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Abstract

In this paper, the distributions of the difference and the absolute difference of two
dependent Poisson variates are examined. It is shown that if two random variables
jointly follow a bivariate Poisson distribution, then the probability distribution of their
difference is the same as the distribution of the difference of two independent Poisson
variables. The importance of this finding for sport modelling purposes is exploited.
Additionally, the properties of these distributions as well as estimation methods are
provided. Finally, applications and extensions of the derived distributions are also

presented and discussed in detail.

Keywords: Absolute difference; Soccer; Bivariate Poisson distribution; Difference of

random variables; EM algorithm; World Cup; Zero-inflated distributions.

1 Introduction

Sports is a blooming field for applying current and developing new statistical methodologies.
In addition, betting on the outcome of soccer matches has a long tradition in United Kingdom
and other European countries. Statistical models can be helpful tools for such purposes; see,
for example, Jackson (1994).

Modelling the outcome of a soccer game is based on the number of goals scored by each

team. Suppose that X and Y denote the number of goals scored by each team. The Poisson
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distribution has been widely accepted as a simple and initial modelling approach for the
distribution of the number of goals, despite the small overdispersion that has been found
to exist for such data. Modelling simultaneously the number of goals of both teams, is a
more sophisticated approach. Although, several authors (see, for example, Lee, 1997, Karlis
and Ntzoufras, 1998) have shown a small dependence (but in fact not statistical significant)
between the number of goals scored by the two opponents, this dependence has been ignored
for modelling purposes.

Let us define the random variable Z = X —Y; then the first team wins a game if Z > 0,
looses if Z < 0 and there is a draw between the two opponents if Z = 0. Keller (1994)
calculated the probability of winning a game assuming independent Poisson distributions for
both X and Y. Alternatively, we may consider a bivariate model, assuming that the two
variables follow a bivariate Poisson distribution (see Kocherlakota and Kocherlakota, 1992
and references therein). The marginal distributions are simple Poisson distributions, while
the random variables are not independent.

The aim of this paper is dual. Firstly, a result concerning the dependence of two Poisson
random variables with respect to their difference is provided. It is found that, starting from
a bivariate Poisson distribution, the distribution of the difference is not influenced by the
dependence between the two variables. Secondly, the distributions of the difference and the
absolute difference of two Poisson random variables are described. Illustrative applications
to sports modelling are also provided.

The difference of two independent Poisson random variables has been discussed by Irwin
(1937) for the case of equal means and Skellam (1946) for the case of different Poisson means.
In this paper we examine further the properties and the behaviour of the distribution of the
difference of two Poisson (dependent or not), as well as the distribution of the absolute
difference of the two variables. The former distribution can be directly used for modelling
soccer games and for calculating the probabilities of the game outcomes ('win’, draw’ or
"loss’).

The remaining of the paper proceeds as follows. In section 2 the probability distribution
of the difference Z is derived and its properties are discussed in detail. Section 3 deals
with the distribution of the absolute difference of two Poisson distributed variables, while in

Section 4 the importance of this new result for soccer modelling is exploited. Some extended
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models are described in Section 5. Finally, concluding remarks are given in Section 6.

2 The Distribution of the Bivariate Poisson Difference

2.1 The Probability Distribution

Suppose that the discrete random variables X, Y jointly follow the bivariate Poisson distri-

bution. The probability function is given by
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The bivariate Poisson distribution defined in (1) allows for dependence between the two
random variables. Marginally each random variable follows a Poisson distribution with
parameters 6; + 03 and 05 + A5 respectively. Parameter 5 is the covariance between X and
Y and hence it can be considered as a parameter that incorporates dependence between the
two random variables. If §3 = 0 then the two variables are independent and the bivariate
Poisson distribution reduces to the product of two independent Poisson distributions. The
marginal distributions of both X and Y are Poisson, while the conditional distribution of Y
given X is the convolution of a Poisson with a binomial distribution (see Kocherlakota and
Kocherlakota, 1992).

Define, further, the difference between X and Y as Z = X — Y. The distribution of the

random variable Z is given by

(o]

Pr(2)=P(Z=z2) = Y P(X=rY=r—2)
= Y P(X=r)P(Y=r—z|X=r). (2)

If we substitute (2) in (1) we can derive the probability function of Z.
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By setting t = r — 7 we obtain that
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The sum in the right hand side is the Modified Bessel function (see Abramowitz and Stegun,
1974, pp. 375) defined by

I(z) = (%“9 ,i k!F(sZi Z +1)

and hence the probability distribution of the difference Z is given by

Py(z) = P(7 = 2) = = (04%) (Z—)/ I (2,/0,6.) )

2

for z=...—2,-1,0,1,2,..., 6;,0, > 0. It is easily verified that the above probability mass
function does not depend on #5.

