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CHAPTER 2 

THEORETICAL BACKGROUND

2.1 Introduction

The scope of this chapter is to present and describe the main results of classical

extreme value theory, since all the statistical techniques that have been developed for

inference of extremes (and which are going to be discussed in more depth in subsequent

chapters) are based on these results. More particularly, extreme value theory is concerned

with the form of the limiting (non-degenerate) d.f.�s of the extremes (maxima) as well as

the conditions under which such a limit exists. Furthermore, in the context of extreme

value theory, characterization and other properties of families of d.f.�s with common

limits have been developed.

Throughout this chapter X1, X2, ... is a sequence of i.i.d. non-degenerate r.v.�s with

common d.f. F. In particular, {X1,...,Xn} denotes a random sample of size n from d.f. F.

Our interest is focused on the �behaviour� of the sample maxima

Mn = max(X1, ..., Xn), n ≥ 2.

Of course, using basic probabilistic calculations, one can easily derive that the exact

d.f. of Mn is

( ) ( )[ ]P M x F xn
n

≤ = , x∈ℜ , n∈ N

which leads to

M xn
a s

F
. . → ,

where ( ){ }x x F xF = ∈ℜ <sup : 1  is the right endpoint of F.

Still, this result does not provide much of insight about the extremes of a d.f. A larger

amount of information about the order of magnitude of maxima is provided by weak

convergence results. This is exactly the essence of extreme value theory.
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The main analytic tool of extreme value theory is the theory of regularly varying

functions, while the basic probabilistic tool is point process theory. So, before proceeding

to the presentation of extreme value theory, we provide an introduction to concepts such

as regularly varying functions, among others, which are commonly used in extreme value

theory and are necessary for a better comprehension of the logic and of the results of

extreme value theory.

In the sections to follow, apart from providing the main results of extreme value

theory (sections 2.2 and 2.3), we describe the main distributions that are used in the

context of extreme-value analysis, that is the Generalized Extreme-Value distribution

(section 2.4) and the Generalized Pareto distribution (section 2.6). In section 2.5, some

results are provided for the case that instead of maxima, we are interested in minima,

while in the final section we present some characteristic examples of known d.f.�s whose

maxima have a non-degenerate limiting d.f.

2.2 Theory of Regular Variation
The concept of regular variation is widely used in extreme value theory. Below, we

summarize some of the main results (definitions, extensions, properties) of regular

variation theory which are relevant to our scope. These are further elaborated,

accompanied by proofs, in the encyclopaedic volume on the subject by Bingham et al.

(1987).

Definition: Regularly Varying Function (Embrechts et al., 1997)

A positive, Lebesgue measurable function L on (0,∞) is regularly varying (at ∞) of

index α ∈  ℜ  (and we write L∈  RVα) if

lim ( )
( )x

L tx
L x

t
→∞

= α ,  for all t>0.

Any regularly varying function can be decomposed as  ( ) ( )L x x l x= α , where l is a so-

called slowly-varying function.
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Definition: Slowly Varying Function (Embrechts et al., 1997)

A positive, Lebesgue measurable function l on (0,∞) is slowly varying (at ∞) (and we

write l∈  RV0) if

lim ( )
( )x

l tx
l x→∞

= 1,  for all t>0.

Notice that a slowly varying function is essentially a regularly varying function with

index 0. A nice �interpretation� of slowly varying functions is that of bifurcation

functions describing how a particular function, mainly behaving as a power function,

differs from that particular power function. Typical examples are positive constants or

functions converging to a positive constant, logarithms and iterated logarithms.

Definition: Rapidly Varying Function (Embrechts et al., 1997)

A positive, Lebesgue measurable function h on (0,∞) is rapidly varying (at ∞) with

index -∞ (and we write h ∈  RV-∞) if

lim ( )
( )

,
.x

h tx
h x

if t
if t→∞

=
>

∞ < <




0 1
0 1

Though the above definitions give us an idea about the form of regularly (slowly or

rapidly) varying functions, still a more useful insight into them is provided by the next

representation theorems. These are the forms used in extreme value theory. The

decomposition into two measurable functions with known properties helps the

interpretation and, more importantly, the parameter estimation of regular (accordingly

slowly or rapidly) varying functions.

