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1. INTRODUCTION

Control charts are used for controlling and monitoring variables in any
product or process. They have found considerable applications in industry for
improving the quality of the products. The most known of them are the
Shewhart type control charts for monitoring process mean and dispersion.

Quesenberry (1) examined the effect of estimation of the process mean
and standard deviation on the controt fimits of the Shewhart chart for both
rational subgroups and individual observations. Chen (2) extended this
work by using three different estimators of the standard deviation in the
¥ chart case. Nedumaran and Pigniatiello (3) investigated the estimation
effect on the 72 control charts. Woodall and Montgomery (4) emphasized
the need for much more research in this area since it is proved that more
data than usually recommended is needed for the control charts to behaveas *
expected from theory. In the same paper, Woodall and Montgomery state
that much work has been done concerning the control of the process mean -
but not that much for the process dispersion. In an earlier paper Lowry et al.
(5) examined the effect of run rules on the performance of Shewhart control
charts for detecting shifts in process standard deviation. Recently, Klein {(6)
proposed modified Shewhart S-charts for keeping stable the process varia- -
bility. Chen (7) deals with the run length properties of the R, s and s° control
charts in the case that o is estimated. In this paper, we examine the effect of
estimation of the process parameters on the control limits of charts for
process dispersion by extending the results of Chen (7) for both rational
subgroups and individual observations.

The paper is organized as follows. In Section 2, we present the classical -
S chart with three sigma limits and extensive numerical calculations of the
effect of estimating the process standard deviation on the values of average
run length (ARL) and standard deviation of the run length (SDRL).
Section 3 outlines the S chart using probability limits and results of estimat-
ing the process standard deviation on the ARL and SDRL values again. The
X chart for individual observations is presented on Section 4 and its use for -
process dispersion when we have estimated limits. Finally, in Section 5
conclusions are listed.

2. THE S (THREE SIGMA) CONTROL CHART

Assume that Xy, i=1,...,m and j=1,...,n are observations froma
stable N{u, 0”) process comprising m samples of size n each. In this process
we want to keep its variability in control. In order to develop control limits
we need to know the value of the true standard deviation o. If this value is
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known the control limits are

UCL = (64 + 31— cﬁ)a Q.1
LCL = (04 —3/1- cg)a (2.2)

Usually, we do not know the value of o and therefore we have to
estimate it from past data. The estimate used is

- 1

§=— ; S
where m is ghe number of past samples used, S2=(1/(n—1))x
Yr, (X;— X;) is the unbiased estimator of o? and n is the sample size.

However, we know that S is not an unbiased estimator of o. It has been
proved (sec e.g., Ryan (8)) that an unbiased estimate of o is S/cq, where

¢4 = (2/(n — 1)/*T(n/2)/T((n — 1)/2) and that the standard deviation of S
equals o,/1 — 2. The upper and lower control limits of the chart known as
the S chart are:

—— 3 -
UCL = (1 +a,/1 _q})s 2.3)
Lﬁ.-. (1 *23-,/1 —cg)S (24)

4

Approaches making use of these limits are known as the three sigma
approaches based on the normal approximation proposed by Shewhart in
the early thirtics. However, it is easy to prove that this approximation is not
satisfactory since as is known

2
@—;;E— ~ X,"ff, 2.5)
Although this approximation is not accurate, it is usually used as a first
check (see e.g., Ryan (8), Klein (6), Lowry et al. (5)).

Let A; denote the event that the ith sample standard deviation S;
exceeds UCL or is exceeded by LCL. Then, since S; and S; are independent
for i # J, the sequence of trials 4; and 4; are independent meaning that they
constitute a sequence of Bernoulli trails. The mean and standard deviation
of the run length distribution, ARL and SDRL respectively, of this process is
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that of a geometric distribution given by the following formulas

1
_B
SDRL=7_ VX))

where p=1—Pr(4)= Pr(LCL < S;<UCL).

