Introduction	Theoretical Background	Bayesian Estimation	Implementation	Conclusions	References

Bayesian Model-Based Clustering for Dynamic Count Networks

Kekempanos Angelos

Athens University of Economics and Business

October 25, 2021

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Introduction ●00	Theoretical Background	Bayesian Estimation	Implementation 000000	Conclusions	References 00
Focus of	of this Talk				

This talk aims at introducing Dynamic Count Networks (DCN) and as well as presenting a Bayesian Latent Space Model for community detection (clustering) in DCN.

The presentation consists predominantly of:

- Introduction to Dynamic Count Networks
- Definition of a Latent Space Model for DCN clustering

- Model parameter estimation using Bayesian inference
- Simulation of a DCN and model implementation

 Introduction
 Theoretical Background
 Bayesian Estimation
 Implementation
 Conclusions
 References

 0●0
 000
 0000000
 000000
 000
 00
 00

What is a Count Network?

Count Network Definition

Count Network is a mathematical structure, that uses count data (e.g. emails, calls) to describe pairwise relations between objects. It consists of vertices and the number of events between them.

Count Adjacency Matrix Definition

The count adjacency matrix Y for a count network of N nodes is an $N \times N$ matrix of which each cell is defined as:

$$y_{ij} = egin{cases} \mathsf{number of events between the } i^{th} \ \mathsf{and} \ j^{th} \end{bmatrix}$$

Dynamic Count Network (DCN) is a count network, that changes over time and can be described by a count adjacency cube Y, where:

 $y_{ij}^{(t)} = \begin{cases} \text{number of events between the } i^{th} \text{ and } j^{th} \\ \text{actors of the network at time t.} \end{cases}$

・ロト・日本・モト・モート ヨー うへぐ

Introduction	Theoretical Background	Bayesian Estimation	Implementation	Conclusions	References
000	●00		000000	00	00
Outline	2				

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

1 Introduction

- 2 Theoretical Background
- 3 Bayesian Estimation
- Implementation
- 5 Conclusions
- 6 References

Introduction	Theoretical Background	Bayesian Estimation	Implementation	Conclusions	References
000	○●○		000000	00	00
Madal	Definition				

We assume that the event rates between the *ith* and *jth* actors of the network at time *t* can be modelled as:

$$log(\lambda_{ij}^{(t)}) = \gamma^{(t)} \mathbb{1}_{\left\{y_{ij}^{(t-1)} - y_{ij}^{(t-2)} > 0\right\}} + \delta^{(t)} \mathbb{1}_{\left\{y_{ij}^{(t-1)} - y_{ij}^{(t-2)} \le 0\right\}} - |W_i - W_j|$$

where, $\gamma^{(t)}$ is an increasing count parameter and $\delta^{(t)}$ a decreasingstable count parameter. W_i refers to the network actors latent positions in a *d*-dimensional Euclidean space and $|\cdot|$ is the Euclidean norm.

• We can express the likelihood of the above model as:

$$\mathcal{L}_{y} = \prod_{t=3}^{T} \prod_{i=1}^{N} \prod_{j:i < j}^{N} \left\{ \textit{Poisson}(\lambda_{ij}^{(t)}) \right\}$$

Introduction 000	Theoretical Background 00●	Bayesian Estimation	Implementation 000000	Conclusions	References 00
Model	Definition				

To represent clustering, we assume that W_i's are drawn from a finite mixture of G multivariate normal distributions (FMG). Each MVN has a different mean vector and a spherical covariance matrix with variances, that differ between groups:

$$W_i \sim \sum_{g=1}^G \pi_g MVN_d(\mu_g, \sigma_g^2 \mathbf{I}_d)$$

where, π_g is the probability that an actor belongs to the g^{th} group, so that $\pi_g \ge 0$ and $\sum_{g=1}^{G} \pi_g = 1$.

Introduction	Theoretical Background	Bayesian Estimation	Implementation	Conclusions	References
000		•0000000	000000	00	00
Outline	2				

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Introduction

- 2 Theoretical Background
- 3 Bayesian Estimation
- Implementation
- 5 Conclusions

6 References

Introduction 000	Theoretical Background	Bayesian Estimation 0000000	Implementation	Conclusions	References 00
Prior D	Distributions				

• For the FMG part of the model, we introduce a new variable k_i equal to g if the i^{th} actor belongs to the g^{th} group as is standard in Bayesian estimation of mixture models.

