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Abstract

Multivariate Normal Inverse Gaussian model is obtained as mean-variance mixture

of multivariate Normal distribution. The resulting distribution, while having heavier

tails, it also accommodates skewness something not common to many multivariate dis-

tributions. In the present paper we propose Maximum likelihood estimation for the

multivariate Normal Inverse Gaussian model through an EM algorithm making use

of the mixture setting that generates the distribution. The algorithm is easily pro-

grammable to any statistical package. Properties of the distribution are also discussed.

A financial application is also given to illustrate the proposed methodology

Keywords: mean-variance mixtures; EM algorithm; Athens Stock Exchange

1 Introduction

Most of the existing literature for multivariate models is based on the multivariate

normal distribution. This implies a distribution with normal marginal distributions.

To relax the normal assumption elliptically contoured multivariate distributions have

been also proposed. They are generalizations of the multivariate normal distribution

having elliptical contours and, thus, symmetric marginal distributions. More details

for multivariate symmetric models can be found in the book of Fang et al. (1990).

See also the interesting family of Kotz type distributions (see, e.g. Nadarajah, 2003)

which is a particular case of the broad family of elliptically contoured distributions.

The class of elliptical distributions contain also scale mixtures of the multivariate

normal distribution (see, e.g. Cambanis and Fotopoulos, 2000). According to the
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choice of the mixing distribution certain well known families arise like the multivariate

t distribution or the multivariate modified Bessel distribution (Thabane and Drekic,

2003). Normal scale mixtures have heavier tails than the multivariate normal and they

are always platycyrtic with respect the multivariate normal model. So, they can fit

data with heavier tails and non-normal marginals.

Recently, there is an increasing interest in constructing models that allow for non-

symmetric marginal distributions. Note, in particular, that the notion of symmetry in

multivariate distributions can have a variety of forms (see chapter 1 of Fang et al. ,

1990). We refer to the symmetry with respect to the marginal distributions. Azzalini

and Dalla Valle (1996) introduced the multivariate skew-normal distribution (see also

Azzalini and Capitanio, 1999 for applications and Genton and Liu, 2001). The marginal

distributions are skewed-normal ones and thus this density is quite useful for practical

applications.

In a similar fashion Gupta (2003) proposed multivariate skew t distribution, that

allows heavy tails in addition to skewness. The same name has been used for a different

multivariate distributions with marginals that are skewed and heavy tailed generaliza-

tion of the well known t- distribution by Jones (2001). Azzalini and Capitanio (2003)

described skew elliptical distribution extending the above mentioned classes (see also

Fang, 2003).

We deal with a multivariate distribution that accomodates heavy tails and skewness

at the same time, being a mean-variance mixture of the multivariate normal distribu-

tion. Namely we will discuss the multivariate normal-inverse gaussian (MNIG) distri-

bution (see, Barndorff-Nielsen, 1997, Lillestol, 2001) which arises from a multivariate

normal density mixed by the Inverse Gaussian distribution. We propose ML estimation

of the density in the general multivariate form, through an EM type algorithm based

on the mixture derivation of the density. The algorithm is easily programmable to any

statistical package and thus it allows for easy application. This is quite important since

many of the above mentioned model, while theoretically treated, present computational

problems in order to be applied in real data problems.

The remaining of the paper proceeds as follows. In section 2 we introduce the MNIG

distribution and discuss its properties. In section 3 we develop the EM algorithm,

while in section 4 one can find real data applications. Finally in section 5, one can find

concluding remarks.
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2 The Multivariate Normal-Inverse Gaussian dis-

tribution

The derivation of the MNIG is based on a multivariate extension of mean variance

normal mixtures (see Barndorff-Nielsen et al. , 1983). Namely, suppose that x is a

random vector, which, conditional on z follows and m-variate normal distribution with

mean vector µ+zβΩ and covariance matrix zΩ, where z is a scalar, β and µ are vectors

with m elements and Ω is a variance covariance matrix. Assume further that z is a

random variable follows an Inverse Gaussian distribution with parameters γ and δ and

probability density function given by

f(z) =
δ√
2π

exp(δγ)z−3/2exp

(
−1

2

(
δ2

z
+ γ2z

))
. (2.1)

denoted as IG(γ, δ). The mean and the variance of the IG(γ, δ) distribution are E(Z) =

δ/γ and V ar(Z) = δ/γ3 respectively. Note that different parameterizations of the

Inverse Gaussian distribution has been also used (see, Seshardi, 1993).