The derived distribution is the same with the one derived from independent Poisson
variates with parameters 6; and 6, respectively, by Skellam (1946). Some references about
this distribution can be found in Johnson et al. (1992, pp.191). Note a misprint in Johnson
et al. (1992) about the order of the Modified Bessel function.

For simplicity we will refer to this distribution as the Poisson Difference distribution and

will be denoted by PD(0,6,).

2.2 Properties and Estimation for the Poisson Difference Distri-

bution
2.2.1 Properties

The expected value of the above distribution is given by E(Z) = 6; — 6, while the variance

is Var(Z) = 61 + 6,. In general, the odd cummulants are equal to #; — #; while the even
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cummulants are equal to #; + #;. The skewness coefficient 3; = Tﬁéﬁ, with p! denoting the

r-th central moment, is given by
(61 — 6,)
(0, + 92)3/2
and hence the type of the skewness is determined by the sign of 8; — #,. Thus, if 8; > 6,

B =

then positive skewness is present. The distribution is symmetric only when 6; = 6, (the case
discussed by Irwin, 1937).

Similarly the kurtosis coefficient 3, = ;,/2 is given by

1+ 3(61 + 6) 1
=~ = -3 .
G 0, + 0, +(91—|-(92

It is clear that as 8; + 8, tends to infinity the kurtosis coefficient tends to 3, the value of the
normal distribution. Moreover, for a constant difference §; — 5, the skewness coefficient also
tends to zero, indicating that for large values of the 6, + 0, the distribution can be sufficiently
approximated by the normal distribution.

Figure 1 depicts the probability distribution in comparison to the normal distribution
along with a normal density with the same mean and variance. For small parameter values,
the normal approximation is poor. However, as we can see in Figure 1, the Poisson difference
distribution approaches normality rather quickly.

If the parameter 6, is very close to 0, then the distribution tends to a Poisson distribution.
On the contrary if the parameter #; approaches 0, then the distribution is the negative of a

Poisson distribution (i.e. a Poisson distribution at the negative axis).
Figure 1 about here
An interesting property is a ‘type’ of symmetry given by
P(Z = 2|61,0,) = P(Z = —z0,,64).

This property can be useful for fast probability calculations. For practical purposes we
may compute the probabilities, via the convolution formula given in (2) using independent
Poisson variates. Alternatively, we may use the recursive relationships for the Modified

Bessel functions given by Abramowitz and Stegun (1974).
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Skellam’s (1946) original derivation of the distribution, used the probability generating
functions. He showed that the probability generating function G(¢) is given by

G(t) = exrp (—(01 + (92) + (glt + 02t_1) .

The unimodality of the Poisson difference distribution can be proved using the results of
Keilson and Gerber (1971). According to them, the convolution of two strongly unimodal
distributions is again a strongly unimodal distribution. The distribution in (3) is a convolu-
tion of a Poisson distribution with a ‘negative’ Poisson distribution. The Poisson distribution
is clearly unimodal while the ‘negative’ Poisson distribution is also unimodal because it just
reflects the simple Poisson distribution to the negative axis. Therefore, according to the
argument of Keilson and Gerber (1971), the Poisson difference distribution is also unimodal.

The sum and the difference of two Poisson difference random variables also follow the

same distribution as the following theorem shows.

Theorem 1: Let us consider two random variables say Z; ~ PD(6;,0;) and Zy ~

PD(05,04). Then the sum Sy = Z; + Z, also is given by S; ~ PD(6; + 63,6, + 6,).

Proof: Since Z; and Z; can be written as Z; = X7 — X, and Z;, = X3 — X, with
X; ~ Poisson(0;) for i = 1,2,3,4, results to
S1= (X1 = X2) + (X5 = Xy) = (X1 + X3) — (X2 + Xy)
with (X1 + X3) ~ Poisson(6;+63) and (X2 + X,) ~ Poisson(fy+86,). Similarly, the variable

So = 71 — 75 follows a Poisson difference distribution with parameters 8; + 8, and 6, + 6.

Remark If we consider a random sample of size n of i.i.d variables Z;,: =, 1...,n then we

can straightforwardly show that

Sy =3 7 ~ PD(nby,nfy).

