacation and repair periods. If the mean of the batch size
distribution, mχ, and the second moments of the repair and vacation distributions are finite, the expected
number of customers in stationarity is finite and is given by

Φ′(1) =
λmχ

δ
+

1

1 + δmR + γδmU

[
− (1− r)Ŝ(δ)

1− Ŝ(δ)
+
λmχδ

2
(ER2 + γEU2)

]
. (37)

3.2 The pgf of the system size at departure and service completion epochs

Let {dn} denote the point process of departure epochs, corresponding to service completions that are fol-
lowed by customer departures (as opposed to feedbacks). Let Ndn− denote the number of customers in the
system just before the customer’s departure. Such a departing customer will leave behind l customers in the
system if and only if there are l + 1 customers in the system just before the departure i.e. if Ndn− = l + 1.
Denote by ϕ+l the probability that, in steady state, a customer completing service leaves behind l customers
in the system. Then

ϕ+l = lim
n→∞

1

n

n∑
k=1

1(Ndk− = l + 1) w.p. 1. (38)

Also,
lim
n→∞

n

dn
= D0, (39)

where D0 is the customer departure rate (counting only normal departures and not departures due to disas-
ters). The rate of customer departures that leave behind in the system l customers is equal to

lim
n→∞

1

dn

n∑
k=1

1(Ndk− = l + 1) = (1− r)

∫ ∞

0
Pl+1(x)µ(x)dx. (40)
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The right hand side of the above equation gives this rate in terms of the stationary solution we have obtained
in this section. On the other hand since (w.p. 1) the limits exist, the left hand side can be written as

lim
n→∞

1

dn

n∑
k=1

1(Ndk− = l + 1) = lim
n→∞

n

dn
lim
n→∞

1

n

n∑
k=1

1(Ndk− = l + 1) = D0 ϕ
+
l .

The type of argument sketched above is a ratio of rates argument (expounded for instance in [34]) that allows
us to obtain event stationary probabilities such as ϕ+l .

ϕ+l = D−1
0 (1− r)

∫ ∞

0
Pl+1(x)µ(x)dx, l = 0, 1, 2, . . . , (41)

where D−1
0 , the inverse of the total rate of departures, is the normalizing constant. If Φ+(z) :=

∑∞
l=0 ϕ

+
l z

l

denotes the corresponding pgf, then

Φ+(z) = D−1
0 (1− r)

∫ ∞

0

∞∑
l=0

zlPl+1(x)µ(x)dx

= D−1
0 (1− r)z−1

∫ ∞

0
P (z;x)µ(x)dx = C0(1− r)z−1P (z; 0)Ŝ(δ + α(z))

= D−1
0 (1− r)Ŝ(δ + α(z))δP (1)

R̂(α(z))− γ
(
1− Û(α(z))

)
z − (1− r + rz)Ŝ(δ + α(z))

where, in the last equation, we have used (14). F0 can be determined from the condition Φ+(1) = 1 whence

we obtain D−1
0 = 1−Ŝ(δ)

δ(1−r)(γ−1)P (1)Ŝ(δ)
. Thus, taking into account (35),

Φ+(z) =
Ŝ(δ + α(z))

z − (1− r + rz)Ŝ(δ + α(z))

1− Ŝ(δ)

Ŝ(δ)
K(z). (42)

It is interesting that if we consider all departures, regardless of whether they are permanent or corre-
spond to feedbacks, we obtain the same result. Indeed, if ϕ̃+l denotes the probability that a departing
customer leaves behind l customers in steady state, then the same ratio of rates argument would give
ϕ̃+l = D̃−1

0

∫∞
0 Pl+1(x)µ(x)dx.

3.3 The system without repairs

Here we suppose that the repair time following a disaster is negligible and thus following the occurrence of a
disaster the server immediately takes a vacation immediately. The stationary pgf of the number of customers
in the system can be obtained by setting R̂(s) = 1 and mR = 0 in (36). Thus

Φ(z) =
δγ

1 + δγmU

[
z

1− Ŝ(δ + α(z))

(1− r + rz) Ŝ(δ + α(z))− z

Û(α(z0))− Û(α(z))

δ + α(z)
+

1− Û(α(z))

α(z)

]
. (43)

In the above expression, and in (44) and (45) as well, γ =
(
1− Û(α(z0))

)−1
. When mχ < ∞ and

EU2 <∞ the corresponding mean number of customers in the system is finite and is given by

Φ′(1) =
λmχ

δ
+

1

1 + γδmU

(
− (1− r)Ŝ(δ)

1− Ŝ(δ)
+

1

2
λmχδγEU2

)
. (44)
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If, furthermore, the mean service time, mS , is finite then, as δ ↓ 0, z0 ↑ 1 and mUδγ → 1−r−λmSmχ

λmSmχ
and

therefore (43) becomes

Φ(z) = Ûe(α(z))

(
1− λ

mS

1− r
mχ

)
(1− z)(1− r)Ŝ(α(z))

(1− r + rz)Ŝ(α(z))− z
, (45)

thus recovering the well-known decomposition formula for queues with vacations, in the absence of disas-
ters.

4 The Busy Period

4.1 The pgf of the System Size at a Busy Period Initiation Epoch

Let {tl}, l = 1, 2, . . ., be the busy period initiation epochs and Ntl the number of customers in the system
at the initiation epoch of the lth busy period. Let the probability that the typical busy period in stationarity
starts with n customers be denoted by ψn := limk→∞

1
k

∑k
l=1 1(Ntl = n) and Ψ(z) :=

∑∞
n=1 ψnz

n denote
the corresponding pgf. By a ratio of rates argument, similar to that used in §3.2 we obtain

ψn = F−1

(∫ ∞

0
Wn(x)r(x)dx+

∫ ∞

0
Vn(x)u(x)dx

)
, n = 1, 2, . . . (46)

where F−1 is a normalization constant given by the total rate of busy period initiation

F =

∞∑
n=1

(∫ ∞

0
Wn(x)r(x)dx+

∫ ∞

0
Vn(x)u(x)dx

)
.

Since
∑∞

n=1 z
nWn(x) =W (x; z)−W0(x), and

∑∞
n=1 z

nVn(x) = V (x; z)− V0(x), we conclude that

Ψ(z) =
W0(0)

(
R̂(α(z))− R̂(λ)

)
+ V0(0)

(
Û(α(z))− Û(λ)

)
W0(0)

(
1− R̂(λ)

)
+ V0(0)

(
1− Û(λ)

)
and, taking into account (28) and (35),

Ψ(z) =
R̂(α(z))− R̂(λ) + γ

(
Û(α(z))− Û(λ)

)
1− R̂(λ) + γ

(
1− Û(λ)

) =
K(z)−K(0)

1−K(0)
. (47)

4.2 The Laplace Transform of the Busy Period Length

The basis of our analysis is the remark that the length of the busy period of a queue with a work-conserving
priority policy does not depend on the order in which customers are served. Therefore, we may suppose
here that each customer, upon service completion, returns immediately to the server with probability 1 − r
for additional service instead of joining the end of the queue. Thus the length of the busy period in our
system is the same as the length of the busy period in a system without feedback in which each customer
has a service time requirement whose Laplace transform is

Ŝr(s) :=

∞∑
n=1

(1− r)rn−1Ŝ(s)n =
(1− r)Ŝ(s)

1− rŜ(s)
. (48)
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In this framework, for a system operating without disasters, a standard argument gives the Laplace transform
of the length of a busy period starting with a single customer, Γ̂0(s), as the unique solution of the Takács
equation Γ̂0(s) = Ŝr(s + λ − λχ(Γ̂0(s))) satisfying |Γ̂0(s)| < 1 for s ∈ (0,∞). Equivalently, taking into
account (48),

Γ̂0(s) =
(
1− r + rΓ̂0(s)

)
Ŝ
(
s+ λ− λχ(Γ̂0(s))

)
. (49)

In particular, comparing (49) with the fixed point problem of Proposition 5 of the Appendix, we see that

z0 = Γ̂0(δ). (50)

Theorem 2. The Laplace transform of the length of a busy period, B̂(s), in our system is given by

B̂(s) = 1− s

s+ δ

1− R̂(α(Γ̂0(s+ δ))) + γ
[
1− Û(α(Γ̂0(s+ δ)))

]
1− R̂(λ) + γ

[
1− Û(λ)

] = 1− s

s+ δ

1−K(Γ̂0(s+ δ))

1−K(0)
.

