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Focus of this Talk

This talk aims at introducing Dynamic Count Networks (DCN)
and as well as presenting a Bayesian Latent Space Model for
community detection (clustering) in DCN.

The presentation consists predominantly of:

Introduction to Dynamic Count Networks

Definition of a Latent Space Model for DCN clustering

Model parameter estimation using Bayesian inference

Simulation of a DCN and model implementation
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What is a Count Network?

Count Network Definition

Count Network is a mathematical structure, that uses count
data (e.g. emails, calls) to describe pairwise relations between
objects. It consists of vertices and the number of events between
them.

Count Adjacency Matrix Definition

The count adjacency matrix Y for a count network of N nodes
is an N × N matrix of which each cell is defined as:

yij =

{
number of events between the i th and j th

actors of the network .

}
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What is a Dynamic Count Network?

Dynamic Count Network (DCN) Definition

Dynamic Count Network (DCN) is a count network, that changes
over time and can be described by a count adjacency cube Y, where:

y
(t)
ij =

{
number of events between the i th and j th

actors of the network at time t .

}
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Model Definition

I We assume that the event rates between the i th and j th actors of
the network at time t can be modelled as:

log(λ
(t)
ij ) = γ(t)1{

y
(t−1)
ij −y (t−2)

ij >0
}+δ(t)1{

y
(t−1)
ij −y (t−2)

ij ≤0
}−|Wi−Wj |

where, γ(t) is an increasing count parameter and δ(t) a decreasing-
stable count parameter. Wi refers to the network actors latent
positions in a d−dimensional Euclidean space and | · | is the Eu-
clidean norm.

I We can express the likelihood of the above model as:

Ly =
T∏
t=3

N∏
i=1

N∏
j :i<j

{
Poisson(λ

(t)
ij )
}
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Model Definition

I To represent clustering, we assume that Wi ’s are drawn from
a finite mixture of G multivariate normal distributions (FMG).
Each MVN has a different mean vector and a spherical covariance
matrix with variances, that differ between groups:

Wi ∼
G∑

g=1

πgMVNd(µg , σ
2
g Id)

where, πg is the probability that an actor belongs to the g th group,

so that πg ≥ 0 and
∑G

g=1 πg = 1.
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Prior Distributions

For the FMG part of the model, we introduce a new variable
ki equal to g if the i th actor belongs to the g th group as is
standard in Bayesian estimation of mixture models.

π ∼ Dirichlet(ν)

σ2
g ∼ σ2

0InvX
2
α

µg ∼ MVNd(0, ω2Id)

and

P(W ,K |πg , µg , σ
2
g ) =

G∏
g=1

N∏
i=1

(
πgNd(µg , σ

2
g Id)

)
1{ki=g}
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Prior Distributions

For the parameters γ and δ we assume random walk
priors:

f (γ|τγ, τ 0γ ) = f

(
γ(1); 0,

1

τ 0γ

) T∏
t=2

f

(
γ(t); γ(t−1),

1

τγ

)

f (δ|τδ, τ 0δ ) = f

(
δ(1); 0,

1

τ 0δ

) T∏
t=2

f

(
δ(t); δ(t−1),

1

τδ

)
where, f (x ;m, v) is a Gaussian density estimated at x
with mean m and variance v .

For the prior information of the precision parameters
τγ,τ 0γ ,τδ,τ

0
δ we propose a Gamma(A,B) density.
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Posterior Distributions

The full conditional posterior distributions are:

Wi |Ki = g , others ∝ φd(wi ;µg , σ
2
g Id)× P(Y |W , β, γ, δ)

π|others ∝ Dirichlet(m + ν)

µg |others ∝ MVNd

(
µgwg

µg+σ2
g/ω

2 ,
σ2
g

µg+σ2
g/ω

2 I

)
σ2
g |others ∝

(σ2
0+ds2g
α+µgd

)
InvX 2

α+µgd

P(Ki = g |others) =
πgφd (wi ;µg ,σ

2
g Id )∑G

r=1 φd (wi ;µr ,σ2
r Id )

where,
mg =

n∑
i=1

1{Ki=g}

s2g =
1

d

n∑
i=1

(wi − µg )T (wi − µg )1{Ki=g}

wg =
1

mg

n∑
i=1

wi1{Ki=g}
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Posterior Distributions