Assume now that we are in the case when the true value of the standard
deviation is not known, which is the most usual case. Let B; denote the event
that the ith sample standard deviation S;exceeds UCL or is exceeded by LCL.
The formulas (2.6) and (2.7) for ARL and SDRL are not valid any more
because the events B; and B; are not independent for i # j. We can prove

that E(UCL) = UCL and Var(UCL) = (1 + (3/c); [(1 — ) (1 — ch)fm)
and using these relations we prove after some calculations that

2
Cov(S; — UCL,S; — LCL) = Var(UCL) = (1 2 ﬂ) 20 d
4

and

(o242

m

Var(S;, — UCL)= | 1 + o*(1 - c4)

Therefgle, the correlation between the random variables S; — UCL and
S; — LCL is

' 2
_ 3 f1-
Var(UCL) _ (1 tay! ‘ﬁ)
oo —. -_ 2
Var(s,~OCL) . (1 31 c})

Corr(S;— UCL,S; —LCL)=

It is obvious that the correlation is a function of m and n only. In Table I we .
present values of the correlation for combinations of m and n. From the
table we sce that as the sample size and the number of samples increase the =
correlation decreases. For small or moderate sample size (n <20) we need
200 samples for the correlation to be negligible. However, for larger sample
‘size we can afford m=50.

In order to examine the values of the first two moments of the run
length distribution, we performed a simulation study based on various -
numbers of samples and various sample sizes. In particular the number of -
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Table 1. Correlation for Several Values of m and n

n

m 5 10 20 50
5 0.46581 0.37055 0.30735 0.25370
10 0.30362 0.22741 0.18158 0.14528
20 0.17898 0.12829 . 0.09986 0.07833
30 0.12689 0.08935 0.06886 0.05362
50 0.08020 0.05560 0.04249 0.03288
100 0.04178 0.02859 0.02171 0.01671
200 0.02133 0.01450 0.01097 0.00843
500 0.00864 0.00585 0.00442 0.00339
1000 0.00434 0.00293 0.00221 0.00170

samples and samples sizes considered were m=75, 10, 20, 30, 50, 100, 200,
500, 1000 and n=>5, 10, 20, 50. For every combination of m and n we
simulated m 1 samples of size n from a N(u, o3) distribution and computed
UCL and LCL. Then, we simulated samples from a N(u, o?) distribution
until we obtained a value above UCL or below LCL. The number of sam-
ples simulated up to the one that lead to a value outside the control limits
constitutes one observation of the run length distribution. This procedure
was repeated 10,000 times in order to get an estimate of the values of ARL
and SDRL. The results are presented in Tables 2-5.

From Tables 2 through 5 certain conclusions are drawn. We see that
we have results for both upward and downward shifts when n> 5 but only
for upward when n=>5. This happens because for n<5 the lower control
limit is set to zero. Therefore, it can never be crossed by a simulation study,
or in reality. For upward shifts as m increases the ARL and SDRL values
" decrease and approach their theoretical values. For downward shifts as m
increases the same thing happens for n=>50. For n=10, 20 the ARL and
SDRL values do not follow a specific trend. In the in-control state we also
do not have a clear pattern for cither ARL or SDRL values. What we can
say in every case is that ARL and SDRL values behave in the same way.

As m increases the ARL is getting closer to the theoretical value faster
~ than the SDRL. Moreover, as 1 increases the theoretical values, in the in-
_ control state, approach the ones from a normal distribution which are
 ARL=1370.4 and SDRL =369.9. The same of course happens for the out
- of control states.