(51)
The probability q1 that a busy period ends normally (by the departure of a customer leaving the system
empty), and q2, that it ends by a disaster, are given by

q1 =
−R̂(λ) + γ

(
1− Û(λ)

)
1− R̂(λ) + γ

(
1− Û(λ)

) =
−K(0)

1−K(0)
, (52)

q2 =
1

1− R̂(λ) + γ
(
1− Û(λ)

) =
1

1−K(0)
. (53)

Finally, the conditional Laplace transform of a busy period given that it ends normally, B̂1(s), or given that
it ends by a disaster, B̂2(s) are

B̂1(s) =
R̂(α(Γ̂0(s+ δ)))− R̂(λ) + γ

[
Û(α(Γ̂0(s+ δ)))− Û(λ)

]
−R̂(λ) + γ

[
1− Û(λ)

]
=

K(Γ̂0(s+ δ)))−K(0)

−K(0)
, (54)

B̂2(s) =
[
1− R̂(α(Γ̂0(s+ δ))) + γ

[
1− Û(α(Γ̂0(s+ δ)))

]] δ

δ + s

=
δ

δ + s

[
1−K(Γ̂0(s+ δ))

]
. (55)

where
Γ̂(s) = Ψ

(
Γ̂0(s)

)
(56)

and Ψ(z) is given by (47).

Proof. Let us first imagine that the system operates in stationarity and that at the moment when a busy
period is initiated, the disaster mechanism becomes inactive. Let Γ denote the duration of the busy period in
such a situation. At an initiation epoch of a typical busy period the distribution of the number of customers
present has pgf given by (47). Then the Laplace transform of Γ is given by

Γ̂(s) =

∞∑
n=1

(
Γ̂0(s)

)n
ψn = Ψ

(
Γ̂0(s)

)
.
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Let ∆ be an exponential random variable with rate δ, independent of Γ. Then, q1, the probability that a
busy period terminates normally is given by q1 := P(∆ > Γ) = Γ̂(δ) and the complementary probability
q2 that it terminates by a disaster is q2 := P(∆ ≤ Γ) = 1− Γ̂(δ). This establishes (52) and (53). A simple
conditioning argument gives the Laplace transforms of typical busy period given that it terminates normally,
B̂1(s), or by a disaster, B̂1(s),

B̂1(s) = E[e−s(Γ∧∆) | Γ < ∆] =
Γ̂(s+ δ)

Γ̂(δ)
,

B̂2(s) = E[e−s(Γ∧∆) | Γ > ∆] =
1− Γ̂(s+ δ)

1− Γ̂(δ)

δ

s+ δ
.

Taking into account (27), (35), (47), (50), and (56) we obtain, after some algebraic manipulations, and taking
also into account thatK(z0) = 0, (54) and (55). Finally, (51) follows from B̂(s) = q1B̂1(s)+q2B̂2(s).

5 Performance Measures

C1. Actual rate of disasters. The rate of busy period terminations due to disasters is equal to the rate of
repair initiations given by W0(0) = δP (1) = δ

1+γδmU+δmR
where P (1) is given by (34). This is of course

the rate of actual disaster occurrence.

C2. Expected length of a vacation string. A vacation string consists of a number of vacations during
which there were no arrivals and a final vacations during which at least one batch arrived. Since vacations
are i.i.d. and batches arrive according to an independent Poisson process, if U denotes a generic vacation
duration and Λ an independent exponential random variable with rate λ then β := Û(λ) = P(Λ > U). The
expected number of vacations without arrivals is β/(1 − β) and the expected length of each such vacation
is E[U |U < Λ]. Thus the total expected length of the vacation string is

β

1− β
E[U |U < Λ] + E[U |U ≥ Λ],

the second term above corresponding to the length of the final vacation during which arrivals occur. Taking
into account that βE[U |U < Λ] + (1 − β)E[U |U ≥ Λ] = mU , we see that the expected length of the
vacation string is

mU (1− β)−1 (57)

C3. Rate of initiation of vacations. This is clearly given by V0(0) = γW0(0) (see equation 28). Each
vacation string following a busy period, or a repair period during which there were no arrivals, consists on
the average of (1 − β)−1 vacations, each starting with no customers present. (Of course the last one ends
with customers present.) Hence the rate of vacation string initiations is V0(0)(1− β).

C4. Rate of normal busy period terminations, θ1 and busy period terminations by disasters, θ2. Here,
normal is meant to signify busy period terminations caused by a customer completing service and departing
for good, leaving the system empty. Thus θ1 = (1− r)

∫∞
0 P1(x)µ(x)dx. Setting b := R̂(λ) and using (8)

together with (24), (25),(26), and (28) we obtain

θ1 = (1− r)

∫ ∞

0
P1(x)µ(x)dx = V0(0)−

∫ ∞

0
V0(x)u(x)dx−

∫ ∞

0
W0(x)r(x)dx

= V0(0)− V0(0)Û(λ)−W0(0)R̂(λ) = V0(0)(1− β)−W0(0)b

= δP (1)(γ(1− β)− b).
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This makes perfect sense and can also be obtained by a different argument: Each normal busy period ending
initiates a string of vacations. From the rate of vacation string initiations however we have to subtract the
rate of repair initiations corresponding to repairs with no arrivals.

By a conditional PASTA argument we see that the rate of busy periods terminated by disasters is

θ2 = P (1)δ =
δ

1 + δmR + δγmU
.

From these two rates we can obtain the probabilities q1, q2, obtained in (52), (53) by a ratio of rates argument:

q1 :=
θ1

θ1 + θ2
=

γ(1− β)− b

1− b+ γ(1− β)
, q2 :=

θ2
θ1 + θ2

=
1

1− b+ γ(1− β)
.

C5. Expected length of an inactive period, EI . If the inactive period follows a busy period that terminates
normally then its expected length is simply the expected length of a vacation string obtained in P6. If on the
other hand the inactive period follows a busy period that terminates as a result of a disaster then its expected
length is mR + b mU

1−β , then the second term is the sum corresponding to the probability that there are no
arrivals during the repair period, b, multiplied by the expected length of a vacation string. Thus

EI = q1
mU

1− β
+ q2

(
mR + b

mU

1− β

)
=

γmU +mR

1− b+ γ(1− β)
.