=1

2.3 Estimation

In this section we focus on the estimation of the parameters #; and 6, of a Poisson differ-

ence distribution. Two approaches are presented: the moment method and the maximum
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likelihood estimation. The first is straightforward and is described briefly, while the second
is more interesting and detailed discussion is provided.

The estimation of the parameters can be easily accomplished using the moment method.
Matching the sample mean and variance with the theoretical values of section 2.2.1 results
in

by = (z+s%)/2 and 6, =(s>—32)/2,
where z and s? are the sample mean and variance respectively. The moment estimates do not
exist if s — |z| < 0. Asymptotic variances and covariances of the estimates can be derived
in the usual manner.

Maximum Likelihood (ML) estimation is much more complicated, since the likelihood
involves the modified Bessel function. If the true data X; and Y; were observed then the
estimation is straightforward since their means would be the ML estimates for the Poisson
parameters. Here an EM type algorithm is constructed, based on the missing data represen-
tation of the difference Z. In the EM algorithm, one calculates at the E-step the expectation
of X; and Y; conditional on the data and the current values of the parameters and then, at
the M-step, the means of the pseudodata X; and Y; are simply equated to the parameters.
More formally the EM can be described as follows

FE-step: With the current values of the parameters 05’“) and Hgk) from the k-th iteration,
calculate the expected values of X; and Y; given the current values of the parameters. Using

simple probability calculus is obtained that
ti = B(Xilzi,67,60") = Y «P(X; =2|Z = =)

r=0

i": P(X,=2)P(Y =z — z)
= x
=0 P(Zi = z)

Pz(ZZ' — 1)
Pz(ZZ)

= o

where Pz(z) is defined in (3).

M-step: Update the estimates by 0$k+1) =n1 f: t; and 0§k+1) = 0$k+1) —Zz

It is not necessary to calculate both conditionaf_e;pectations, since second parameter can
be updated by simple subtraction.

The above scheme is straightforward. It possesses all the properties of the standard EM

algorithm (see, McLachlan and Krishnan, 1997). The global maximum was obtained for all
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the cases we used either with real or simulated data. However, starting from several starting

points is useful to ensure that the global maximum has been obtained.

2.4 Mixture Distributions of Bivariate Poisson Variables

In this subsection we examine whether we can generalize some of the results of Poisson differ-
ence distribution in other discrete distributions and specifically in mixtures of the Bivariate
Poisson distribution.

Suppose that X and Y conditional on the parameters follow the bivariate Poisson distri-
bution as given by (1). Further assume that the parameters #; and , are random variables
that follow jointly a distribution function, say ¢(f1,62). Then the unconditional probability
is given by

P(x7y|03) = / / P(xvy|01702703)9(01702)d01d02-

Interchanging the integrations with the summations we can easily find that the distribution

of the difference Z is given by

L
P(z=t)= [ [t (9—) T(2/0:0)9(01,02)d6, 0,

which does not depend on 65. However the above result must be used with caution because
mixing a Bivariate Poisson distribution with the joint density ¢(f;,6,) will result to a covari-
ance which can be decomposed in two parts: one stemming from the intrinsic covariance of
X and Y measured by 3 and one stemming from the covariance of the joint density ¢(6;, 6,)
(see Stein and Juritz, 1987). Although the correlation due to the first part has been elimi-
nated, correlation due the second one is still present unless the assumed mixing distribution
9(01,6,) assumes independence for #; and 6,. For example, assuming that g(6;,6,) is the
product of two independent gamma distributions, giving rise to the bivariate negative bino-
mial distribution (Kocherlakota and Kocherlakota, 1992), the probability of Z > 0 does not
depend on the correlation parameter of the two initial random variables. Hence, the result

of section 2 can also be extended for certain mixtures of bivariate Poisson distributions.
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3 The Distribution of the Bivariate Poisson Absolute

Difference

3.1 The Probability Distribution

In association with soccer data, the difference between the variables representing the number
of goals scored by each team, represents the outcome of the game. The first variable X may
represent the number of goals of the home team while the second Y the goals scored by
the second team. Thus a positive sign for the difference represents the winning of the home
team with a score difference given by Z = X — Y. For games played in neutral ground, for
example in a World Cup, such differences are not well defined and hence analysis of the data
can be speculative and inaccurate. In such cases the absolute difference can be used, which
ignores the order in which the scores are referred. In this section we investigate and discuss
the distribution of the absolute difference of two Poisson variates. Assuming the bivariate
Poisson distribution then for the distribution of the absolute difference we conclude in a
result similar to the one of section 3; that is, the absolute difference W = |X — Y| does not
depend on the covariance parameter 6s.