For identifiability reasons we assume further that det Ω = 1. Alternatively one may

assume that E(Z) = 1 but this reduces the IG distribution to a one-parameter family

which is rather restrictive. Then, unconditionally, x follows an MNIG distribution.

The probability density function of the MNIG distribution of the d-dimensional

column vector X has the following form

fX(x) =
δ

2
d−1
2

[
a

πq̃(x)

] d+1
2

exp (p̃(x))K d+1
2

(aq̃(x)) (2.2)

where

p̃(x) = δ
√

a2 − βT ∆β + βT (x− µ) (2.3)

and

q̃(x) =
√

δ2 +
[
(x− µ)T ∆−1 (x− µ)

]
(2.4)

One can see that β appears only on the term exp(p̃(x)) and thus it adds asymmetry

to the distribution. It is clear to see that if β = 0 the distribution is symmetric, it is

merely a scale mixture of multivariate normal distribution. Parameter γ of the Inverse

Gaussian distribution is related to the above parameters via γ =
√

a2 − βT ∆β.
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Changing the Inverse Gaussian distribution with its generalization, the Generalized

Inverse Gaussian distribution (see, Jorgensen, 1982) one obtains the family of multi-

variate hyperbolic distributions (see, Blaesild and Jensen, 1985). We will discuss this

family in a later section.

As it can be seen from the probability density function the MNIG distribution

has two scalar parameters α,δ, which are assumed to be positive numbers, two d-

dimensional vector parameters β and µ and one d× d symmetric and positive definite

matrix ∆ which is not the covariance matrix.

The shape of the MNIG distribution is specified by the values of its parameters. The

α parameter controls the “steepness” of the density. When α increases the steepness

of the density increases monotonically too.

The parameter α affects also the tails of the density, in the sense that large values

of α imply light tails, while smaller values correspond to heavier tails. The sign of

β parameter controls the skewness of the distribution. Especially, for β > 0 the

distribution is skew to the right, while for β < 0 is skew to the left. Parameter δ

is a scale parameter and µ is a location parameter. Finally, the ∆ is a semidefinite

symmetric matrix with unity determinant, which controls the intercorrelations between

the components of the vector X. The distribution is symmetric if and only if β = 0

and ∆ = I, whereas if β = 0 and ∆ 6= I then MNIG is semi-symmetric.

The type of p̃(x)implies that the equality a2 > βT ∆β must be satisfied, in order the

MNIG distribution to exist. Figures 2 and 2 present contour plots for selected sets of

parameters. Since δ and mu are scale and location we have kept them equal to 1 and

0 respectively. For the first plot ∆ =



√

2 1

1
√

2


. We have used 4 different values

for β, namely β = (0, 0), (0, 0.5), (0.5, 0) and (0,−0.5). It is clear from figure how β

regulates the skewness of the density. In figure 2 the same β’s have been used but now

∆ = I. Recall that this does not imply uncorrelated variables. Again the effect of β

is obvious. Note also that the contours are not ellipses and that they can have quite

different shapes.

2.1 Properties of the MNIG distribution

At this section we present some of the most important properties of the Multivariate

Normal-Inverse Gaussian distribution, starting with the mean and variance. The mean
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Figure 1: Contour plots for different values of β.
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Figure 2: Contour plots for different values of β and ∆ = I.
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vector is

E(X) = µ +
δ∆β

γ

while the covariance matrix of the vector X is given by

Σ = δ
(
a2 − βT ∆β

)−1/2
[
∆ +

(
a2 − βT ∆β

)−1
∆ββT ∆T

]
(2.5)

which can be written in the better form

Σ =
δ

γ3

(
γ2∆ + ∆ββT ∆T

)

This allows to see that the covariance is split in two parts one due to the mixing and

one due to intrinsic covariance. It is interesting to see that it does not suffice the fact

that ∆ is diagonal in order to obtain independent variates. This is due to the fact that

the share the same factor, the latent variable Z which induces correlation. Interesting

special cases are when µ = β = 0, then Σ = δ∆/a.

A very attractive property of the MNIG distribution is that is closed under con-

volution. Particularly, if X1,X2, . . . , Xn are n independent MNIG variables with

common α, β and ∆ parameters and different location parameters µ1, µ2, . . . , µn as

well as different scale parameters δ1, δ2, . . . , δn then the variable Y =
n∑

i=1
Xi is also

MNIG distributed with parameters α, β, µtot, δtot , where µtot =
n∑

i=1
µi and δtot =

n∑
i=1

δi.