C6. Expected length of a busy period, EB. This could of course be obtained from (51). However it is easier
to use instead renewal theoretic argument from which it follows that P (1) = EB

EB+EI whence we get

EB = EI
1

P (1)−1 − 1
=

γmU +mR

1− b+ γ(1− β)

1

δ(γmU +mR)
=

1

δ

1

1− b+ γ(1− β)
. (58)

This expression is striking enough to merit some commentary. Note that the service time distribution, or
the feedback probability r for that matter, do not appear explicitly in the formula. They are buried in the
parameter γ = R̂(z0)

1−Û(z0)
through its dependence on z0(δ) which is the unique solution of modulus less than

1 of equation (125) of the Appendix which we repeat here:

z0 = Ŝ(δ + λ− λχ(z0))(1− r + rz0). (59)

In particular, z0(0) = 1. Let us examine for simplicity the case where the repair time is negligible (i.e.
R̂(s) ≡ 1). Then b = R̂(λ) = 1 and denoting the mean busy period EB by mB(δ) we have

mB(δ) =
1− Û(λ− λz0(δ))

δ

1

1− Û(λ)
. (60)

Thus

mB(0) =
1

1− Û(λ)
lim
δ→0

1− Û(λ− λz0(δ))

δ
=

1

1− Û(λ)

(
−Û ′(0)

) (
−λz′0(0)

)
= − λmU

1− β
z′0(0). (61)

In the above we have taken into account that z0(0) = 1 and Û ′(0) = mU . z′0(δ) can be obtained by
differentiating the implicit equation (59) with respect to δ: Thus z′0 = Ŝ′(δ+λ−λχ(z0)) (1− λχ′(z0)z

′
0)+

Ŝ(δ + λ− λχ(z0))rz
′
0 and setting δ = 0 in this equation we obtain

z′0(0) = − mS

1− r − λmχmS
.
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Substitute this into (61) to obtain

mB(0) =
λmU

1− β

mS

1− r − λmχmS
.

This is indeed the mean duration of the busy period in a queue with no disasters, non-terminating vacations,
and Bernoulli feedback.

In practice one may be interested in the length of the busy period for the following reason: Suppose that
certain maintenance operations must be carried out during the vacation periods. Suppose also that, for the
system to operate properly, the periods between maintenance (corresponding to busy periods) must not be
too long. Results such as those given by (54), (55), (51), may be used to make sure, when designing the
system, that the maintenance operations may be carried out at appropriate times.

C7. The number of customers removed by a typical disaster. Denote the corresponding pgf by ϕd(z). Then

ϕd(z) =
P (z)

P (1)
, (62)

i.e. it is equal to the stationary number of customers in the system, conditional on the server being busy,
and thus subject to disasters. A rigorous proof of this can be given by appealing to Papangelou’s theorem
(see [2]). Heuristically, this follows from a PASTA type of argument, taking into account the fact that the
intensity of the disaster process is δ, when the server is busy, and equal to zero when the server is under
repair or on vacation. Thus the number of customers seen by a disaster is the stationary distribution of the
number of customers conditional on the server being busy. Therefore, from (29),

ϕd(z) = δ z
R̂(α(z))− γ

(
1− Û(α(z))

)
z − (1− r + rz)Ŝ(δ + α(z))

1− Ŝ(δ + α(z))

δ + α(z)
. (63)

The mean number of customers eliminated by a disaster occurrence is given by

ϕ′d(1) =
λmχ

δ
(1 + γδmU + δmR)− (1− r)

Ŝ(δ)

1− Ŝ(δ)
. (64)

C8. Rate of customer departures after completing service. This is the rate of service completions that
correspond to customers who leave the system for good (as opposed to being fed back). This is given by

(1− r)

∫ ∞

0

∞∑
n=1

Pn(x)µ(x)dx = (1− r)

∫ ∞

0
P (x; 1)µ(x)dx = (1− r)P (0; 1)Ŝ(δ)

= (1− r)δP (1)
Ŝ(δ)

1− Ŝ(δ)
. (65)

C9. Rate of customer removals by disasters. This is obtained by subtracting (65) from the customer arrival
rate, λmχ, which gives

λmχ − (1− r)δP (1)
Ŝ(δ)

1− Ŝ(δ)
. (66)

C10. Fraction of customers which complete service. This is obtained by a ratio of rates argument by
dividing the rate of service completions that result to departures from the system, given by (65) by the rate
of customer arrivals, λmχ. We obtain

p =
1

λmχ

(
(1− r)δP (1)

Ŝ(δ)

1− Ŝ(δ)

)
=

δ(1− r)

λmχ(1 + γδmU + δmR)

Ŝ(δ)

1− Ŝ(δ)
. (67)
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6 The Laplace transform of the time between two consecutive disasters

Here we provide a renewal theoretic analysis of the cycles of the system with multiple vacations. The sample
path of the system consists of cycles which we define as the segments of the sample path of the system
between consecutive disasters. These cycles consist in turn of sub-cycles: There is an initial inactive-active
sub-cycle which consists of a repair time, possibly followed by a string of vacations (if there are no arrivals
during the repair period). The active part of this sub-cycle is the busy period that ensues. If a disaster does
not happen during this busy period it ends by a customer departure leaving the system empty. Then an
ordinary inactive-active sub-cycle begins. It consists of a string of vacations and the ensuing busy period.
Again, the busy period either ends as a result of a disaster, in which case the whole cycle ends, or as a result
of a customer departure leaving the system empty. In this second case, a new ordinary inactive-active sub-
cycle begins. Thus, a cycle consists of an initial active-inactive sub-cycle plus an number (possible zero) of
ordinary active-inactive sub-cycles. By analyzing the structure of these sub-cycles we obtain the following

Proposition 3. The Laplace Transform of the time between two consecutive disasters is given by

Ω̂(s) =
δ

s+ δ

(
R̂(s)− R̂(s+ η(s+ δ))

1− Û(s)

1− Û(s+ η(s+ δ))

)
. (68)

where
η(s) := α(Γ̂0(s)) = λ− λχ(Γ̂0(s)). (69)

In particular, when mU and mR are finite, so is the mean time between two consecutive disasters, and it is
given by

−Ω̂′(0) =
1

δ
+mR +mUγ. (70)

This establishes the claim that a stationary version of the process exists, made in the beginning of section
3, on which the analysis there is based.

Intuitively, (70) is clear in view of the interpretation of γ as the relative frequency of vacations to repairs
implied by (28). Each cycle consists of a single repair period, γ vacation periods on average, and a number
of busy periods, the last of which ends by a disaster. Thus the total length of time in a cycle during which the
server is busy serving customers is exponential with mean 1

δ . A renewal-reward argument then also shows
that the fraction of time the server is busy is P (0) = δ−1

δ−1+mR+mUγ
which gives an intuitive explanation of

(34).