The probability distribution function of the absolute difference W is given by

Py (w) = P(W = w) = e~(O+6) [, (2@) ((Z—l) " + (Z—j) m) (4)

since P(W = w) = P(Z = —w) + P(Z = w) and from (3) we have that P(Z = k|6,,6,) =
P(Z = —k|6,,0;) and I1(21/0,0;) = I_;(21/818,). For the rest of the paper, this distribution
will be called ‘absolute Poisson difference’ distribution and will be noted by AP D(6,,80;).
Note that interchanging the parameters lead to the same APD distribution. So, to avoid
non-identifiability we assume 6; > 6,. An alternative reparametrization can be adopted by

setting §; = 0 and 6, = 6 + §; 6,6 > 0. In such case (4) can be rewritten as

Pw(w) = P(W = w) = e~ ®+9) [, (2./0(0 + 5)) ((1 n g) —k/2 N (1 n g)kﬂ) . (5)

Calculation of the probabilities can be accomplished using the Poisson difference distribution.
Histograms of the probability mass functions for various combinations of the parameters 6,

and fy are given in Figure 2.
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Figure 2 about here

3.2 Moments

The moments of the distribution are not straightforward. Katti (1960) provided the moments
of the absolute differences for several combinations of discrete distributions. For the case of

two Poisson variates he showed that the r-th simple moment is given by
E(W") = e=O+9)[A,(0,,8,) + A,(05,6,)]

where A,(6y,6,) is calculated by

Ll

s 41016 0105 , /55
As(01,02) = | (01 + (_1)z+1¥> As_i(61,62) + (—1)8%62 P80 (1/2:1; -4/6162)

=0 1

with

and
Al (017 02) = (01 — 02)140(01, 02) -|— 010262' t91(92]\4' (3/27 37 —4’\/0102) -|— 0262' t91(92]\4' (1/27 17 —4’\/ 0102)

where M(a; 3;2) denotes the confluent hypergeometric function (see Abramowitz and Ste-
gun, 1974).

Unfortunately the above formulas are very complicated and do not provide a clear picture
of how the mean varies with the parameters. Figure 3 demonstrates how the mean behaves for
several combinations of the parameters. We have considered the alternative parametrization

(0,6) and the probability function (5) to examine the index of dispersion of the distribution.
Figure 3 about here

Note that, as the difference of the parameters (f; — ;) increases, the mean tends to their
absolute difference. This is due to the fact that the differences X — Y have the same sign
due to the large difference of the means. For such cases, the variance is high, leading to large
index of dispersion. Similarly, if #; tends to 0, the distributions tends to a simple Poisson

distribution.
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In the special case of 8; = #;, = 6 the mean simplifies to
E(W)=20{0M(3/2;3;—46) + M(1/2;1; —46)} .

Note a misprint in the original paper of Katti (1960). This distribution is interesting as it
has only a single parameter and thus a direct comparison with the Poisson distribution can
be made. The distribution is overdispersed for values of the parameter that exceeds 1.7389.
For selected values of the parameter one can see the mean, the variance and the index of

dispersion in Table 1.

Table 1 about here

3.3 Estimation of the Parameters

Estimation of the parameters is much more complicated than the simpler case of the differ-
ence. Moment estimates are rather cumbersome for practical purposes, since the theoretical
moments involve the confluent hypergeometric function. On the contrary, maximum like-
lihood estimation can be carried out by constructing an EM algorithm. This algorithm is
briefly described below:

E-step: Assuming that the current values of the parameters are given by 05’“) and Hgk)
from the k-th iteration, the expected values of X; and Y; given the current values of the

parameters are calculated. Using simple probability calculus we have that

o0

ti = B(X|w;, 09, 089) = S 2P(X; = 2|W; = w))
r=0
< PXi=2)(PY=z—w)+ PY =z+w))
= >z
x=0 P(M/Z = wl)
) Pz(ZZ — 1) + Pz(—ZZ' — 1)

PW (wz)
Similarly

Pz(ZZ' — 1) + Pz(—ZZ' — 1)
Pw(wz) '
where Pz(z), Pw(w) are defined in (3) and (4) respectively and P_z(z) is the probability

function of Y — X, that is PD(6,.6,).
M-step: Update the estimates by 0$k+1) = n7t f: t; and 0§k+1) =n! f: s; Again, the
=1 =1

si = B(Yi|w;, 67 69) = 9,

above scheme has all the properties of the standard EM algorithm. No specific problems

were encountered when applying the algorithm.
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4 Application in Soccer

