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1. Introduction

Interested in estimating finite mixture models of the type

ψ(x ;θ) =
K∑

k=1

πk f (x ;µk ,Σk ),

K fixed, where f elliptically symmetric:

f (x ;µ,Σ) = det(Σ)−
1
2 g
(

(x − µ)TΣ−1(x − µ)
)
.

This includes Gaussian mixtures where

g(r) = c exp(− r2

2
), f (x ;µ,Σ) = ϕ(x ;µ,Σ).
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The meaning of model assumptions?

Parametric method;
“We have to believe that data were iid generated by ψ(•;θ).”

“K -means is a nonparametric method; this is better
if we don’t know that above assumption is fulfilled.”

???
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In fact, K -means. . .

Tn(X̃n) = (m1n, . . . ,mKn,gin, . . . ,gnn)

= arg min
m1,...,mK ,g1,...,gn

n∑
i=1

‖Xin −mgi‖
2

. . . is ML for “fixed partition model”:

L(Xi) = Np

(
µγi , σ

2Ip
)
, γi ∈ {1, . . . ,K}, K > 1, σ2 ≥ 0.

Who calls K -means “nonparametric” either doesn’t know this,
or argues that originally it was defined nonparametrically,
without reference to the model. Or. . .
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. . . or makes reference to the following:
Pollard (1981) showed that under nonparametric P,
K -means is a consistent estimator for
its own canonical functional (Tn(X̃n) = C(P̂n))

(µ∗1, . . . ,µ
∗
K ) = arg min

(m1,...,mK )∈(Rp)k

∫
min

m∈{m1,...,mk}
‖x −m‖2dP(x).

Interestingly (Bryant 1991), it’s not consistent for (µ1, . . . ,µK ) in

L(Xi) = Np

(
µγi , σ

2Ip
)
, γi ∈ {1, . . . ,K}, K > 1, σ2 ≥ 0.

May wonder whether (µ∗1, . . . ,µ
∗
K ) is really of interest!

(Depends on application; Voronoi tesselation)
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The meaning of “model assumptions” is not usually well
communicated!

Model assumptions do not have to be fulfilled in practice.
(They never are!)

“Method X assumes Y” means that there’s a theorem
that states that under Y, X has certain “good” properties.

The K -means example shows that a property may look good
under one assumption but not so good under another.
(One could claim K -means assumes
a fixed partition spherical Gaussian model,
or a nonparametric P, i.i.d.)
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Model can be assumed in order to derive/develop a method
that works well under that assumption
- the model is an inspiration -
but in reality it is always applied to data
that don’t obey the assumption.

Need then new theory or simulations to find out what happens
if method assuming Y is applied in situation Z6=Y.

(Obviously, Z is not the reality either, but
gives broader understanding of characteristics of method X.)
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2. The ESD mixture setup

“Assuming” mixture

ψ(x ;θ) :=
K∑

k=1

πk f (x ;µk ,Σk )

to derive ML-estimator,
what happens if data comes from nonparametric P?
I Consistency for canonical functional

(Gaussian mixture done by Garcia-Escudero et al., 2015),
I result on value of canonical functional in case of

well separated nonparametric mixture components.
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`n(θ) =
1
n

n∑
i=1

log(ψ(xi ;θ)),

θn ∈ arg max
θ∈Θ̃K

`n(θ),

Can show that

λ∗min(Σ)↘ 0⇒ f (µ;µ,Σ) −→ +∞.

Degeneration of likelihood!
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In order to avoid degeneration, require

θ ∈ Θ̃K =

{
θ : πk ≥ 0 ∀k ≥ 1,

K∑
k=1

πk = 1;
λmax(θ)

λmin(θ)
≤ γ

}
.

(Garcia-Escudero et al. 2014 etc.)

L(θ,P) =

∫
logψ(x ,θ)dP(x),

LK (P) = sup
θ∈Θ̃K

L(θ,P),

θ?(P) ∈ arg max
θ∈Θ̃

L(θ,P).
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3. Existence and consistency
Assumptions:

A1 For every S = {x1,x2, . . . ,xK} ⊂ Rp: P(S) < 1.

A2 With hg(y) = EP

[
log(g(y−1 ‖X − µ‖2))

]
, for all

µ, y ↘ 0 : log(y−1) ∈ o(hg(y)).
A3 LK−1(P) < LK (P).

Without A1, degeneration cannot be avoided.
A2 states that if λmin(θ)↘ 0, then for all k ,

EP [log(f (X ;µk ,Σk ))] −→ −∞.

This regards the combination (P,g) and should be rather mild,
(for f Gaussian with EP

[
(‖x‖2)

]
<∞ it holds).

A3 is required to avoid parameter identification issues.
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Theorem 1 (existence of the ML functional).
Under A1-A3,

∃ compact T ⊂ Θ̃K : ∃θ ∈ T : −∞ < L(θ,P) < +∞,

θ 6∈ T ⇒ ∃c : L(θ,P) < c < LK (P).