Proof. 1. Analysis of the structure of an ordinary active-inactive sub-cycle.
Let τ1 denote the length of a string of vacations until an arrival occurs. If {Ui} is an i.i.d. sequence or random
variables with the vacation distribution then the length of a vacation string is τ1 = U1 + U2 + · · · + UM

whereM = min{n : U1+ · · ·+Un > Λ} and Λ is an exponential random variable with rate λ, independent
of the vacation lengths, corresponding to the next arrival time. The probability that during a vacation period
there are no arrivals is given by

∫∞
0 e−λtdU(t) = Û(λ). The length of a vacation period, given that there

are no arrivals in its duration, has Laplace transform given by Û(s+λ)

Û(λ)
. Finally, the joint distribution of the

length of a vacation, given that there were arrivals in its duration, and the number of customers present in
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Figure 1: A sample path of the system is shown. The distribution of the time between two consecutive
disasters (solid arrows) is obtained in Proposition 3.

the system when the vacation ends (and the busy period begins) is given by

1

1− Û(λ)

∫ ∞

0

∞∑
n=1

χ(z)n
(λt)n

n!
e−λte−stdU(t) =

Û(s+ λ− λχ(z))− Û(λ+ s)

1− Û(λ)
. (71)

The probability that a vacation string consists of n vacations, the first n − 1 without arrivals, and the last
containing arrivals, is Û(λ)n−1(1 − Û(λ)). Thus the joint distribution of the length, τ1, of the string of
vacations constituting the inactive period and the number of customers, ν1, present in the system when it
ends is

E[e−sτ1zν1 ] =

∞∑
n=1

(1− Û(λ))Û(λ)n−1

(
Û(s+ λ)

Û(λ)

)n−1
Û(s+ λ− λχ(z))− Û(λ+ s)

1− Û(λ)

=
Û(s+ λ− λχ(z))− Û(λ+ s)

1− Û(s+ λ)
. (72)

Next we consider the second part of the sub-cycle, namely the busy period that ensues. To this end, we
imagine first that the disaster mechanism has been deactivated. Denote by τ2 the length of the busy period
that follows. Its Laplace transform, conditional on the fact that it starts with ν1 customers, is given by
E[e−s2τ2 | ν1] = Γ̂0(s2)

ν1 where Γ̂0(s2) is the Laplace transform of the length of a busy period of the
system without disasters and starting with a single customer. (See section 4.2 for further discussion.) Thus
we obtain the joint Laplace transform of the duration of an inactive period τ1 and the busy period that follows
it, τ2, (without disasters) as

E[e−s1τ1−s2τ2 ] =
Û(s1 + η(s2))− Û(λ+ s1)

1− Û(s1 + λ)
. (73)

At this point we can take into account the possible occurrence of disasters. Let ∆ be an exponential random
variable with rate δ (the rate of occurrence of disasters), independent of all other random variables. Then
the joint distribution of the inactive and the busy part of the sub-cycle, given that a disaster does not occur
during the busy part, is

E[e−s1τ1−s2τ2 | ∆ > τ2] =
E[e−s1τ1−s2τ21(∆ > τ2)]

P(∆ > τ2)
=

E[e−s1τ1−(s2+δ)τ2 ]

E[e−δτ2 ]

=
Û(s1 + η(s2 + δ)))− Û(λ+ s1)

1− Û(s1 + λ)

1− Û(λ)

Û(η(δ)))− Û(λ)
.
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Thence, the length of a sub-cycle starting with a vacation, given that a disaster does not occur during its
busy period is

ψ1(s) :=
Û(s+ η(s+ δ)))− Û(λ+ s)

1− Û(s+ λ)

1− Û(λ)

Û(η(δ)))− Û(λ)
. (74)

The probability that such a sub-cycle is completed without a disaster happening is

a1 := P(∆ > τ2) = E[e−δτ2 ] =
1− Û(η(δ))

1− Û(λ)
(75)

and the probability that a disaster occurs during such a sub-cycle is

1− a1 =
Û(η(δ))− Û(λ)

1− Û(λ)
. (76)

Using (73) we can also obtain the joint distribution of the inactive and busy period given that the latter ends
by a disaster. In that case the length of the busy period is equal to ∆ and the corresponding joint Laplace
transform is

E[e−s1τ1−s2∆ | ∆ ≤ τ2] =
1

1− E[e−δτ2 ]

δ

δ + s2

(
E[e−s1τ1 ]− E[e−s1τ1−(δ+s2)τ2 ]

)
. (77)

Therefore, the Laplace transform of the length of the sub-cycle, given that its busy period ends by a disaster,
which we will denote by ψ1(s), is obtained by setting s1 = s2 = s in the above to obtain

ψ1(s) =
δ

δ + s

1− Û(λ)

1− Û(η(δ))

Û(s)− Û(s+ η(s+ δ))

1− Û(s+ λ)
. (78)

2. The initial active-inactive sub-cycle.
The inactive period here consist of a repair period, followed possibly by a string of vacations if there are no
arrivals during the repair period. The length of the initial inactive period is τ01 := R+U1+ · · ·+UM where
M = inf{n ≥ 0 : R+ U1 + · · ·+ Un ≤ ∆}. We denote the number of customers present at the end of this
inactive period by ν01 . There are two cases: If there are customer arrivals during the repair period, an event
occurring with probability 1− R̂(λ), then the joint distribution of (τ01 , ν

0
1), conditional on this event, is

R̂(s1 + λ− λχ(z))− R̂(s1 + λ)

1− R̂(λ)
. (79)

If there are no arrivals during the repair period, which happens with probability R̂(λ), then a string of
vacations begins and, by the same arguments that lead to (72), the conditional joint distribution of (τ01 , ν

0
1)

is

R̂(s1 + λ)

R̂(λ)

∞∑
n=0

(
Û(s1 + λ)

Û(λ)

)n
Û(s1 + λ− λχ(z))− Û(s1 + λ)

1− Û(λ)

(
1− Û(λ)

)
Û(λ)n

=
R̂(s1 + λ)

R̂(λ)

(
Û(s1 + λ− λχ(z))− Û(s1 + λ)

) 1

1− Û(s1 + λ)
. (80)

By multiplying (79) by 1− R̂(λ) and the right hand side of (80) by R̂(λ) and adding we obtain

E[e−s1τ01 zν
0
1 ] = R̂(s1 + λ− λχ(z))− R̂(s1 + λ)

1− Û(s1 + λ− λχ(z))

1− Û(s1 + λ)
.
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Arguing as in (73), the joint Laplace transform of the duration of the initial inactive period τ01 and the busy
period that follows it, τ02 , (without disasters) is

E[e−s1τ01−s2τ02 ] = R̂(s1 + η(s2))− R̂(s1 + λ)
1− Û(s1 + η(s2))

1− Û(s1 + λ)

and the Laplace transform of the initial inactive-active sub-cycle, given that its busy period does not suffer a
disaster, ψ0(s), is given by

ψ0(s) =
E[e−s1τ01−(s2+δ)τ02 ]

E[e−δτ02 ]
=

R̂(s+ η(s+ δ))− R̂(s+ λ)1−Û(s+η(s+δ))

1−Û(s+λ)

R̂(η(δ))− R̂(λ)1−Û(η(δ))

1−Û(λ)

. (81)

The probability that the initial sub-cycle is completed without a disaster happening is

a0 := R̂(η(δ))− R̂(λ)
1− Û(η(δ))

1− Û(λ)
. (82)

The complementary probability, 1− a0, is of course the probability that during the busy period of the initial
sub-cycle a disaster occurs. Again, using (77) in this case, the Laplace transform of the length of the initial
sub-cycle, given that a disaster occurs, ψ0(s), can be obtained as follows:

E[e−s1τ01−s2∆ | ∆ ≤ τ02 ] (83)

=
δ

δ + s2

1

1− a0

(
R̂(s1)− R̂(s1 + η(s2 + δ))− R̂(s1 + λ)

Û(s1 + η(s2 + δ))− Û(s1)

1− Û(s1 + λ)

)
Setting s1 = s2 = s in (83) we obtain

ψ0(s) =
δ

δ + s

1

1− a0

(
R̂(s)− R̂(s+ η(s+ δ))− R̂(s+ λ)

Û(s+ η(s+ δ))− Û(s)

1− Û(s+ λ)

)
(84)

The Laplace Transform of the time between two consecutive disasters is

Ω̂(s) := (1− a0)ψ0(s) + a0(1− a1)ψ0(s)ψ1(s)

∞∑
n=0

an1ψ1(s)
n

= (1− a0)ψ0(s) + a0ψ0(s)
(1− a1)ψ1(s)

1− a1ψ1(s)
.