‘. If we use this type of chart for identifying shifts in process dispersion
~ we have to use samples of size n at least 20, for minimizing the effect
of estimating S. If n is less than this value the practitioner will face an
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Table 3. ARL and SDRL Values for the S (Three Sigma) Chart When n=10
ai /o
1 1.2 14 1.6 1.8

m ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL

5 606.61 1064.81 236.14 634.06 78.31 263.87 29.43 1i2.67 14.39 41.18
10 538.65 919.10 145.57 329.89 4583 99.37 19.21 31.64 10.17 13.87
20 461.44 725.80 10692 17582 33.86 4822 1585 1975 9.04 10.34
30 430.50 626.79 95.59 137.72 3234 40.07 1502 17.08 8.59 9.14
50 389.91 510.09 88.05 106.54 3029 3398 1438 1565 837 8.58
100 359.35 411.69 80.89 88.i11 2879 30.81 1335 1424 826 8.16
200 344.38 1367.08 78.19 8225 2846 28.96 1343 1331 797 758
500 334.53 34097 76.10 76.60 27.45 27.27 13.52 13.14 8.06 7.65

1000 334.56 33796 75.88 7593 2731 27.01 1350 13.04 798 743
oo 331.17 33067 75.66 75.16 27.52 27.01 13.47 1296 800 748

0.2 04 0.6 0.8
m ARL SDRL ARL SDRL ARL SDRL ARL  SDRL

5 2401 3743 30628 520.37 1019.6 12745 11362 14336

10 2104 2588 25428 377.34 10717 12532 13169 15147
20 1977 2262 230,60 27574 10794 12075 14726 16034
30 19.15 2062 22333 24971 10565 11551 15692  1656.9
50 1847 19.15 21820 22950 10473 1106.2 16447 1686.9
100 18.21 18.10 21057 21540 10375 10613 16962 17299
200 1795 17.93 20532 20549 1023.1 1027.8 17445 1746.7
500 1820 1779  205.59 203.14 1009.1 1022.0 17739 17850
1000 17.53 17.28 20696 20495 1006.7 1007.9 17683 1773.9
00 1790 17.39 20606 20556 10117 1011.2 1777.2 1776.7

increased number of false alarms. The effect of estimation is also severe
for m < 20, especially in the in-control state and for small shifts. For values
30 <m <50 the effect is moderate and for values of 100 or larger the
effect is small enough. A last point we have to make is that when
we have small downward shifts for n <20 the ARL and SDRL values are
larger than the corresponding in-control values. This result is also
confirmed by Klein (6). Consequently, in such cases special care must be
given and it is better to use control charts for small shifts like CUSUM
and EWMA.

In Figure 1, we present the empirical run length distribution functions
(ERL) for n=5, 10, 20, 50. In each figure we plot six different lines
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Table 4. ARL and SDRL Values for the $ (Three Sigma) Chart When n= 20
o /ab
1 1.2 1.4 1.6 1.8

m ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL

5 33272 44402 121.96 244.63 32.29 7886 1146 27.03 5.54 1033
10 36296 457.01 9299 166.56 23.32 4579 871 11.78 462 539
20 37124 439.25 75.00 11539 19.63 2536 7.87 8.77 432 420
30 372.32 430.13 68.53 8690 18.23 2184 767 817 429 412
50 362.66 403.51 6380 7674 17.52 1873 749 760 424 397
100 364.01 39380 60.17 6557 17.01 1734 1736 7.5 411 358
200 359.00 37430 59.56 60.31 16.61 1645 7.15 682 411 359
s00 355.18 358.14 59.11 59.61 1636 1615 7.13 670 409 336

1000 35323 35328 5759 5723 16.26 1579 7.15 6.66 408 3.5
oo 356.50 356.00 5737 56.87 1639 1588 7.15 6.63 407 353