Additionally, a linear transformation of a MNIG random variable is also a MNIG

random variable. In other words, if Y = AX + B and X ∼ MNIG(α, δ,β, µ,∆), then

the transformed variable Y ∼ MNIG(α, δ,β, µ,∆) where

α′ = α ‖A‖−1/d

β′ = A−T β

δ′ = δ ‖A‖1/d

µ′ = Aµ + B

∆′ = AT ∆A ‖A‖2/d

In the above equations ‖A‖denotes the magnitude of the determinant of the matrix A.

Another basic property of the MNIG distribution is its limiting behavior. When

δ →∞ and a →∞ then X ∼ Nd

(
µ + σ2∆β, σ2∆

)
where δ/α = σ2, thus the Multivari-

ate Normal distribution is a limiting distribution for the Multivariate Normal-Inverse

Gaussian distribution.
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An interesting point related to the MNIG distribution is that the contours are not

necessarily hyperellipsoids and they are not symmetric in all cases. Thus the MNIG is

quite flexible and can model a variety of different situations.

An interesting result is the following:

Lemma 1 The conditional density of z | x is a GIG
(
−m+1

2 , δ
√

φ(x), α
)

distribution.

Define as φ(x) = 1 + δ−1(x − µ)∆−1(x − µ)T and γ =
√

α2 − β∆βT . To see this,

note that, ignoring all terms not involving z one obtains that

f(z | x) ∝ z−m/2exp

(
− 1

2z
(x− µ− zβ∆)T ∆−1(x− µ− zβ∆)

)
z−3/2exp

(
−1

2
(δ2z−1 + γ2z)

)

∝ z−m/2exp

{
− 1

2z

(
(x− µ)∆−1(x− µ)T − 2zβ(x− µ)T + z2β∆βT

)}
z−3/2 ×

× exp

(
−1

2
(δ2z−1 + γ2z)

)

∝ z−(m+3)/2exp

(
−(x− µ)∆−1(x− µ)T

2z
+ β(x− µ)T − zβ∆βT

2

)
exp

(
−1

2
(δ2z−1 + γ2z)

)

∝ z−(m+3)/2exp

(
−1

2

{
(δ2 + (x− µ)∆−1(x− µ)T )z−1 + (γ2 + β∆βT )z

}
)
)

and hence we obtain that the posterior is a GIG
(
−m+1

2 , δ
√

φ(x), α
)
. Note that the

posterior looks quite similar with the one derived for the univariate case.

This property will be quite helpful for deriving the EM algorithm in the next section.

3 Maximum Likelihood Estimation through an

EM algorithm

Let us assume that we have a sample of vector observations x1, . . . , xn. Standard ML

estimation would proceed by maximizing the loglikehood. Closed form expressions

do not exist and the derivatives of the likelihood are quite cumbersome. Numerical

maximization is also an option. We will provide an EM type algorithm. The algorithm

makes use of the mixture derivation of the distribution.

The Expectation-Maximization algorithm (formally introduced by Dempster et al.

, 1975) is a widely used method, which simplifies effectively the iterative computation

of the maximum likelihood estimates. The algorithm is applicable in situations where

the Newton-Raphson method is more complicated.
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The general purpose of the algorithm is to calculate the maximum likelihood esti-

mates in incomplete-data problems. All these situations do not only include the prob-

lems with obvious incompleteness, such as missing values or truncated distributions,

but also problems where the incompleteness is not natural or so clear. Therefore, even

if there is no incomplete-data problem -with any possible form-, it is usually helpful to

express the given problem as an incomplete-data problem and work it out using the

EM algorithm. In our case the mixing operation is considered as producing missing

data.

The algorithm is very easy to implement and it is numerically stable. By choosing

proper initials values we can achieve an appropriate convergence for the algorithm.

Concerns about whether the obtained maximum is a local or a global one can be

handled by starting from different initial values to see whether different solution are

found. More details on the algorithm can be found in McLachlan and Krishnan (1997).

The proposed algorithm is an extension of the algorithm provided in Karlis (2002).

In our case the complete data would contain observation yi = (xi, zi), where xi

denotes the observable part (the observed data that are considered as incomplete) and

zi the unobservable part of the data for each data point, which corresponds to the

mixing variate.