Substituting in the above (75), (74), (78), (82), (81), (84), we obtain (68).

Differentiating (68) and evaluating at s = 0 we obtain Ω̂′(0) = 1
δ − R̂′(0) − Û ′(0) R̂(η(δ))

1−Û(η(δ))
. Since

η(δ) = α(Γ̂0(δ)) and Γ0(δ) = z0, Ω̂′(0) = 1
δ +mR +mU

R̂(α(z0))

1−Û(α(z0))
. This, together with the definition

(27), establishes (70).

Corollary 4. When the repair time is negligible it suffices to take R = U in order to obtain the correspond-
ing Laplace transform which is

Ω̂(s) =
δ

s+ δ

Û(s)− Û(s+ η(s+ δ))

1− Û(s+ η(s+ δ))
.

In particular, when the duration of each vacation is exponentially distributed, i.e. Û(s) = ω
ω+s , the Laplace

transform becomes

Ω̂(s) =
δ

δ + s

ω

ω + s

λ− λχ(Γ̂0(s+ δ))

s+ λ− λχ(Γ̂0(s+ δ))
.
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7 Optimizing the system performance with respect to the service rate under
a Quality of Service constraint

In this section we show how the results obtained can be used to provide decision support in designing and/or
operating this system. We discuss the problem of choosing the optimal service rate while maintaining a
minimum level of service defined as the percentage of customers who complete service and depart without
being affected by a disaster. Suppose that the cost/reward structure in the system we discussed is determined
by the following factors:

1. Each time a disaster occurs, a repair cost ofCR is incurred. (Recall that the rate of disaster occurrences
is P (1)δ.)

2. For each customer removed from the system as a result of a disaster a cost CD is incurred. (The rate
of customer removals due to disasters is λmχ − δP (1) (1−r)Ŝ(δ)

1−Ŝ(δ)
.)

3. A reward with rate CV per unit time is realized when the server is on vacation since the server is
then performing some additional useful task. (The proportion of time the server is on vacation is
γmV P (1).)

4. Finally we assume that a server with server rate µ costs ϕ(µ) per time unit (where ϕ is a given smooth,
increasing function)

We do not include a reward term for customers served since it would only add a fixed term, given that we
have already included a penalty for customers who do not complete their service. We could however add
an additional cost related to the average number of customers in the system which however we do not do
here. Problems involving the average waiting time for customers that complete service will be considered
in a future paper.

The optimization problem we examine is to determine the optimal value of the service rate so as to
minimize the overall cost rate under the Quality of Service (QoS) constraint guaranteeing a minimum for
the fraction of customers who complete service (without suffering from a disaster).

For the sake of concreteness and (relative) simplicity we will make the assumption that the service time
distribution is exponential with Ŝ(s) = µ

µ+s . In our notation the probability that a customer leaves the
system after receiving service (as opposed to be eliminated by a disaster) is

p =
δP (1)

λmχ

(1− r)Ŝ(δ)

1− Ŝ(δ)
= P (1)µ

1− r

λmχ
. (85)

We thus have the minimization problem

min {ϕ(µ) + CRP (1)δ + CD (λmχ − (1− r)µP (1))− CV γmV δP (1)}
subject to p ≥ p0.

In the above problem the decision parameter is the service rate µ while the inequality constraint p ≥ p0,
is a quality of service requirement ensuring there is a floor, p0, on the number of customers who complete
service successfully.
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The inequality constraint can be rewritten as P (1)µ 1−r
λmχ

≥ p0 or P (1)µ ≥ p0
λmχ

1−r =: c0. The mini-
mization problem can thus be restated as

min {ϕ(µ) + CDλmχ + P (1) [CRδ − CD(1− r)µ− CV γmV δ]} (86)

subject to P (1)µ ≥ c0.

In the above expression, P (1) depends on µ through γ. In fact we have

P (1) =
1

1 + δmR + δmV γ
where γ =

R̂(α(z0))

1− Û(α(z0))
(87)

In turn, when Ŝ(s) = µ
µ+s , the dependence of z0(µ) on µ is given implicitly by

z0 =
µ(1− r + rz0)

µ+ δ + λ− λχ(z0)
. (88)

The above equation is equivalent to α(z0) = µ(1 − r) + δ − µ(1 − r)z−1
0 . Assuming for instance that

R̂(s) = (1 + smR)
−1 and Û(s) = (1 + smV )

−1, and setting µ̄ := (1− r)µ,

γ(µ) =
1

1 +mRδ +mRµ̄(1− z0)−1

(
1 +

1

mV δ +mV µ̄(1− z−1
0 )

)
.

and therefore, the quantity to be minimized is

ϕ(µ) + CDλmχ + P (1) [CRδ − CD(1− r)µ− CV γmV δ] (89)

= ϕ(µ) + CDλmχ +
[CRδ − CD(1− r)µ]

[
1− Û(α(z0))

]
− δmV CV R̂(α(z0))

[1 + δmR]
[
1− Û(α(z0))

]
+ δmV R̂(α(z0))

= ϕ(µ) + CDλmχ +
[CRδ − CDµ̄]α(z0) [1 +mRα(z0)]− δ [1 +mV α(z0)]

[1 + δmR]α(z0) [1 +mRα(z0)] + δ [1 +mV α(z0)]
.

In general one would have to resort to non-linear programming techniques. However, in the problem for-
mulated here the decision space is one dimensional and hence the solution may be obtained by plotting the
cost and the QoS constraint vs. the decision parameter µ as shown Figure 2.

8 Unconditional Disasters: A Model with Disasters Affecting the System
Regardless of Its State

In this section we consider a variation of the model in which disasters can occur at any time, regardless of the
state of the server. This includes periods when the server is on vacation or under repair, following a disaster.
In all cases, when a disaster occurs, a repair period begins causing the removal of all waiting customers. The
repair period may itself be interrupted by a disaster as well. Such a model, which we will term the system
with unconditional disasters may be appropriate when the disasters represent external factors such as power
failures or attacks that do not require the server to be operational in order to be effective. Another example
is given by a computer server which may be susceptible to DDoS attacks or to infection by viruses whether
it performs the primary tasks (server busy) or it performs secondary tasks (on vacation). As far as we know
this variation, while modeling realistic situations, has not been studied before. A model of a machine with
set ups and breakdowns which may occur not only in the course of machine operation but also during the
set up time has been studied in Bu and Liu [4].
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Figure 2: Minimizing the cost function. The cost function is plotted for λ = 1, δ = 0.02,
r = 0.5, mV = 200, mR = 300, and cost rates CV = 500, CR = 1000, and CD = 100. Also,
the batch size is geometric with χ(z) = 0.3z

1−0.7z . If for instance the QoS constraint is p0 = 0.6
then we need to find the minimum cost to the right of the green line.