0.2 04 0.6 0.8
m ARL SDRL ARL SDRL ARL SDRL ARL SDRL

5 132 0.75 1192 1833 111.01  190.51 38343 45713

10 128 0.64 10.03 12.23 9020 127.11 423.04 463.05
20 1.26 0.60 9.21 9.96 80.28 94.68 44270 47345
30 126 0.58 8.97 9.20 78.03 88.22 44496 471.63
50 1.24 0.54 8.90 8.59 75.70 80.02 45120 469.34
100 125 0.57 8.68 8.20 73.42 75.19 45090 45592
200 1.23 0.54 8.70 8217 73.69 7461  447.50 44643
500 124 0.55 8.55 8.05 73.62 73.39 441.19 44196
1000 1.24 0.56 8.54 8.14 72.08 71.77 44581 44829
o0 1.24 0.54 8.56 8.04 72.91 7241 44979  449.29

representing the ERL functions for m =5, 20, 50, 100, 1000 and the theore-
tical run length distribution (inf). It is obvious that as m increases the ERL
approaches the theoretical run length distribution. Moreover, as n increases
the ERLs for the m values approach the theoretical run length distribution
faster.

3. THE S (PROBABILITY LIMITS) CONTROL CHART

A modification of the control limits (2.1), (2.2) and (2.3), (2.4) based
on property (2.5) uses probability limits in place of the three sigma limits
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Table 5. ARL and SDRL Values for the S (Three Sigma) Chart When n=50

ot/o}
1.2 1.4 1.6 1.8
m ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL
5 26303 325.32 S59.79 12584 949 1856 3.23 3.96 1.86 1.57
10 304.52 359.74 44.11 76.18 7.69 998 289 287 1.73 1.23
20 32825 365.28 36.59 4956 691 754 283 252 1.69 1.15
30 340.23 369.51 3355 39.88 6.65 6.77 276 237 1.68 1.11
50 345.02 369.81 3236 3589 6.64 661 272 224 1.67 1.09
100 355.17 366.97 30.64 3198 6.37 6.11 270 220 1.67 1.08
200 357.85 364.35 30.75 3097 6.39 606 267 209 1.67 1.06
500 362.32 358.59 3032 30.28 6.38 587 265 210 1.67 1.06
1000 356.30 352.76 30.62 2997 6.29 580 267 208 1.67 1.05
00 365.96 36546 3023 2972 6.35 583 2467 211 1.66 1.4
0.2 0.4 0.6 0.8
m ARL SDRL ARL SDRL ARL SDRL ARL SDRL
5 1 0 1.25 0.66 8.68 13.45 124.56 199.43
10 1 0 1.23 0.56 7.20 8.36 110.20 171.69
20 i 0 1.21 Q.51 6.80 7.10 97.84 128.55
30 I 0 1.20 0.50 6.55 6.53 93 .47 110.48
50 1 0 1.20 048 6.51 6.38 89.64 98.31
100 1 0 1.20 0.48 6.44 6.04 85.98 91.30
200 ] 0 1.19 047 6.37 5.91 85.92 88.10
500 1 0 1.18 047 6.34 5.92 8547 85.74
1000 1 0 1.18 047 6.26 5.82 85.82 85.86
o0 1 0 1.19 0.48 6.28 5.76 84.25 83.75

(see e.g., Ryan (8)). If the value of the standard deviation o is known the
control limits (in place of (2.1) and (2.2)) are:

18
—— N

In these limits, if the process variability operates in control, the probability
that the standard deviation of future subgroups will fall between them
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Figure 1. Empirical run length distribution functions for the 3 sigma chart.

is 0.998, which is approximately equal to the 0.9973, the probability
assumed when using the 3 sigma ones. If the true standard deviation is
not known we use its unbiased estimate S/cs. The limits then become (in -
place of (2.3) and (2.4)):

oL =5 [Kism
Ca n—1
LCI =-—S—— _______X(Z)_om.
C4 n—1

It is obvious that these limits are based on property (2.5). In the same
way of thinking as in the case of three sigma limits we can prove that
Var(UCL) = [0*(1 — c)X5.999)/1(n — etm] and consequently

(1 — )Xi99
(n - 1)cim

Cow(S; — UCL, 5; — LCL) = Var(UCL) =
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Moreover,

2
— _ X0.999
Var(s, ~ UCL) = (1 ‘3)[‘ e l)cim]

and finally

Var(UCL) X2.999
Var(S; — Ua) Xbg9o + (n— Dcim’

Corr(S; — UCL, S; — LCL) =

As in the case of three sigma limits this correlation depends only on m and
n. In Table 6 we calculated the correlation for various combinations of m
and n. From this table we conclude again that as the sample size and the
number of samples increase the correlation decreases. The recommendation
for sample sizes and number of samples is the same as in the previous
section.