4.1 The Poisson Assumption

Sports related industry is an increasing area and vast amounts of money are invested in such
activities. Betting on soccer games outcomes is common in many countries. Often, we wish
to be able to predict the outcome of a soccer game (or batches of games). The possible
outcomes are: win, loss, or draw, and a gambler gains money according to the number of
successes in his predictions (for an extended review of statistics in soccer see Bennet, 1998).
Other kinds of bets, involve the prediction of the ‘lead’ of the winning team, measured as
the difference in the number of goals scored by each team.

The Poisson distribution has a formal theoretical basis and is naturally used for events
that occur randomly at a constant rate over the observed time period. Thus if we assume
a constant ability across time of a team to score, the Poisson distribution seems a plausible
model. The majority of the papers in this field assume that the number of goals scored by
each team follows a Poisson distribution (Maher, 1982, Lee, 1987, Rue and Salvesen, 1997
among others). The observed overdispersion led some authors to advocate the use of an
overdispersed alternative to the simple Poisson distribution, such as the negative binomial
distribution (Baxter and Stevenson, 1988). However, the negative binomial does not offer
a significant improvement upon the results. On the contrary, interpretation of the results
becomes more complicated.

Another crucial question, arising in modelling soccer games, is whether the number of
goals scored by each team are dependent. Since the two teams interact into the game it seems
plausible that some kind of dependence exist. Lee (1997) reported that the dependence is
rejected via a chi-square test and in any case it is rather small to be considered as important.

Our results from section (2) offer another theoretical explanation for ignoring the depen-
dence (if any) on the number of goals scored by each team.

Specifically, assume that the random variables X and Y represent the number of goals
scored by each team, respectively. The joint distribution of these variables can be assumed
as a bivariate Poisson distribution, allowing for the dependence between the goals scored
by each team. In such a model, the marginal distributions are Poisson as it is commonly

assumed for sports data. A natural interpretation for the parameters is that 6; and #, are
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the parameters reflecting the scoring ability of the two teams while parameter A3 reflects
game conditions.

The sign of the random variable Z = X — Y reveals the winner of the game while a zero
value corresponds to a draw. The result of section 2 implies that the winning probbaility
does not depend on this parameter. Treating the number of goals for each team separately is
easier and allows for calculation via simple statistical packages, expanding the applicability of
statistical methods for betting purposes. It should be kept in mind that since the parameters
f; and 0, are estimated from the marginal distributions, the covarianec parameter 65 is
confounded. Using the Poisson differene distribution when the data are the differences in
the goals, the 'net’ scoring abilities are estimated. To do so with the original data one has
to find ML estimates from a bivariate Poisson distribution which is relatively more difficult.

For example, Maher (1982) developed Poisson regression models for soccer outcomes.

Such models take the general form
Nk ™~ POZ'SSOTL()\Z']'JC), log()\ijk) =pu+h; + a; + d; + h.ai]‘ + h.dix + Cl.djk + hadwk

where n;;; and A, are the observed and the mean, respectively, of the goals scored by team
J, with opponent team k, playing in soccer ground 7 (away /home); 1 is a constant parameter,
h; is the home effect parameter, a; is the parameter for the offensive performance of 7 team
and d;, encapsulates the defensive performance of k team. Karlis and Ntzoufras (1998)
examined such models in a general log-linear setting allowing also for model selection. Our
result verifies the commonly used approach that handles the two teams as independent and
hence the data from N games consist of 2/N data points.

In addition, Keller (1994) examined the probability of a win starting from independent
Poisson variates. Clearly, the results presented in Keller (1994) are also valid for dependent
Poisson variates.

In conclusion, violation of the independence assumption in Poisson distribution does
not affect the probabilities of soccer outcomes and therefore simple Poisson models can be
utilized to calculate these probabilities. On the other hand, this result is not useful when we
wish to predict the number of goals scored by each team or the total number of goals scored
in the game.

Recently, Kuonen and Rohl (2000) modelled the difference on the number of goals as
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a Normal variate. For small values of #; and #, as those expected for soccer data, the
approximation of the Normal distribution is rather poor. It would more appropriate to

consider a model based on the distribution defined by (3).