Figure 3: Sample path of a system with unconditional disasters
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8.1 Supplementary Variables Analysis

The balance equations for the unconditional disaster model are given by

d

dx
Pn(x) + (λ+ δ + µ(x))Pn(x) = λ

n−1∑
k=1

χkPn−k(x), x > 0, n ≥ 1 (90)

d

dx
W0(x) + (λ+ δ + r(x))W0(x) = 0 (91)

d

dx
Wn(x) + (λ+ δ + r(x))Wn(x) = λ

n∑
k=1

χkWn−k(x), x > 0, n ≥ 1 (92)

d

dx
V0(x) + (λ+ δ + u(x))V0(x) = 0, (93)

d

dx
Vn(x) + (λ+ δ + u(x))Vn(x) = λ

n∑
k=1

χkVn−k(x), x > 0, n ≥ 1. (94)

Note that (90) is the same as (2) while (91)–(94) are modified, compared to (3)–(6) to include the effect of
disasters during the vacation and repair periods. The boundary conditions of the above system of differential
equations are given by (7), (8), (9), together with

W0(0) = δ, (95)

which replaces (10). The normalization condition is again (11). Using the same methodology and arguments
as in section 3 we obtain

P (0; z) = z
δR̂(α(z) + δ)− V0(0)

(
1− Û(α(z) + δ)

)
z − (1− r + rz) Ŝ(δ + α(z))

. (96)

Equation (18) is modified here in what regards V (x; z) and W (x; z) as follows:

W (x; z) =W0(0)[1−R(x)]e−(δ+α(z))x, V (x; z) = V0(0)[1− V (x)]e−(δ+α(z))x. (97)

The value of V0(0) is again determined using Rouche’s theorem in (96) yielding

V0(0) = δγδ (98)

where

γδ :=
R̂(α(z0) + δ)

1− Û(α(z0) + δ)
. (99)

Since δ is the rate of disasters (and therefore the repair initiation rate W0(0)), and V0(0) is the rate of
vacation initiations, it follows that γδ = V0(0)δ

−1 is the frequency of vacation periods compared to repair
periods. z0 is again the unique root of the denominator of (96) within the unit disk. (See Proposition 5 on
the Appendix.) Setting now

Kδ(z) := R̂(δ + α(z))− γδ

(
1− Û(δ + α(z))

)
(100)

we rewrite (96) as

P (0; z) =
δz Kδ(z)

z − (1− r + rz) Ŝ(δ + α(z))
.
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8.2 Probability Generating Functions and Performance Measures

U1. The partial pgf of the number of customers in the system when the server is working.

P (z) =
δz Kδ(z)

z − (1− r + rz) Ŝ(δ + α(z))

1− Ŝ(δ + α(z))

δ + α(z)
(101)

with
P (1) = R̂(δ)− γδ

(
1− Û(δ)

)
(102)

giving the steady-state probability that the server is busy serving customers.

U2. The partial pgf of the number of customers in the system when the server is under repair.

W (z) = δ
1− R̂(α(z) + δ)

α(z) + δ
. (103)

The probability that the server is under repair is W (1) = 1− R̂(δ).

U3. The partial pgf of the number of customers in the system when the server is on vacation.

V (z) = δγδ
1− Û(α(z) + δ)

α(z) + δ
. (104)

The probability that the server is on vacation is V (1) = γδ(1− Û(δ)).

U4. The pgf of the number of customers in the system in stationarity.

Φ(z) =
zKδ(z)[1− Ŝ(δ + α(z))]

z − (1− r + rz) Ŝ(δ + α(z))

δ

δ + α(z)
+ δmRR̂e(α(z) + δ) + δγδmU Ûe(α(z) + δ).

The mean number of customers in stationarity is

Φ′(1) =
λmχ

δ
−
(
R̂(δ)− γδ

(
1− Û(δ)

)) (1− r)Ŝ(δ)

1− Ŝ(δ)
. (105)

U5. The pgf of the system size at a departure epoch.

Φ+(z) = D−1
0 (1− r)δ

Kδ(z)

z − (1− r + rz) Ŝ(δ + α(z))
(106)

where D0 =
δ(1−r)(R̂(δ)−γδ(1−Û(δ)))

1−Ŝ(δ)
.

U6. The pgf of the system size at a busy period initiation epoch. Using the ratio of rates argument that led
to (46) we find in the same way that

Ψ(z) =
R̂(α(z) + δ)− R̂(λ+ δ) + γδ

(
Û(α(z) + δ)− Û(λ+ δ)

)
R̂(δ)− R̂(λ+ δ) + γδ

(
Û(δ)− Û(λ+ δ)

) =
Kδ(z)−Kδ(0)

1−Kδ(0)
(107)

U7. Rate of customer departures after completing service, f . This is given by

f = (1− r)

∫ ∞

0

∞∑
n=1

Pn(x)µ(x)dx. (108)
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Adding equations (7), (8) term by term, for all n ≥ 1, and using (108) we obtain

∞∑
n=1

Pn(0) + V0(0) = (1− r)f + rf +

∫ ∞

0

∞∑
n=0

Vn(x)u(x)dx+

∫ ∞

0

∞∑
n=0

Wn(x)r(x)dx (109)

∞∑
n=1

Pn(0) = P (0; 1) =
δKδ(1)

1− Ŝ(δ)
=

δ

1− Ŝ(δ)

(
R̂(δ)− γδ(1− Û(δ))

)
.

Also
∞∑
n=0

Wn(x) =W (x; 1) =W0(0)[1−R(x)]e−δx

and hence ∫ ∞

0

∞∑
n=0

Wn(x)r(x)dx =W0(0)R̂(δ).

Similarly
∫∞
0

∑∞
n=0 Vn(x)u(x)dx = V0(0)Û(δ). Thus, from (109),

f = (1− r)P (0; 1) + V0(0)[1− Û(δ)]−W0(0)R̂(δ),

and hence,

f = (1− r)
δŜ(δ)

1− Ŝ(δ)

[
R̂(δ)− γδ(1− Û(δ))

]
. (110)

U8. Fraction of customers that complete service without suffering a disaster, p. The rate of departures from
the system after a service completion is (1−r)f where f is given by (110). The rate of arrivals to the system
on the other hand is λmχ. Hence, by a ratio of rates argument, the probability that a customer completes
service and departs from the system without suffering a disaster is

p =
δ

λmχ

(1− r)Ŝ(δ)

1− Ŝ(δ)

[
R̂(δ)− γδ(1− Û(δ))

]
. (111)

It is worth noting that the above expression, together with Φ′(1) gives the following interesting formula for
the average number of customers in the system:

Φ′(1) =
λmχ

δ
(1− p). (112)

This expression has a simple explanation: Written as δΦ′(1) = λmχ(1−p), the left hand side is the rate at
which customers are removed due to disasters, as a result of PASTA. The right rand side is the rate at which
customers arrive multiplied by the probability that a customer will suffer a disaster. These two rates must of
course be equal.