γ(t)|others ∝ P(Y |W , β, γ, δ)×
f
(
γ(t); 0, 1

τ 0
γ

)1{t=1} f
(
γ(t); γ(t−1), 1

τγ

)1{t>1} f
(
γ(t+1); γ(t), 1

τγ

)1{t<T}

δ(t)|others ∝ P(Y |W , β, γ, δ)×
f
(
δ(t); 0, 1

τ 0
δ

)1{t=1} f
(
δ(t); δ(t−1), 1

τδ

)1{t>1} f
(
δ(t+1); δ(t), 1

τδ

)1{t<T}

τγ ∼ Gamma
(
A + T−1

2 ,B +
∑T

t=1

(
γ(t)−γ(t−1)

)2
2

)
τ 0γ ∼ Gamma

(
A + 1

2 ,B +

(
γ(1)
)2

2

)
τδ ∼ Gamma

(
A + T−1

2 ,B +
∑T

t=1

(
δ(t)−δ(t−1)

)2
2

)
τ 0δ ∼ Gamma

(
A + 1

2 ,B +

(
δ(1)
)2

2

)
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MCMC Algorithm

Step 1: use of Metropolis-Hastings algorithm to sample Wi ,∀i =
1, ...,N , setting as a proposal density a d-variate Gaussian
distribution Nd(wold , δ

2
w Id).

Step 2: use of Gibbs sampling algorithm to generate samples for
µg , σ2

g and πg .

Step 3: use of random walk Metropolis algorithm to update the
constant parameters γ and δ.

Step 4: use of Gibbs sampling algorithm to sample from the con-
jugate posterior densities of τγ, τ

0
γ , τδ, τ

0
δ .
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Label Switching Problem

For Bayesian mixtures the invariance of the likelihood to permu-
tations in the labelling is referred to as label switching problem.

ECR Algorithm (Papastamoulis and Iliopoulos, 2010)

It is based on the idea that equivalent allocation vectors are
mutually exclusive from the label switching solution.

1 Define a pivot allocation vector k∗ = (k∗1 , ..., k
∗
N). The

pivot is selected by choosing a high-posterior density point.

2 For iter = 1, ...,Niter find a permutation p(iter) ∈ P that
maximizes

∑N
i=1 1{pk∗iter=k∗i }
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Choosing the number of clusters

BIC approximation for the dynamic Poisson regression part of the
model:

BICDPR = 2log [P{Y |Ŵ , γ̂, δ̂}]− 2T log

(
TN(N − 1)

2

)
BIC approximation for the FMG part of the model:

BICFMG = 2log [P{Ŵ |θ̂}]− dFMG log(N)

where, dFMG is the number of parameters in the clustering model
and N the number of actors.

BIC approximation for the entire model:

BIC = BICDPR + BICFMG
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Simulation

Step 1: Assume that the network has the following fundamental
properties G = 3, d = 2, T = 20 and N = 100.

Step 2: Generate samples for the actors latent positions W using as
mixture proportions πg = (1/4, 1/2, 1/4), clusters centres
µ1 = (−3,−3), µ2 = (0, 0), µ3 = (3, 3) and variances
σ2
g = (0.42, 0.22, 0.32).

Step 3: Generate samples for the constant parameters γ(t) and δ(t)

using a random walk process.

γ(t) ∼ N(γ(t−1), 1/2)

δ(t) ∼ N(δ(t−1), 1/2)



Introduction Theoretical Background Bayesian Estimation Implementation Conclusions References

Simulation

Step 4: For t = 1, 2 we have that:

Y
(t)
ij ∼ Poisson

(
1

|Wi −Wj |

)
and for t = 3, ...,T

Y
(t)
ij ∼ Poisson

(
λ
(t)
ij

)
where

λ
(t)
ij = exp

(
γ(t)1{

y
(t−1)
ij −y

(t−2)
ij >0

}+δ(t)1{
y
(t−1)
ij −y

(t−2)
ij ≤0

}−|Wi−Wj |
)
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Simulation
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Model fitting

The MCMC algorithm ran for 20000 iterations, of which the first 8000

were used as burn in period. The values of the model hyper-parameters

were defined as δ2W = 1, ν = c(3, 3, 3), ω2 = 2, α = 2 and σ2
0 = 0.1.
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Model fitting
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Conclusions

Accurate estimation of the dynamic count network
communities.

Time consuming runs of the MCMC algorithm.

Difficulty of tuning the hyper-parameters.

Fitting the DCN latent space model to real data.

Use of a more time series approach for clustering DCN.
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