Theorem: Representation Theorem for Regularly Varying Functions (Embrechts et al.,

1997)

If L ∈  RVα for some α ∈  ℜ , then

( ) ( ) ( )
L x c x

u
u

du
z

x

=








∫exp
δ

, x ≥ z,

for some z>0 where c and δ are measurable functions, such that ( )c x c→ 0  ∈  ℜ  and

( )δ αx →  as x →∞ . The converse implication also holds.
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Theorem: Representation Theorem for Slowly Varying Functions (Beirlant et al., 1996)

If l ∈  RV0, then

( ) ( ) ( )
l x c x

u
u

du
z

x

=








∫exp
δ

, x ≥ z,

for some z>0 where c and δ are measurable functions, such that ( )c x c→ 0  ∈  ℜ  and

( )δ x → 0  as x →∞ . The converse also holds.

Theorem: Representation Theorem for Rapidly Varying Functions (Embrechts et. al,

1997)

If h ∈  RV-∞, then there exist functions c and δ, such that ( )c x c→ 0  ∈  ℜ , ( )δ x → −∞  as

x →∞  and for some z>0

( ) ( ) ( )
h x c x

u
u

du
z

x

=








∫exp
δ

, x ≥ z,

The converse also holds.

The following result of Karamata is also very useful, since it is often used in proofs of

theorems of extreme-value theory. It essentially says that integrals of regularly varying

functions are again regularly varying functions, or more precisely, one can �take the

slowly varying function out of the integral�.

Theorem: Karamata�s Theorem (Karamata, 1933)

Let l be a slowly varying function, bounded in [x0, ∞) for some x0 ≥ 0. Then

(a) for α > -1,

( )t l t dt x l x
x

x
α αα( ) ~ ( )+ − +∫ 1 1 1

0

, as x →∞ ,

(b) for α < -1,

( )t l t dt x l x
x

α αα( ) ~ ( )− + − +
∞

∫ 1 1 1 , as x →∞ .
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2.3 Limit Laws for Maxima
Now, we return to the main topic of this chapter, which is the presentation of extreme

value theory. The first and most fundamental component of extreme value theory is the

determination of all the possible limiting d.f.�s of (properly normalized) maxima. This

problem has already been resolved in 1928 by Fisher and Tippet, in their famous theorem

which is regarded to be the foundation of classical extreme value theory.

Theorem: Fisher-Tippet Theorem, Limit Laws for Maxima (Fisher and Tippet, 1928)

Let (Xn) be a sequence of i.i.d. r.v.�s and Mn = max(X1, ..., Xn). If there exist norming

constants cn > 0, dn ∈  ℜ  and some non-degenerate d.f. H such that

( )c M d Hn n n
d− −  →1 ,

then H belongs to the type of one of the following three d.f.�s:

Fréchet : [ ]Φα α
( )

,

exp ,
x

x

x x
=

≤

− >






−

0 0

0
α > 0

Weibull : ( )[ ]Ψα

α

( ) exp ,
,

x x x
x

= − − ≤
>






0

1 0
α > 0

Gumbel : ( ) [ ]Λ x e x= − −exp , x ∈  ℜ .

A comprehensive sketch of the proof can be found in Embrechts et al. (1997). In simple

words, this theorem states that if the maximum value of a d.f. tends (in distribution) to a

non-degenerate d.f. then this limiting d.f. can only be one of the three forms given above.

The d.f.�s Φα, Ψα, Λ are called standard extreme value d.f.�s, and the corresponding r.v.�s

standard extremal r.v.�s, and are going to be described in more details in a subsequent

section of this chapter.

Still, this theorem leaves some questions open. Two other issues that need to be

addressed so as to have a complete description of the behaviour of extremes are :

1) Identification of the necessary conditions that a d.f. F should fulfil, so that its

normalized maxima converge weakly to one of the extreme value d.f.�s.

2) Determination of the centring constant dn and normalizing constant cn (jointly called

norming constants).

In the sequel, we deal with these two questions.
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In order to explore the necessary conditions for the existence of a limiting d.f. H, it is

useful to adopt a systematic approach towards the set of d.f.�s whose maxima have the

same limiting d.f. So, we introduce the notion of maximum domain of attraction.

Definition : Maximum Domain of Attraction (Embrechts et al., 1997)

The r.v. X (the d.f. F of X, or the distribution of X) is said to belong to the maximum

domain of attraction of the extreme value distribution H if there exist constants cn > 0,

dn ∈  ℜ  such that

( )c M d Hn n n
d− −  →1

holds. We write X ∈  MDA(H) (or F ∈  MDA(H)).

That is, the MDA of the extreme value distribution H is the family of distributions whose

maxima tends, in distribution, to H.

A first result which stems from the effort to find the conditions under which a d.f. has

limiting d.f. of maxima is the following characterization property.

Proposition : Characterization of MDA(H) (Embrechts et al., 1997)

The d.f. F belongs to the maximum domain of attraction of the extreme value

distribution H with norming constants cn > 0, dn ∈  ℜ  if and only if

( ){ } ( )[ ]lim ln
n n nnF c x d H x
→∞

+ = − , x ∈  ℜ , F F= −1 .