U9. Rate of ordinary busy period terminations, θ1:

θ1 = (1− r)

∫ ∞

0
P1(x)µ(x)dx

From (8) we have

V0(0) = θ1 +

∫ ∞

0
V0(x)u(x)dx+

∫ ∞

0
W0(x)r(x)dx

hence

V0(0) = θ1 +

∫ ∞

0
V0(0)e

−(λ+δ)x[1− U(x)]u(x)dx+

∫ ∞

0
W0(0)e

−(λ+δ)x[1−R(x)]r(x)dx

25



or
θ1 = δ

(
γδ[1− Û(λ+ δ)]− R̂(λ+ δ)

)
.

U10. Rate of busy period terminations by disasters, θ2:

θ2 = δP (1) = δ
δKδ(1)

1− Ŝ(δ)

1− Ŝ(δ)

δ
= δKδ(1) = δ

(
R̂(δ)− γδ[1− Û(δ)]

)
.

U11. Probability that a busy period terminates by a departure, q1 or by a disaster, q2. From a ratio of rates
argument and the above results we have

q1 =
θ1

θ1 + θ2
=

γδ

(
1− Û(δ + λ)

)
− R̂(δ + λ)

R̂(δ)− R̂(λ+ δ) + γδ

(
Û(δ)− Û(λ+ δ)

) =
−Kδ(0)

Kδ(1)−Kδ(0)
, (113)

q2 =
θ2

θ1 + θ2
=

R̂(δ)− γδ

(
1− Û(δ)

)
R̂(δ)− R̂(λ+ δ) + γδ

(
Û(δ)− Û(λ+ δ)

) =
Kδ(1)

Kδ(1)−Kδ(0)
. (114)

U12. According to the theorem for busy period when we have partial disasters the busy period in total
disaster case given by

B̂(s) = 1− 1

s+ δ

(δKδ(1)− s− δ)Kδ(Γ̂0(s+ δ)) + sKδ(1)

Kδ(1)−Kδ(0)
. (115)

U13. Rate of initiation of vacations. This is given by V0(0) = γδW0(0) = δγδ.

U14. Probability that a disaster occurs during a busy period. Due to PASTA this is simply P (1), the
probability that the server is busy.

U15. Probability that a disaster removes no customer. Again, due to PASTA, this probability is given by

W (0) + V (0) =
δ

δ + λ

(
1− R̂(λ+ δ) + γδ

(
1− Û(λ+ δ)

))
.

8.3 Laplace transform of an inactive period.

We define as inactive period the time that elapses from the moment the server ceases serving customers
(either because of a service completion leaving the system empty or because of a disaster) to the moment
the next busy period begins (and thus the server begins serving customers again). We distinguish between
two types of inactive periods, those that begin with a disaster, and those that begin with a vacation. If we
denote by Î(s) the Laplace transform of the duration of a typical inactive period, by Î1(s) that of an inactive
period that begins with a vacation, and by Î2(s) that of an inactive period that begins with a disaster, then
we have

Î(s) = q1Î1(s) + q2Î2(s) (116)

where the probabilities q1, q2, are given by (113), (114). We evaluate first Î1(s), taking into account the
fact that, in the model considered in this section, disasters may occur during vacation or repair periods.
Let An, n = 1, 2, . . ., denote the event that such an inactive period consists of a string of n − 1 vacations
during which neither a disaster nor an arrival occurs, ending by a vacation during which either a disaster
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occurs. (Note that in this last vacation a number of arrivals may occur before the disaster.) Suppose that
{Ui}, {Λi}, {∆i}, are three independent sequences of i.i.d. random variables. The elements of the first
sequence are distributed according to the vacation distribution, while those of the second and the third are
exponentially distributed with rates λ and δ respectively. Then, taking into account the memoryless property
of the exponential distribution,

P(An) = P {U1 < (Λ1 ∧∆1), . . . , Un−1 < (Λn−1 ∧∆n−1), ∆n < Un} .

Similarly, let Bn be the event that we have n− 1 consecutive vacations during which neither a vacation nor
an arrival occurs, followed by a vacation during at least one arrival and no disaster occur. Then

P(Bn) = P {U1 < Λ1 ∧∆1, . . . , Un−1 < Λn−1 ∧∆n−1 , Λn < Un < ∆n} .

Clearly the events {An, Bn;n = 1, 2, . . .} are disjoint and their union is the whole sample space so that

E[e−sI1 ] =
∞∑
n=1

E[e−sI11(An)] + E[e−sI11(Bn)] (117)

On An it holds that I1 = U1 + · · · + Un−1 +∆n + Ĩ2 since, during the nth vacation a disaster occurs and
after this an inactive period starting with a disaster begins. Here Ĩ2 is an independent random variable with
Laplace transform Î2(s). Thus

E[e−sI11(An)] = E[e−s(U1+···+Un−1)1 (U1 < Λ1 ∧∆1, . . . , Un−1 < Λn−1 ∧∆n−1)]

×E[e−s∆n1(∆n < Un)] Î2(s). (118)

On the other hand, on Bn it holds that I1 = U1 + · · ·+ Un−1 + Un and therefore

E[e−sI11(Bn)] = E[e−s(U1+···+Un−1)1 (U1 < Λ1 ∧∆1, . . . , Un−1 < Λn−1 ∧∆n−1)]

×
{
E[e−sUn1(Λn < Un < ∆n)]

}
. (119)

Given that

E[e−s∆n1(∆n < Un)] = E
[∫ Un

0
e−sxδe−δxdx

]
=

δ

δ + s

(
1− Û(s+ δ)

)
,

E[e−sUn1(Λn < Un < ∆n)] = Û(s+ δ)− Û(s+ λ+ δ), (120)

and

E[e−s(U1+···+Un−1)1 (U1 < Λ1 ∧∆1, . . . , Un−1 < Λn−1 ∧∆n−1)] =
n−1∏
i=1

E[e−sUi1 (Ui < Λi ∧∆i)]

= Û(s+ λ+ δ)n−1 (121)

we have

Î1(s) =
∞∑
n=1

Û(s+ λ+ δ)n−1

[
δ

δ + s
[1− Û(s+ δ)]Î2(s) + Û(s+ δ)− Û(s+ λ+ δ)

]
whence we obtain

Î1(s) =
δ

δ+s [1− Û(s+ δ)]Î2(s) + Û(s+ δ)− Û(s+ δ + λ)

1− Û(s+ δ + λ)
. (122)
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The corresponding computation for the Laplace transform of an inactive period starting with a disaster
can be obtained by a similar argument, which we will not present at the same level of detail. We will consider
again a partition of the sample space according to the number, n = 1, 2, . . . of consecutive repair times at
the beginning of this inactive period. Of these, the first n− 1 are all interrupted by disasters, whereas the n
is completed without the occurrence of a disaster. If during this nth repair time customer arrivals occur then
the end of the repair period is also the end of the inactive period, otherwise at the end of the repair period
there follows an independent inactive period starting with a vacation with Laplace transform given by (122).
With {Ri} being an i.i.d. sequence of random variables with the distribution of the repair period we have
the counterpart of (117), (118),

Î2(s) =
∞∑
n=1

(
E[e−s(∆1+···+∆n−1)1(R1 > ∆1, . . . , Rn−1 > ∆n−1)]

×
{
E[e−sRn1(Rn < ∆n, Rn < Λ)] Î1(s) + E[e−sRn1(Λ < Rn < ∆)]

} ) .