4.2 Implementation of the new Distributions

4.2.1 The Poisson Difference Distribution

In this section we use game results of twenty four (24) different European leagues of six (6)
different countries from the period 1989-1995 in order to fit the Poisson difference distri-
bution. The number of teams participating in each league varies. Moreover, the Poisson
distribution was also used for the number of goals scored by the home and the guest teams.
Preliminary investigation of the data revealed that some sort of overdispersion is present in
almost all cases though it varies from league to league.

The EM algorithm was used to obtain the ML estimates of the PD distribution. The
assumption of a Poisson distribution was tested using a bootstrap version of the index of
dispersion test statistic (see, for example, Stute et al., 1993, Karlis and Xekalaki, 2000).
Results are reported in Table 2. Covariance is rather small for all the cases. In almost all
cases it is not significantly different from a zero value.

Note that in many cases the Poisson difference assumption is rejected by the usual y2-
goodness of fit test. The distribution fits well the data only in a few cases. This can be
attributed both to the observed feature that the component distributions were not Poisson
in the majority of cases and the observation that the larger residual was observed at zero
value in all the fitted distributions. This fact of an excess in the expected number of draws

is well known in the literature (see, for example, Dixon and Coles, 1997).

Table 2 about here

4.2.2 The Absolute Poisson Distribution Distribution

The absolute Poisson difference (APD) distribution is particularly suitable for games where
there is not home effect and hence the two teams cannot be ordered. Such an example is

the World Cup competition, held in a neutral country and where home effect does not exist
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(apart from the home team). With such data the interest lies in the absolute difference
revealing the lead of the winner team.

The data from the matches of the World Cup’ 98, held in France, were used for illustrative
purposes. The score at the end of the game has been considered ignoring extra-time wherever
exist. The data representing the differences in goals can be seen in Table 3. The mean equals
1.28 while the variance is 1.73. We fitted the APD distribution using the EM algorithm
described. The obtained estimates were §; = 1.517 and f, = 0.531. The p-value of a y?
goodness of fit test was 0.05. The APD distribution improves the likelihood with respect to
the Poisson distribution, as it was expected due to the overdispersion present at the data.
The log-likelihood for the APD distribution were -96.83 while the Poisson log-likelihood was
-97.71. Note that for this data set the zero frequency is not much higher than the expected.
This can be attributed to the purpose of these matches and to the design of the tournament

which does not support draws.

Table 3 about here

5 Extended Models

5.1 Zero Inflated Distributions

From section 4 we observe that the zero frequency in almost all the cases is larger than the
expected frequency for draws under the PD model. The same observations have been made
by other authors when modelling soccer games (see for example Dixon and Coles, 1997).
Zero inflated models can be adeqaute to overcome this problem. Such models assume that
the probability of observing a 0 increases with adequet decrease of all the rest probabilities.

So, we define the zero inflated-PD (Z-PD) distribution as
P(Z=0) = p+(1—p)PD(Z =0,6,,0,)
P(Z=k) = (1—-p)PD(Z =k,01,6,),
fork=...,-3,-2,—1,1,2.3,... where PD(Z = k,0;,60,) is given in (3) and 0 < p < 1.
Zero inflated distributions has been described in Johnson et al. (1992) and the references

therein. Recently Bohning et al. recast interest in such distribution proposing zero inflated

Poisson distributions allowing for covariates (see also Lambert, 1992).
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Denoting as Xz the zero-inflated random variable stemming from the random Variable
X it can be seen that the simple moments of X;; are given as F(Xzr = (1 — p)E(X)
and thus for the zero inflated Poisson difference distribution given in (6) one obtains that
E(Z) = (1= p)(61 — ;) and Var(Z) = (1 = p)(6: + 62) + p(1 — p)(6:1 — 62)*.

Fortunatelly maximum likelihood estimation acan be accompolished easily via an EM
type algorithm. At first one can recognize that zero-inflated distribution are in fact finite
mixture distributions (see e.g Titterington et al., 1985) with a degenerate at 0 component.
The additional parameter p can be considered as the mixing proportion and then the standard
EM algorithm for mixture models apply. More formally the EM can be described as follows

FE-step: With the current values of the parameters GE’“), Hgk) and p® from the k-th itera-
tion, calculate the expected values of X; and Y; given the current values of the parameters.

Using simple probability calculus is obtained that

< P(X;=z2)P(Y =z — 2

=0

where Pz(z) is defined in (6). One can recognize that this step is the same as the E-step
made for the PD distribution apart from the denominator which is, now, the zero-inflated
counterpart.