 $\begin{aligned} \pi &\sim \textit{Dirichlet}(\nu) \\ \sigma_{g}^{2} &\sim \sigma_{0}^{2}\textit{Inv}X_{\alpha}^{2} \\ \mu_{g} &\sim \textit{MVN}_{d}(0, \omega^{2}I_{d}) \end{aligned}$

and

$$P(W, K | \pi_g, \mu_g, \sigma_g^2) = \prod_{g=1}^{G} \prod_{i=1}^{N} \left(\pi_g N_d(\mu_g, \sigma_g^2 \mathbf{I}_d) \right)^{\mathbb{I}_{\{k_i = g\}}}$$

Introduction	Theoretical Background	Bayesian Estimation	Implementation	Conclusions	References
000		00●00000	000000	00	00
Prior [Distributions				

• For the parameters γ and δ we assume random walk priors:

$$f(\gamma|\tau_{\gamma},\tau_{\gamma}^{0}) = f\left(\gamma^{(1)};0,\frac{1}{\tau_{\gamma}^{0}}\right) \prod_{t=2}^{T} f\left(\gamma^{(t)};\gamma^{(t-1)},\frac{1}{\tau_{\gamma}}\right)$$
$$f(\delta|\tau_{\delta},\tau_{\delta}^{0}) = f\left(\delta^{(1)};0,\frac{1}{\tau_{\delta}^{0}}\right) \prod_{t=2}^{T} f\left(\delta^{(t)};\delta^{(t-1)},\frac{1}{\tau_{\delta}}\right)$$

where, f(x; m, v) is a Gaussian density estimated at x with mean m and variance v.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• For the prior information of the precision parameters $\tau_{\gamma}, \tau_{\gamma}^{0}, \tau_{\delta}, \tau_{\delta}^{0}$ we propose a Gamma(A, B) density.

Introduction	Theoretical Background	Bayesian Estimation	Implementation	Conclusions	References
000		000●0000	000000	00	00
Poster	ior Distribut	ions			

The full conditional posterior distributions are:

•
$$W_i | K_i = g$$
, others $\propto \phi_d(w_i; \mu_g, \sigma_g^2 I_d) \times P(Y | W, \beta, \gamma, \delta)$

• $\pi | others \propto Dirichlet(m + \nu)$

•
$$\mu_{g}|others \propto MVN_{d}\left(\frac{\mu_{g}\overline{w_{g}}}{\mu_{g}+\sigma_{g}^{2}/\omega^{2}}, \frac{\sigma_{g}^{2}}{\mu_{g}+\sigma_{g}^{2}/\omega^{2}}I\right)$$

•
$$\sigma_g^2 | others \propto \left(\frac{\sigma_0^2 + ds_g^2}{\alpha + \mu_g d} \right) Inv X_{\alpha + \mu_g d}^2$$

•
$$P(K_i = g | others) = \frac{\pi_g \phi_d(w_i; \mu_g, \sigma_g^2 \mathbf{1}_d)}{\sum_{r=1}^G \phi_d(w_i; \mu_r, \sigma_r^2 \mathbf{1}_d)}$$

where,

$$m_g = \sum_{i=1}^n \mathbb{1}_{\{K_i = g\}}$$

$$egin{aligned} & s_g^2 = rac{1}{d} \sum_{i=1}^n (w_i - \mu_g)^T (w_i - \mu_g) \mathbbm{1}_{\{K_i = g\}} \ & \overline{w_g} = rac{1}{m_g} \sum_{i=1}^n w_i \mathbbm{1}_{\{K_i = g\}} \end{aligned}$$

▲□▶▲□▶▲□▶▲□▶ = のへで

Introduction	Theoretical Background	Bayesian Estimation	Implementation	Conclusions	References
000		0000●000	000000	00	00
Posteri	or Distribut	ions			

•
$$\gamma^{(t)}|others \propto P(Y|W, \beta, \gamma, \delta) \times f(\gamma^{(t)}; 0, \frac{1}{\tau_{\gamma}^{\gamma}})^{\mathbb{1}_{\{t=1\}}} f(\gamma^{(t)}; \gamma^{(t-1)}, \frac{1}{\tau_{\gamma}})^{\mathbb{1}_{\{t>1\}}} f(\gamma^{(t+1)}; \gamma^{(t)}, \frac{1}{\tau_{\gamma}})^{\mathbb{1}_{\{t<\tau\}}}$$