Evaluating the above quantities we obtain

Î2(s) =
∞∑
n=1

(
δ

δ + s
[1− R̂(s+ δ)]

)n−1 [
R̂(s+ λ+ δ)Î1(s) + R̂(s+ δ)− R̂(s+ λ+ δ)

]
whence we obtain

Î2(s) =
R̂(s+ λ+ δ)Î1(s) + R̂(s+ δ)− R̂(s+ λ+ δ)

1− δ
δ+s [1− R̂(s+ δ)]

. (123)

From (122) and (123) we obtain

Î1(s) =

[
s+ δR̂(s+ δ)

] [
1− Û(s+ λ+ δ)

]
−
[
s+ δR̂(s+ λ+ δ)

] [
1− Û(s+ δ)

]
[
s+ δR̂(s+ δ)

] [
1− Û(s+ λ+ δ)

]
− δR̂(s+ λ+ δ)

[
1− Û(s+ δ)

] ,

Î2(s) =
(s+ δ)R̂(s+ δ)

[
1− Û(s+ λ+ δ)

]
− (s+ δ)R̂(s+ λ+ δ)

[
1− Û(s+ δ)

]
[
s+ δR̂(s+ δ)

] [
1− Û(s+ λ+ δ)

]
− δR̂(s+ λ+ δ)

[
1− Û(s+ δ)

] .

From the above, together with (116) and (113), (114), we obtain the Laplace transform of the typical inactive
period

Î(s) =

[
(δ + q2s)R̂(s+ δ) + q1s

] [
1− Û(s+ λ+ δ)

]
−
[
(δ + q2s)R̂(s+ λ+ δ) + q1s

] [
1− Û(s+ δ)

]
[
s+ δR̂(s+ δ)

] [
1− Û(s+ λ+ δ)

]
− δR̂(s+ λ+ δ)

[
1− Û(s+ δ)

] .

The corresponding mean values are given by

EI1 =
1

δ

1− Û(δ)

R̂(δ)[1− Û(λ+ δ)]− R̂(λ+ δ)[1− Û(δ)]

EI2 =
1

δ

[1− R̂(δ)][1− Û(λ+ δ)] + R̂(λ+ δ)[1− Û(δ)]

R̂(δ)[1− Û(λ+ δ)]− R̂(λ+ δ)[1− Û(δ)]

EI =
1

δ

1− R̂(δ) + γδ[1− Û(δ)]

R̂(δ)− R̂(λ+ δ) + γδ(Û(δ)− Û(λ+ δ))
(124)
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9 Numerical Results

We present numerical results both for the basic model of sections 2 through 6, which we will call here the
conditional disasters model, and for the unconditional disasters model analyzed in section 8. Numerical
results are plotted for two performance criteria, the average number of customers in the system (37) and
(105) and the probability of a customer completing service and departing without suffering a disaster (67)
and (111) (see also (112)). In all cases presented, the Poisson arrival rate is λ = 1, the batch size is constant
and equal to 1, and the feedback probability is r = 0.5. Regarding the distributions for the service time,
repair, and vacation durations, two types of systems are also considered. In the first all these distributions
are exponential and the in the second all are deterministic.

In Figure 4 an exponential system with conditional disasters is considered. The mean number of cus-
tomers is plotted against the total mean service time for four cases, namely small and large mean repair and
vacation times. (The total mean system time is mean service time divided by 1 − r, i.e. the total expected
time the customer spends in the server.)

A salient feature of the qualitative behavior of the system is the following: For large mean vacation
time, when the total mean service time becomes very small, the mean number of customers in the system
converges to a limit. An exact analysis shows that this limit is λEU2

2EU . Intuitively this is clear because, when
the mean service time is close to zero, all customers are instantaneously served and thus there is no chance
of a disaster occurring. As a result, arriving customers nearly always find the system in vacation. Therefore
the mean system time for each of them is the mean residual life of the vacation distribution.

Figure 5 presents plots of the probability of a customer completing service for the same system as that
of Figure 4. Such plots used in conjunction can provide support for deciding on the operational parameters
of the system. Typically, as we have also seen in §7, the probability of completing service acts as a con-
straint. Notice the sigmoidal form of the plot, particularly when the disaster rate is low, which is the same
qualitatively across values of the disaster rate and the values of the mean repair and vacation times.

Figures 6 and 7 repeat the same for the system with unconditional disasters. Note that when the total
mean service time exceeds 1 the systems would be unstable in the absence of disasters. In each plot the
disaster rate δ takes values from 0.01 (red) to 0.1 (blue). Notice in particular the behavior of the mean queue
length when the mean vacation time is small and the mean repair time is large. Also, from the above figures
we see that, while there are of course quantitative differences there are no qualitative differences between
the exponential and the deterministic system.

10 Appendix – Determination of z0

Proposition 5. For δ > 0 the equation

z = (1− r + rz)Ŝ(δ + α(z)) (125)

has a single root, z0, inside the unit disk {z ∈ C : |z| < 1} which is real and positive.

Proof. Let h(z) := (1−r+rz)Ŝ(δ+α(z))−z. Since h(0) = (1−r)Ŝ(δ+λ) > 0 and h(1) = Ŝ(δ)−1 < 0
there exists z0 ∈ (0, 1) such that h(z0) = 0. This shows that (125) has a real and positive root within the
unit disk. To complete the proof we must show that h has no other roots there. Let f(z) := −z and

29



Figure 4: Conditional Disasters - Exponential - Mean Queue Length as a function of the total mean service time
1/µ(1 − r). The disaster rate δ ranges from 0.01 (red) to 0.1 (blue). In general, lower disaster rates correspond to
larger mean queue lengths since customers are not removed often from the system. However, on the lower left plot,
corresponding to mU = 0.5, mR = 5, notice that for small values of the mean service time higher disaster rates
(blue lines) correspond to larger mean queue length. This is due to the long repair periods, during which customer
accumulate without being served.
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Figure 5: Conditional Disasters - Exponential - Probability of Completing Service as a function of the total mean
service time 1/µ(1− r). The disaster rate δ ranges from 0.01 (red) to 0.1 (blue).
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Figure 6: Unconditional Disasters - Exponential - Mean Queue Length as a function of the total mean service time.
The disaster rate δ ranges from 0.01 (red) to 0.1 (blue).
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Figure 7: Unconditional Disasters - Exponential - Probability of Completing Service as a function of the total mean
service time. The disaster rate δ ranges from 0.01 (red) to 0.1 (blue).
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g(z) := (1 − r + rz)Ŝ(δ + α(z)) which are both analytic in |z| ≤ 1. When |z| ≤ 1, |1 − r + rz| ≤
|1− r|+ |rz| = 1− r + r|z| ≤ 1. Thus

|g(z)| ≤ |1− r + rz|
∫ ∞

0
| e−(δ+α(z))x | dS(x) ≤

∫ ∞

0
e−δx e−xℜ(α(z))dS(x).

The real part of α(z) when |z| = 1 (i.e. when z = eiθ with θ ∈ [0, 2π)), is

ℜ
(
λ
(
1−

∑∞
k=1 χke

ikθ
))

= λ
∑∞

k=1 χk(1− cos kθ) ≥ 0, θ ∈ [0, 2π)

and thus |g(z)| ≤
∫∞
0 e−δxdS(x) < 1 when |z| = 1. It follows by Rouché’s theorem that f(z) and

f(z) + g(z) will have the same number of zeros in the unit disk |z| < 1. Since f(z) has only one zero in
the unit disk (namely z = 0) h(z) also has a single zero, z0, there.
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