M-step: Update the estimates by

*) £(0 n >
(ki) _ _PFO) (B41) _ 1N, (1) _ gkt 7
p = WP = 0] and 6; =n th and 65 =0 Ry

=1
where f(0) stands for the observed frequency of the zero value. It is not necessary to calculate
both conditional expectations, since second parameter can be updated by simple subtraction.

Again the above step has all the properties of the standard EM algorithm.

It must be pointed out that the zero-inflated Poisson difference distribution given in (6)
is not the same with the distribution arising as the difference of two zero-inflated Poisson
distribtuions. The following theorem eamines the more general case of the distribution of the
difference of two Finite Poisson mixtures. A zero-inflated Poisson distribution can be seen in
this context as it arises when one component is a Poisson distribution with zero parameter,

i.e. a degenerate at 0 distribution.
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Theorem 2 : Suppose that X follows a k; finite Poisson mixture distribution with
parameters A;; and mixing proportions ¢;,7 = 1,...,k;. Suppose also that Y follows
a ko finite Poisson mixture distribution with parameters Ay; and mixing proportions 7,
7 = 1,...,ky. Then their difference 7 = X — Y follows a kik, finite Poisson Difference
mixture where the 15 — th component has parameters \y;, A\y; and mixing proportion ¢;r;,

Z':L...,kl,j:L...ij.

Proof: The result can be deduced by using the fact that

P(Z =2) = ijP(X — 2)P(Y =z — 2).

Since P(X :T;c) has ky terms and P(Y = z —z) has k, terms, then multiplying we obtain
kike terms. The requisite parameters stems from this multiplication of the i — th term of
the first part with the j — th term of the second.

Consider the simplest case with k; = k; = 2, i.e. the difference of two 2-finite Poisson
mixtures. Then the resulting distribution has 4 Poisson difference components. Suppose
further that each mixture is in fact a zero-inflated Poisson distribution, i.e. one parameter
for each mixture is 0, and the other components have parameters,say A; and A, for each
mixture respectively. Then the four components of the resulting Poisson difference mixture
have parameters Ay, Ag, A1,0, Ag,0, and 0. Thus the distribution has inflation at 0 as it is
described by the component with 0 parameters, while the other components are a Poisson
difference distribution and two simple Poisson distributions (those having a 0 parameters).

Clearly this distribution is different form the zero-inflated distribution defined in (6).

5.2 A Negative Binomial -Poisson Model

A possible extension of the PD distribution is to assume that the one component is not a
Poisson distribution. Assume that the parameter 6; in (3) follows itself a distribution, say
g(01). Then the resulting distribution is a mixture. Further assume that ¢(f) is the Gamma

distribution. Then the probability function is given by
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B%exp(—bs)
(1+ B+l (e

0,
M k:k+1;
) (oz-l— ik + ’1—|-[3)

for k=...,-2,—-1,0,1,2,..., o,3 > 0. It can easily be seen that the above distribution
is also the distribution of Z = X — Y, where X follows a Negative Binomial distribution
with parameters o and § (the parameters correspond to the mixture formulation of the
negative binomial as a mixture of the Poisson distribution with a Gamma(«, 3) mixing
distribution). Moreover, the above distribution can be derived from a bivariate model with
negative binomial and Poisson marginals, which allows for dependence between the variables
(see section 2.4).

Generalisation can be provided assuming a Gamma mixing distribution for the parameter
f; which correspond to the difference of two Negative binomial distributions, but we do not

pursue further this issue.

6 Discussion

In the literature there are only few distributions for describing the difference of integer valued
discrete distributions. In this paper we examine two distributions appropriate for modelling
soccer data; the Poisson difference and the absolute Poisson difference distributions.

In soccer games, observed counts are rather small and hence the assumption of normality
is far from realistic. On the other hand, such an assumption may be realistic for other games
where the number of goals scored is larger (for example handball). Thus the distributions
presented in this paper can be helpful for modelling purposes of soccer data. Moreover,
it is proven that the dependence implied by a bivariate Poisson distribution is indifferent
in respect to the distribution of the difference of the two random variables. This offers a
theoretical background in order to use Poisson model formulations assuming that the number

of goals of each team are independent.
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Figure 1: Probability Mass Function of Poisson Difference in Comparison to the Normal
Density for a variety of parameter values.The parameters used were (2,1.5), (4,3.5),(5,2) and
(20,15), respectively
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Figure 2: Histograms of the APD Probability Function for Various Combinations of the