We computed the ARL and SDRL values for several values of m and n
via simulation along the same lines as in the three sigma limits. The number
of samples and samples sizes considered were m =5, 10, 20, 30, 50, 100, 200,
500, 1000 and n=5, 10, 20, 50. The resulis are presented in Tables 7-10.
From Tables 7 through 10 we deduce the following points. For upward
shifts as m increases the ARL and SDRL values generally decrease and
approach their theoretical values. For downward shifts as m increases the
same thing happens for n =20, 50. For n=>5, 10 the ARL and SDRL values
do not follow a specific pattern. In the in-control state the ARL and SDRL
values increase until they get close to their theoretical values, which is in

Table 6. Correlation for Several Values of m and n

R

m 5 10 20 50

5 0.51095 0.39568 0.32137 0.26032

10 0.34314 0.24663 0.19144 0.14964
20 0.20719 0.14066 0.10585 0.08087
30 . 0.14831 0.09839 0.07315 0.05541
50 0.09460 0.06145 0.04521 0.03400
100 0.04965 0.03170 0.02313 0.01729
200 0.02545 0.01611 0.01170 0.00872
500 0.01034 0.00650 0.00471 0.00351
1000 0.00520 0.00326 0.00236 0.00176
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Table 7. ARL and SDRL Values for the S (Probability Limits) Chart When n=3
ai/o
| 1.2 14 1.6 18

m ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL

5 359.97 463.12 267.35 405.54 17340 312.06 111.11 231.57 71.17 173.00
10 401.46 491.51 268.52 395.19 154.68 263.77 83.88 161.01 4793 102.77
20 441.09 495.15 254.39 350.22 127.40 199.04 64.92 106.92 36.69 58.40
30 462.04 509.78 247.68 320.05 11534 164.84 58.02 84.90 33.35 4945
S0 472.24 504.56 239.29 295.97 108.19 137.80 52.48 65.23 30.29 3547
100 489.90 512.64 229.28 262.50 99.08 11537 49.79 54.68 28.81 31.03
200 498.35 505.20 221.61 240.21 94.66 102.45 48.20 50.97 27.67 29.10
500 500.93 505.59 21674 223.58 9345 9524 46.06 46.00 28.00 27.60
1000 497.73 503.09 213.01 21736 9229 9450 47.12 47.08 2731 26.70
co  500.02 499.52 214.74 21424 91.78 91.28 46.51 46.01 2733 26.82

0.2 0.4 0.6 0.8
m ARL SDRL ARL SDRL ARL SDRL ARL  SDRL

5 5928 9290 20750 279.98 367.15 426.84 42391 494.16

10 5133 6099 188.30 229.67 383.62 419.59 478.62  506.71
20 4925 5377 17880 19531 38122 406.88 535.06 558.84
30 4736 50.56 17426 18263 378.10 395.01 55171  561.82
50 4706 4790 17237 17545 37469 387.19 57290 579.90
100 4645 4653 17021 17241 369.25 373.72 588.21  585.37
200 4499 4460 16992 169.76 369.89 371.74 595.42 594.84
500 45.64 4522 168.09 168.67 364.29 363.97 604.03 601.67
1000 4564 4465 16586 166.04 364.05 369.30 598.00 601.34
00 4509 4459 16740 16690 366.87 366.37 597.91 59741

accordance with the results of Chen (7). As an overall conclusion we can say
that the ARL and SDRL values behave in the same way except that as
m increases the ARL is getting closer to the theoretical value faster than
the SDRL.