•
$$\delta^{(t)}|others \propto P(Y|W,\beta,\gamma,\delta) \times f\left(\delta^{(t)};0,\frac{1}{\tau_{\delta}^{0}}\right)^{\mathbb{1}_{\{t=1\}}} f\left(\delta^{(t)};\delta^{(t-1)},\frac{1}{\tau_{\delta}}\right)^{\mathbb{1}_{\{t>1\}}} f\left(\delta^{(t+1)};\delta^{(t)},\frac{1}{\tau_{\delta}}\right)^{\mathbb{1}_{\{t<\tau\}}}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

•
$$\tau_{\gamma} \sim Gamma\left(A + \frac{T-1}{2}, B + \frac{\sum_{t=1}^{T} \left(\gamma^{(t)} - \gamma^{(t-1)}\right)^{2}}{2}\right)$$

• $\tau_{\gamma}^{0} \sim Gamma\left(A + \frac{1}{2}, B + \frac{\left(\gamma^{(1)}\right)^{2}}{2}\right)$
• $\tau_{\delta} \sim Gamma\left(A + \frac{T-1}{2}, B + \frac{\sum_{t=1}^{T} \left(\delta^{(t)} - \delta^{(t-1)}\right)^{2}}{2}\right)$
• $\tau_{\delta}^{0} \sim Gamma\left(A + \frac{1}{2}, B + \frac{\left(\delta^{(1)}\right)^{2}}{2}\right)$

Introduction	Theoretical Background	Bayesian Estimation	Implementation	Conclusions	References
000		00000●00	000000	00	00
МСМС	Algorithm				

- Step 1: use of Metropolis-Hastings algorithm to sample $W_i, \forall i = 1, ..., N$, setting as a proposal density a d-variate Gaussian distribution $N_d(w_{old}, \delta_w^2 I_d)$.
- Step 2: use of Gibbs sampling algorithm to generate samples for $\mu_{\rm g}$, $\sigma_{\rm g}^2$ and $\pi_{\rm g}.$
- Step 3: use of random walk Metropolis algorithm to update the constant parameters γ and $\delta.$
- Step 4: use of Gibbs sampling algorithm to sample from the conjugate posterior densities of $\tau_{\gamma}, \tau_{\gamma}^{0}, \tau_{\delta}, \tau_{\delta}^{0}$.

Introduction	Theoretical Background	Bayesian Estimation	Implementation	Conclusions	References
000		000000●0	000000	00	00
Label S	witching Pr	oblem			

For Bayesian mixtures the invariance of the likelihood to permutations in the labelling is referred to as *label switching problem*.

ECR Algorithm (Papastamoulis and Iliopoulos, 2010)

It is based on the idea that equivalent allocation vectors are mutually exclusive from the label switching solution.

- Define a pivot allocation vector $k^* = (k_1^*, ..., k_N^*)$. The pivot is selected by choosing a high-posterior density point.
- ② For *iter* = 1, ..., N_{iter} find a permutation $p^{(iter)} \in P$ that maximizes $\sum_{i=1}^{N} \mathbb{1}_{\{pk_{iter}^* = k_i^*\}}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Choosing the number of clusters

• BIC approximation for the dynamic Poisson regression part of the model:

$$BIC_{DPR} = 2\log[P\{Y|\hat{W}, \hat{\gamma}, \hat{\delta}\}] - 2T \log\left(\frac{TN(N-1)}{2}\right)$$

• BIC approximation for the FMG part of the model:

$$BIC_{FMG} = 2\log[P\{\hat{W}|\hat{\theta}\}] - d_{FMG}\log(N)$$

where, d_{FMG} is the number of parameters in the clustering model and N the number of actors.