The EM algorithm consists of two steps· the E-step and the M-step. The E-step

computes the expectation of the unobservable part given the current values of the

parameters and the M-step maximizes the complete data likelihood and updates the

parameters using the expectations of the E-step. If we work with a member of the

exponential family, as as in our case the inverse gaussian distribution, the calculations

are simplified a lot, as at the E-step we have to calculate the conditional expectation of

the sufficient statistics for the Inverse Gaussian distribution. These are
∑

ziand
∑

z−1
i .

Starting with suitable initial parameters the two steps are repeated until convergence.

As mentioned in Lemma 1, the conditional density of z | x according to our repre-

sentation of the MNIG distribution is a GIG distribution, and thus we need only some

moments of this distribution. More details about the GIG distribution can be found

in the Appendix.

Now we can present the EM algorithm for the MNIG model. We assume that

∆ is known and equal to the scaled covariance matrix so as the determinant to be

equal to 1. At the E-step we have to calculate the conditional expectations of the first
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order moment and the inverse first moment order. Since the conditional densities are

Generalized Inverse Gaussian distributions the moments are given as

si = E (zi | xi) =
q̃(xi)

a

K(d−1)/2 [aq̃(xi)]
K(d+1)/2 [aq̃(xi)]

ϕi = E
(
z−1
i | xi

)
=

a

q̃(xi)
K(d+3)/2 [aq̃(xi)]
K(d+1)/2 [aq̃(xi)]

for i=1,. . . ,n. The quantities q̃(xi) are given by the equation 4.

The parameters are updated as follows:

µ̂ =

n−1
n∑

i=1
xiφi −

n∑
i=1

xi

n∑
i=1

si

n−1
n∑

i=1
φi − n

n∑
i=1

si

, β̂ =

n∑
i=

(xi − µ̂)

n∑
i=1

si

Σ̂ = n−1
n∑

i=1

[
(xi − µ̂)′(xi − µ̂)φi − β̂(xi − µ̂)

−(xi − µ̂)′β̂ + β′βsi

]

γ̂ =
n

n∑
i=1

si

and then transform back to the true parameters by

µnew = µ̂, δnew = |Σ̂|1/2d, γnew = γ̂/δnew

βnew = β̂Σ̂−1 and ∆new = |Σ̂|−1/dΣ̂

The algorithm is iterated between these two steps until a convergence criterion is

been satisfied. The criterion for the algorithm termination is based on the changes of

the likelihood between two iterations. Specifically, we stop iterating when the relative

change in the loglikelihood is smaller than a small positive value, i.e. when
∣∣∣Lk−Lk+1

Lk

∣∣∣ <

10−8, where Lk is the log-likelihood after the k-th iteration.

4 Application to real data

MNIG models have been proposed as appropriate models for financial data. The bench-

mark theory of mathematical finance is the Black-Scholes-Merton theory, based on
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Figure 3: Tsplots for the four indices

Brownian motion as the driving noise process for asset prices. According to this model

the distributions of returns of the assets in a portfolio are multivariate normal. The

two most obvious limitations here concern symmetry and thin tails, neither being con-

sistent with real data. MNIG models can have both skewness and heavy tails, thus

they are quite useful as model for financial data

At this section the EM algorithm was applied to a multivariate 4-dimensional prob-

lem, which concerns the log returns of the Athens Stock Exchange for the year 2002.

In total n = 226 observations were used.

The data were selected as follows. Let Yt denotes the value of the index for the day

t.The log-returns are obtained as

Xt = ln
Yt

Yt−1

For our application we used four indices, namely those related to the industrial, the

insurance, the parallel market and the communications respectively.

At figure 3 one can see the series plot for all the index used. It is clear from the

figure that the series are correlated. Scattermatrix presented in figure 4 shows the

shapes of all pairs of variables. It is evident that they are not symmetric. Histograms

also reveal heavy tails. Concluding, the MNIG distribution seems to be the appropriate

model for fitting the data instead of the four dimensional Gaussian distribution.

Therefore we will use the EM-algorithm to estimate the parameters of the MNIG

distribution, as the direct maximization of the log-likelihood would be an extremely

painful approach.
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Starting with arbitrary, initials values α = 1, δ = 2, β = (0, 0, 0, 0)′, µ = (0, 0, 0, 0)′

we took the following values of the estimates of the parameters: â = 11.08764 , β̂ =


−3.041931

−1.199446

−5.562134

4.037525




, µ̂ =




−0.0006977

−0.00328029

−0.00081249

−0.00100034



and δ̂ = 0.00731856

while the values for the matrix ∆ is

∆ =




1.148994 1.293078 1.103333 1.014983

1.293078 4.304846 1.474563 1.276138

1.103333 1.474563 1.415006 1.035096

1.014983 1.276138 1.035096 1.817839




Standard errors can be derived by inverting the matrix with second derivatives. How-

ever since this involves a lot of Bessel functions, one can avoid it by using bootstrap

standard errors. Simulation from the MNIG is straightforward based on the derivation

of the model. In addition, since good initial values are available, the EM converges

after a few iterations.