When we are in-control we need at least m =200, otherwise the practi-
tioner will face many false alarms whereas the value of n is not equally
important. In the out-of-control situations the value of » is important for
minimizing the effect of estimating S. Specifically when ot jog =12 the
ARL values for n=35, 10, 20, 50 are 239.29, 178.40, 117.98, and 50.77,
respectively. Therefore, we observe 2 dramatic reduction as n becomes
larger. A similar situation occurs for downward shifts. Consequently,



| CONTROL CHARTS FOR PROCESS DISPERSION 455

Table 8. ARL and SDRL Values for the § (Probability Limits) Chart When n=10
ot /%
1 1.2 1.4 i.6 1.8

m ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL

5 341.44 42299 217.14 32946 110.54 218.04 52.43 130.38 25.60 62.05
10 391.03 456.05 208.08 307.21 86.61 155.83 36.61 67.22 17.72 28.51
20 428.95 469.37 194.55 257.65 70.14 106.07 28.50 39.48 1496 18.23
30 448.41 480.41 187.90 23475 6503 88.79 27.33 33.58 14.20 16.15
50 464.28 481.37 178.40 209.85 6027 72.62 25.81 28.64 13.61 14.78
100 479.05 48820 169.77 184.28 5635 6L.10 2452 25.62 13.16 13.69
200 484.86 493.03 166.70 17609 54.73 56.70 2426 24.50 12.81 12.66
500 490.54 48997 161.32 164.74 5291 35341 2402 24.08 13.11 1282

1000 492.16 480.65 161.60 161.87 5381 53.11 2360 23.23 12.70 12.38
oo 50005 499.55 161.99 16148 5344 5294 23.46 2295 12.74 1223

0.2 0.4 0.6 0.8
m ARL SDRL ARL SDRL  ARL SDRL ARL SDRL

5 534 7.41 4609 8174 18201 26285 339.52 406.60

10 4.63 4.92 3828 4893 162.80 20609 37842 42241
20 440 427 - 3518 4033 15472 18167 396.79 41798
30 436 4.10 3406 3731 147.37 15998  400.78  424.06
50 420 3.76 3336 3508 14477 156.54 401.66 421.77
100 4.27 3.81 3266 3424 13943 14095 40239 4l 3.00
200  4.26 3.713 3278 3325 137.34  137.24 40048 403.36
500 4.17 3.64 3244 3176 13691  133.59  405.11 405.09
1000 4.21 3.63 3195 3110 13369 13226 398.98 400.52
o0 4.23 3.70 3213 3162 13647 13597  400.85 400.35

large values of n, larger than 20, are recommended. The effect of estimation
is severe for m <20, especially for small shifts. For values 30 <m <50 the
effect is moderate and for values of 100 or larger the effect is small enough.
When we have small downward shifts for n= 5, and n= 10 when m < 10, the
ARL and SDRL values are larger than the corresponding in-control values.
In such a situation it is better to use control charts for detecting small shifts
like CUSUM and EWMA.

In Figure 2 we present the empirical run length distribution functions
(ERL) for n=35, 10, 20, 50. In each figure we plot six different lines repre-
senting the ERL functions for m =5, 20, 50, 100, 1000 and the theoretical
run length distribution (inf). We seen that as m increases the ERL
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Table 9. ARL and SDRL Values for the S (Probability Limits) Chart When n=20
at/ab
I 1.2 i.4 1.6 1.8

m ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL

5 32765 381.36 17043 279.59 56.40 12543 1847 47.23 807 17.04
10 379.94 41588 154.94 241.56 40.09 7148 1324 1953 645 801
20 421.10 434.89 13560 194.87 33.08 46.55 11.89 1466 593 6.32
30 442.13 451.34 12695 170.03 3045 37.64 1146 1267 5.81 6.00
50 461.32 467.99 11798 13949 29.17 3283 11.09 1154 569 5.50
100 476.40 478.77 11342 126.66 27.69 28.82 1097 1094 557 526
200 486.38 48697 109.86 115.12 27.35 27.82 10.50 1020 5.50 5.17
500 485.13 488.22 108.31 108.90 26.81 26.19 1043 10.12 541 4389