. . . but the maximiser is not unique
(label switching and potentially other issues).
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S(θ̇) =
{
θ ∈ Θ̃K (P) : L(θ,P) = L(θ̇,P)

}
,

T (θ̇, ε) =
{
θ ∈ Θ̃K (P) : ‖θ − θ̈‖ < ε ∀ θ̈ ∈ S(θ̇)

}
Theorem 2 (consistency).
Under A1-A3,
∀ε > 0 and every sequence of maximizers θn of `n(·):

lim
n→∞

Pr[θn ∈ T (θ?(P), ε)] = 1.

(For Gaussian f , assumptions are almost same
as for nonparametric K -means consistency!)
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4. The mixture ML functional for nonparametric mixtures

Given distributions Q1, . . . ,QK “centered” at zero,
ξ1, . . . , ξK > 0 mixture proportions with

∑K
k=1 ξk = 1,

For m ∈ N, k ∈ {1, . . . ,K}, ρmk ∈ Rp so that

lim
m→∞

min
k1 6=k2∈{1,...,K}

‖ρmk1 − ρmk2‖ =∞.

Define sequence of nonparametric mixture distributions

Pm(x) =
K∑

k=1

ξkQmk (x), Qmk (x) = Qk (x − ρmk ).
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“Central set”

Bε(ρmk ) = {x : ‖x − ρmk‖ < ε}

ε large enough: for arbitrarily small η > 0:

∀m, k : Qmk (Bε(ρmk )) ≥ 1− η.
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Clustering assuming P =
∑K

k=1 πkFk ,
Fk with density f (x ;µk ,Σk ):
Model for (x ,Z1, . . . ,ZK ), Zk ∈ {0,1} unobserved,∑K

k=1 Zk = 1.

P{Zk = 1} = πk ,

p(x |Zk = 1) = fk (x)⇒

Pr[Zk = 1 |x ] = τk (x ;θ) =
πk f (x ;µk ,Σk )

ψ(x ;θ)
,

cl(x) = arg max
1≤k≤K

τk (x ;µk ,Σk ).
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Assumption:
A4 ∃c0 <∞ : ∀k ∈ {1, . . . ,K} :∫

log g(‖x‖)dQk (x) ≤ c0.

Theorem 3 (functional components correspond to Qk ).
Under A2 and A4, for large enough m,
components of θ?(Pm) can be numbered so that ∀k :

Bε(ρmk ) ⊆ Cmk = {x : cl(x ,θ?(Pm)) = k}.
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I For separation between Qmk →∞, this may not seem
surprising.

I Can prove similar theorem for K -means (requires second
moments).

I Qmk may still overlap (nonzero density).
I Results about functional values for nonparametric Pm

hardly exist.
I Does not hold for all clustering methods:

I Single linkage, Qmk Gaussian, will
for any m, large enough n, produce one-point cluster.

I Same average linkage (conjecture).
I α-trimmed clustering

can trim complete central set of Qmk if ξk ≤ α.
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With growing separation, also parameter estimators converge.

κ̃ = (µ̃k , Σ̃k ) = arg max
κ

L̃(κ,Qk ), L̃(κ,Q) =

∫
log f (x ;κ)dQ(x).

Corresponding functionals for Qmk = Qk (• − ρmk ) are

µ̃mk = µ̃k + ρmk , Σ̃mk = Σ̃k .

Assumption A5 For given Qk ,

∀ε > 0 ∃β > 0 : ‖κ− κ̃k‖ > ε⇒ L(κ̃k ,Qk )− L(κ,Qk ) > β.

“Distinguished” maximum exists for Qk - holds e.g. if f
Gaussian.
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Theorem 4 (functional parameters correspond to Qk ).
Under A2 and A4, for large enough m, components of θ?(Pm)
can be numbered so that

lim
m→∞

‖π?mk − ξk‖ = 0,

and for Qk fulfilling A5,

lim
m→∞

‖κ?mk − κ̃mk‖ = 0.
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Corollary. With f (•;µ,Σ) p-variate Gaussian, under A2 and A4,

lim
m→∞

∥∥∥∥µ?mk −
∫

xdQk (x)− ρmk

∥∥∥∥ = 0,

lim
m→∞

∥∥∥∥Σ?
mk −

∫
(x − µ̃k )(x − µ̃k )TdQk (x)

∥∥∥∥ = 0.
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5. Conclusion
I ML estimators based on parametric ESD mixtures

are consistent on nonparametric distributions.
I For well separated nonparametric mixtures,

nonparametric mixture components will eventually be
found.

I Such parametric mixture ML-estimators
are at least as “nonparametric” as K -means;
the parametric mixture assumption does not need to hold.

I Still work to do: Better characterisation of assumptions!
I Estimating number of components?
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