Parameters.
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Figure 3: Contour Plot for the Overdispersion of APD Distribution.
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# Mean Variance Index of Dispersion
0.1 0.181 0.166 0.918
0.2 0.333 0.288 0.865
0.3 0.462 0.385 0.833
0.4 0.574 0.469 0.816
0.5 0.673 0.546 0.810
0.7 0.842 0.690 0.820
1.0 1.047 0.902 0.861
1.2 1.164 1.044 0.897
1.5 1.319 1.259 0.954
2.0 1.543 1.619 1.049
2.5 1.737 1.980 1.140
3.0 1.912 2.343 1.225
3.5 2.072 2.706 1.305
4.0 2.220 3.069 1.382
5.0 2.490 3.795 1.523
6.0 2.734 4.521 1.653
7.0 2.958 5.248 1.773
8.0 3.165 5.980 1.889

24

Table 1: APD distribution with equal parameters. Underdisperesion is observed only for

small parameter values (< 1.74).
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Home Guest Home Guest
League Mean Var Mean Var Covar p-val p-val 6, 6, I% p-val
Dutch 93 1.73 179 1.21 1.63 -0.38 0.370 0.000 2.377 1.857 17.20 0.045
Dutch 94 1.90 2.40 1.31 1.50 -0.26 0.000 0.060 2.463 1.872 19.43 0.021
Dutch 95 1.75 239 1.25 148 -0.29 0.000 0.000 2.404 1.907 24.45 0.003
Ger 89 1.68 1.96 091 0.96 -0.04 0.020 0.210 1.824 1.053 25.26 0.002
Ger 93 1.75 172 1.17 1.39 -0.15 0.560 0.010 1.969 1.391 19.15 0.023
Ger2 93 1.53 170 0.97 1.07 0.04 0.120 0.050 1.597 1.031 17.22 0.045
Ger 94 1.76  1.81 1.24 1.24 -0.14 0.380 0.430 1.950 1.420 30.50 0.000
Ger 95 1.54 1,50 1.17 1.24 0.01 0.630 0.260 1.465 1.096 28.06 0.000
Italy 89 1.37 134 0.87 0.84 0.12 0.530 0.620 1.150 0.646 17.18 0.045
Italy 90 143 1.74 0.86 0.89 0.05 0.000 0.310 1.445 0.869 34.71 0.000
Italy 91 1.34 139 0.93 1.09 0.11 0.320 0.000 1.257 0.849 21.08 0.012
Italy 92 1.72 172 1.08 1.22 0.24 0420 0.110 1.470 0.836 24.17 0.004
Italy 93 148 1.63 0.94 1.00 0.03 0.120 0.180 1.463 0.917 19.59 0.020
Italy 94 1.57 172 096 1.21 -0.05 0.140 0.000 1.816 1.205 4.95 0.838
Italy 95 1.66 1.87 0.97 0.97 0.09 0.090 0.520 1.635 0.945 14.49 0.105
France 93 1.42 142 0.81 0.81 0.01 0.520 0.500 1.348 0.738 14.54 0.104
France 94 1.59 1.63 0.92 1.04 0.01 0.210 0.040 1.632 0.956 11.18 0.263
France 95 1.44 1.41 0.84 0.98 0.03 0.490 0.010 1.445 0.850 18.90 0.026
Spain 93 1.59 2.04 1.01 1.10 0.10 0.000 0.110 1.683 1.099 12.19 0.202
Spain 94 1.54 1.78 1.00 1.28 -0.09 0.000 0.000 1.841 1.299 18.19 0.033
Spain 95 1.56 171 1.14 1.41 0.06 0.120 0.000 1.666 1.242 17.79 0.037
Engl 93 1.44 1.57 1.15 1.23 0.02 0.070 0.140 1.455 1.171 16.21 0.062
Engl 94 1.51 1.65 1.08 1.21 0.04 0.100 0.040 1.544 1.113 11.74 0.228
Engl 95 1.53 1.58 1.07 1.25 0.04 0.300 0.020 1.558 1.106 11.98 0.214

Table 2: Table of Fitted PD Distribution for 24 European Leagues.
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Absolute

Goal Difference

Observed

APD Expected

0 19 16.37
1 27 24.69
2 6 13.83
3 8 6.11
4 1 2.17
5 3 0.83
X% =5.99 df=2 p-value=0.05

Table 3: Frequency Tabulation of Absolute Goal Differences of 1998 World Cup.
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