1000 49429 488.10 106.57 108.41 26.63 25.79 1030 978 548 491
oo 500.01 499.51 106.64 106.14 26.67 26.17 1042 991 546 493

02 0.4 0.6 0.8
m RL SDRL ARL SDRL ARL SDRL ARL  SDRL

5 117 0.51 7.00 10.62 5641 10325 24511 32491

10 1.14 0.43 6.11 700 4591 69.83  247.16  304.65
20 1.13 0.40 51 585  40.82 4793 23376 273.54
30 113 0.39 5.44 532 4007 4478 22837  256.46
56 L12 0.36 5.4% 5.21 38.59 41.06 22343 2424
100 112 037 5.36 495 3785 39.05 21940  225.87
200 1.11 0.36 5.40 492 3799 38.81 217.81  217.89
500 1.1 0.36 5.36 487 3741 36.61 213.84  209.40
1000 1.12 0.37 5.29 480  37.69 37.00 21370 21352
00 112 0.36 5.29 471 3144 36.94 21593 21543

approaches the theoretical run length distribution. Also, an increasing n
value causes the ERLs for the m values to approach the theoretical run
length distribution faster.

4. THE X CHART FOR MONITORING
PROCESS DISPERSION

Let X;, i=1,...,n denote independent and identically distributed
observations from a N(u,o?) process. If the parameters p and o’ are

»
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Table 10. ARL and SDRL Values for the S (Probability Limits) Chart When n =50

ot/ap
1.2 1.4 1.6 1.8
m ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL
5 32032 380.78 93.28 184.90 13.83 29.14 4.02 549 216 1.90
10 369.19 410.82 70.91 12234 10.73 1532 3.6l 4.02 1.93 1.49
20 41162 433.18 58.04 8560 950 1086 3.37 3.19 193 142
30 43122 447.76 5356 6863 896 954 342 3.10 190 1.36
50 45227 459.10 50.77 58.78 896 895 3.28 285 1.89 1.30
100 47290 472.99 48.14 5064 862 859 325 279 188 1.32
200 482.50 481.24 47.71 4824 8.51 824 325 2178 1.86 1.29
500 493.58 498.61 47.47 48.19 860 8.11 324 269 185 1.23
1000 49032 499.04 47.59 47.66 8.56 8.10 3.23 266 186 1.27
00 500.01 499.51 4723 4673 852 801 322 267 186 1.27
0.2 04 0.6 0.8
m ARL SDRL ARL SDRL ARL SDRL ARL SDRL
5 i 0 1.21 0.62 747 11.58 107.80 188.75
10 1 0 1.19 0.50 6.19 6.96 92.22 141.22
20 1 0 1.18 0.47 5.86 5.90 7917 102.14
30 1 0 1.16 0.45 5.69 5.50 74.86 87.60
50 1 0 1.16 0.45 5.65 5.46 71.97 78.71
100 1 0 1.15 0.42 5.64 5.22 69.87 73.40
200 1 0 1.16 043 5.62 5.18 69.61 69.69
500 1 0 1.15 0.42 5.49 495 68.90 70.23
1600 1 0 1.15 0.42 5.51 5.06 6927 70.27
o0 1 0 1.16 043 5.48 4.96 68.04 67.54

known, the control limits are

UCL=u+3a
CL=

i

LCL=pn—30

Usually, these parameters are not known and they have to be estimated. In
this case, the variability is usually controlled using moving ranges.
Nevertheless, Nelson (9), Roes et al. (10) and Rigdon et al. (11) have recom-
mended either against the use of the moving range chart or its use together
with the classical X chart. Moreover, Sullivan and Woodall (12) showed that
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Figure 2. Empirical run length distribution functions for the probability limits
chart.