• BIC approximation for the entire model:

$$BIC = BIC_{DPR} + BIC_{FMG}$$

Introduction 000	Theoretical Background	Bayesian Estimation	Implementation •00000	Conclusions 00	References 00
Outline	<u>د</u>				

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Introduction

- 2 Theoretical Background
- 3 Bayesian Estimation
- Implementation
- 5 Conclusions

6 References

Introduction 000	Theoretical Background	Bayesian Estimation	Implementation 00000	Conclusions 00	References 00
Simulat	tion				

- Step 1: Assume that the network has the following fundamental properties G = 3, d = 2, T = 20 and N = 100.
- Step 2: Generate samples for the actors latent positions W using as mixture proportions $\pi_g = (1/4, 1/2, 1/4)$, clusters centres $\mu_1 = (-3, -3), \ \mu_2 = (0, 0), \ \mu_3 = (3, 3)$ and variances $\sigma_g^2 = (0.4^2, 0.2^2, 0.3^2).$
- Step 3: Generate samples for the constant parameters $\gamma^{(t)}$ and $\delta^{(t)}$ using a random walk process.

$$\gamma^{(t)} \sim \mathcal{N}(\gamma^{(t-1)}, 1/2)$$

 $\delta^{(t)} \sim \mathcal{N}(\delta^{(t-1)}, 1/2)$

000 C: I		0000000	00000	00	00
Simula	tion				

Step 4: For t = 1, 2 we have that:

$$egin{aligned} Y_{ij}^{(t)} &\sim \textit{Poisson}igg(rac{1}{|W_i - W_j|}igg) \end{aligned}$$
 and for $t = 3,...,T$
 $Y_{ij}^{(t)} &\sim \textit{Poisson}ig(\lambda_{ij}^{(t)}ig) \end{aligned}$

$$\lambda_{ij}^{(t)} = exp\left(\gamma^{(t)}\mathbb{1}_{\left\{y_{ij}^{(t-1)} - y_{ij}^{(t-2)} > 0\right\}} + \delta^{(t)}\mathbb{1}_{\left\{y_{ij}^{(t-1)} - y_{ij}^{(t-2)} \le 0\right\}} - |W_i - W_j|\right)$$

000	000	0000000	000000	00	00		
Simulation							

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶

		0000000		00	00
	(*****				
000	000	00000000	000000	Conclusions 00	00

The MCMC algorithm ran for 20000 iterations, of which the first 8000 were used as burn in period. The values of the model hyper-parameters were defined as $\delta_W^2 = 1$, $\nu = c(3, 3, 3)$, $\omega^2 = 2$, $\alpha = 2$ and $\sigma_0^2 = 0.1$.

Actors' positions in the latent space

Introduction 000	Theoretical Background	Bayesian Estimation	Implementation 000000	Conclusions 00	References 00
Model	fitting				

Confusion Matrix of the Laten Space Model

Introduction 000	Theoretical Background	Bayesian Estimation	Implementation 000000	Conclusions ●○	References 00
Outline	`				

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

1 Introduction

- 2 Theoretical Background
- 3 Bayesian Estimation
- Implementation
- 5 Conclusions
- 6 References

Introduction	Theoretical Background	Bayesian Estimation	Implementation	Conclusions	References	
000		00000000	000000	○●	00	
Conclusions						

- Accurate estimation of the dynamic count network communities.
- Time consuming runs of the MCMC algorithm.
- Difficulty of tuning the hyper-parameters.
- Fitting the DCN latent space model to real data.
- Use of a more time series approach for clustering DCN.

Introduction 000	Theoretical Background	Bayesian Estimation	Implementation 000000	Conclusions 00	References ●0
Outline	2				

1 Introduction

- 2 Theoretical Background
- 3 Bayesian Estimation
- Implementation
- 5 Conclusions

Introduction 000	Theoretical Background	Bayesian Estimation	Implementation 000000	Conclusions 00	References ○●
References					

- Mark S. Handcock, Adrian E. Raftery, Jeremy M. Tantrum (2007). "Model-Based Clustering for Social Networks" *Royal Statistical Society*, pages 302–308. https://doi.org/10.1111/j.1467-985X.2007.00471.x
- Nial Friel, Riccardo Rastelli, Jason Wyse and Adrian E. Raftery (2016).

"Interlocking directorates in Irish companies using a latent space model for bipartite networks"

Proceedings of the National Academy of Sciences, pages 302–308. https://doi.org/10.1073/pnas.1606295113

Papastamoulis P. and Iliopoulos G. (2010).

An artificial allocations based solution to the label switching problem in Bayesian analysis of mixtures of distributions.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Journal of Computational and Graphical Statistics 19, 313-331