From these values we conclude that, as the value of the estimation of α is too high,

the distribution has light tails, while the significant difference of β from 0, implies that

the distribution has an obvious skewness.

The criteria that should be achieved in order to stop the iterations is that the

absolute relative difference between the values of the likelihood in two consecutive

iterations should be smaller than 0.00001.
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5 Concluding Remarks

The above described algorithm can be extended in several ways. In the case when

β = 0, i.e. when the distribution is symmetric, such an algorithm will be an extension

of the one for multivariate t distribution described in McLachlan and Krishnan (1997).

The algorithm also applies to the distribution examined in Thabane and Drekic (2003).

Another interesting extension might be the modelling of multivariate hyperbolic

distributions. Note that the MNIG corresponds to the case when λ = −1/2. The

key idea is that if λ is known the EM algorithm is applicable, since the conditional

expectations due to the Lemma are easily obtained and hence the whole algorithm

applies with small modifications. P However in this case the M-step has not closed

form expressions in all cases and thus the EM algorithm becomes an ECM (Expecta-

tion conditional Maximization) algorithm. Note also that the loglikelihood might be

unbounded as noted in Bleasild (1981).

Furthermore, the latent structure used to derive the EM algorithm can be the basis

for Bayesian treatment as well. Some more details for the univariate case can be found

in Karlis and Lillestol (2003).

Finally we must point out that in fact the presented model is in fact multivariate

heteroscedastic regression model and thus it can find a large number of applications in

certain other disciplines apart from modelling financial data. Note that the extension

to allow for more covariates is easy since the first part of the M-step is just a fit of a

regression model and thus it can be adjusted to allow for more covariates other than

the latent variable z.
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Appendix 1. The Modified Bessel Functions

As it can be noted form the equations 1 and 2, the probability density function

of both the Univariate and the Multivariate Normal-Inverse Gaussian distribution de-

pends on one specific order of the Modified Bessel function. At this section we will

present some properties of the Bessel functions that will simplify our calculations.

First of all, a basic property of the Modified Bessel function of the third kind is

that K−n(x) = Kn(x). Moreover, if we know the order of 0 and 1, we can easily
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calculate the Bessel function of order 2 using the form K2(x) = K0(x)+(2/x)K 1(x).

Generally, for n¿1 the Modified Bessel function of order n+1 is given by Kn+1(x) =
2n
x Kn(x) + Kn−1(x). Therefore, one needs only to evaluate K0(x) and K1(x) and the

greater orders are given by the previous retrospective form.

Additionally, closed forms of the Bessel function K(d+1)/2 exist when the vector X

is of even dimensionality, d=2,4,6,. . . . This not only avoids the numerical evaluation

of the Bessel function, but also simplifies the probability density function. For d=2, 4,

6 the corresponding Bessel function is

K3/2(x) =
√

π
2 · e−x · x−3/2 · (1 + x)

K5/2(x) =
√

π
2 · e−x · x−5/2 · (3 + 3x + x2)

K7/2(x) =
√

π
2 · e−x · x−7/2 · (15 + 15x + 6x2 + x3)

The Bessel function of order 1/2 is given by the following equation

K1/2(x) =
√

π

2
· e−x · x−1/2

Appendix 2. The Generalized Inverse Gaussian distribution

The probability density function of the Generalized Inverse Gaussian distribution

is given by

f(z; λ, δ, γ) =
(

γ

δ

)λ zλ−1

2Kλ(δγ)
exp

(
−1

2

(
δ2

z
+ γ2z

))

We will denote this distribution as GIG(λ, δ, γ). It will be quite helpful for the

derivation of our algorithm in the sequel. The moments around the origin of the

GIG(λ, δ, γ) distribution are given by

E(zr) =
(

δ

γ

)r Kλ+r(δγ)
Kλ(δγ)

(6.6)

and this formula holds for negative values of r , i.e. for inverse moments, too. The

Inverse Gaussian distribution is a special case of the Generalized Inverse Gaussian

distribution for λ = −1/2. The gamma distribution is also a special case of the GIG

distribution. More details on the GIG distribution can be found in Jorgensen (1982).