a moving range control chart does not contribute significantly to the identi-
fication of out of control situations. Therefore, the use of the X control chart
for monitoring the process standard deviation is recommended. The control
limits of the X control chart are ‘

UCL =X +36
CL=X
I[CL=X-36

where X is an unbiased estimate of the mean of the process and & is an
estimate of the standard deviation o of the process. Usually, the estimate of
the standard deviation used is MR/d, where MR denotes the average of the
moving ranges and d; is a constant used to make the estimator unbiased.
However, Cryer and Ryan (13) showed that a preferable estimate of o is 5/¢s
where ¢ is defined the same way as in the case of rational subgroups and s is
the standard deviation of the observations. ,

In order to assess the effect of the number of observations on the
control limits of the X chart we performed a simulation study. The results

»
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Table 11. ARL and SDRL Values for the X Control Chart
al/og
1 12 14 1.6 1.8

N ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL

30 986.31 5024.83 315.36 1058.44 14793 439.79 84.36 187.50 53.74 98.54
50 614.94 1565.00 229.95 476.60 116.69 200.50 69.61 107.23 47.23 66.81
75 503.75 948.78 202.02 318.54 105.18 150.77 64.51 84.15 43.99 54.87
100 467.07 770.60 190.53 274.54 100.73 131.39 61.98 7526 42.78 5048
200 413.88 518.65 173.68 20596 93.86 105.77 58.63 63.56 40.67 42.81
300 398.94 47634 161.79 187.69 92.76 100.47 5793 61.37 41.26 42.29
500 387.38 429.45 167.90 179.39 90.34 93.58 56.80 58.96 39.69 40.54
1000 379.32 401.55 162.96 168.50 89.12 91.10 57.03 57.78 39.90 39.85
~ 2000 372.64 383.71 162.70 166.87 89.45 89.4% 5635 55.82 39.62 39.17
oo 370.40 369.90 162.08 161.58 89.05 88.55 56.48 55.98 3945 3895

~ are presented in Table 11. For each value in the table we simulated N values
~ from a N(u, o) distribution, we computed the UCL and LCL and subse-
~ quently we generated values from a N(z, o?) distribution until we obtained a
. value above UCL or below [CL. The number of samples simulated up to
" the one that was outside the control limits constitutes one observation of the
- run length. This procedure was repeated 32000 times in order to get an
" estimate of the values of ARL and SDRL.

: From Table 11 we see that we do not have results for downward shifts.
This happens because a decreasing standard deviation will never cause a
~ value below the lower control limit. The simulation reveals that the ARL
~ and SDRL values decrease until they approach their theoretical values. We
-~ ‘need at least 300 observations to minimize the effect of estimation in the
~ control limits of the X chart.

In Figure 3 we present the empirical run length distribution functions
- (ERL) for n=230, 50, 100, 200, 500, 1000, 2000 and the theoretical run
' length distribution (inf). The result is that as n increases the ERL
approaches the theoretical run length distribution.

5. CONCLUSIONS
" In this paper, we examined the effect of estimation on the control limits for

- process dispersion on charts using rational subgroups and individual obser-
vations. Extensive numerical studies for several combinations of numbers of
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Figure 3. Empirical un length distribution functions for the X chart.

samples and of sample sizes in the case of rational subgroups and of num
bers of observations in the case of individual control charts were presented
These values are used for proposing the m and n values that a practitioner
should use in order to reduce the estimation effect on the univariate disper- -

sion control charts.

In the rational subgroups case we propose larger n values than usual -

and someone may report that this is a problem. However, Woodall and -
now there are large data sets

Montgomery (4) remarked that in industry
available in contrast to the past. Therefore, such values for the sample size

should not be a problem, generally. On the other hand, if for some special
applications this still remains a problem, the practitioner should keep in
mind the great influence on the estimated control chart performance dis- :

played in the tables of this work.
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