When H(x)=0 the limit is interpreted as ∞.

This general characterization property can lead to necessary and sufficient conditions

for a d.f. F to have one of the three specific limiting laws for maxima. This can be

achieved using the concept of regular variation for the Fréchet and Weibull case (though

in the last case a small modification is required), while for the Gumbel case the notion of

rapidly varying functions is needed. In the sequel we present the characterization

properties (their proofs can be found in Embrechts et al. ,1997).
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Theorem : Maximum Domain of Attraction of Φα (Embrechts et al., 1997)

The d.f. F belongs to the maximum domain of attraction of Φα, α > 0, if and only if

F x x l x( ) ( )= −α

for some slowly varying function l.

Every F ∈  MDA(Φα) has an infinite right endpoint xF = ∞. Essentially, MDA(Φα)

embraces all the distributions with right tails regularly varying with index �α, that is

1− → −F x x a( ) , x →∞ . These d.f.'s are called Pareto-type or heavy-tailed distributions.

Theorem : Maximum Domain of Attraction of Ψα (Embrechts et al., 1997)

The d.f. F belongs to the maximum domain of attraction of Ψα, α > 0, if and only if

xF < ∞ and

F x x x l xF( ) ( )− =− −1 α

for some slowly varying function l.

All d.f.�s in MDA(Ψα) have a finite right endpoint xF . This family of distributions has

only 'rescaled' right tails tending to infinity in the form of x a−  (i.e. regularly varying),

that is 1 1− − →− −F x x xF
a( ) , x →∞ .

Theorem : Maximum Domain of Attraction of Λ (Embrechts et al., 1997)

The d.f. F with right endpoint xF ≤ ∞ belongs to the maximum domain of attraction of Λ

if and only if there exists some z < xF such that F can be written as

F x c x g t
a t

dt
z

x

( ) ( ) exp ( )
( )

= −








∫ , z < x < xF,

where c and g are measurable functions satisfying c x c( )→ > 0 , g x( )→ 1 as x xF↑ ,

and a x( )  is a positive, absolutely continuous function (with respect to Lebesgue

measure) with density ′a x( )  having lim ( )
x xF

a x
→ −

′ = 0.

Notice, that now there is no direct linkage with regular variation notion. However,

MDA(Λ) covers a wider collection of d.f.'s with very different tails ranging from

moderately heavily (such as the lognormal) to light (e.g. normal distribution). D.f.'s of

this class can be either unbounded or bounded on the right.
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Still, the above conditions are difficult to verify in practice. Von Mises (1936) has

given some simpler sufficient conditions which can be used for practical purposes. These

conditions for each one of the three limiting cases are given in the sequel.

Corollary : Von Mises Condition for MDA(Φα) (Embrechts et al., 1997)

Let F be an absolutely continuous d.f. with density f satisfying

lim ( )
( )x

xf x
F x→∞

= >α 0,

then F ∈  MDA(Φα).

Corollary : Von Mises Condition for MDA(Ψα) (Embrechts et al., 1997)

Let F be an absolutely continuous d.f. with density f which is positive on some finite

interval (z, xF). If

lim
( ) ( )

( )x x

F

F

x x f x
F x→ −

−
= >α 0 ,

then F ∈  MDA(Ψα).

Corollary : Von Mises Condition for MDA(Λ) (Embrechts et al., 1997)

Let F be a d.f. with right endpoint xF ≤ ∞, such that for z < xF F has the representation

F x c
a t

dt
z

x

( ) exp
( )

= ⋅ −








∫
1 ,z < x < xF,

where c is some positive constant, a x( )  is a positive, absolutely continuous function

(with respect to Lebesgue measure) with density ′a x( )  having l a x
x xF

lim ( )
→ −

′ = 0  .

Then F ∈  MDA(Λ).

Note that the d.f.�s just described are known as �von Mises functions�. A long list of

references dealing with these theoretical issues can be found in Johnson et al. (1995).

Through the procedures used to derive the previous results, proper forms for the

norming constants appear which are different for the three different types of limiting

d.f.�s. These formulae, answering the second question we posed, are summarized in the

following table.
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Table 2.1. Norming Constants for the Maximum Domains of Attraction

Maximum Domain of Attraction Centring Constant dn Normalizing Constant cn

Fréchet 0 F n← −−( )1 1

Weibull xF xF - F n← −−( )1 1

Gumbel a d n( ) F n← −−( )1 1

Note: { }F u x F x u← = ≥( ) inf : ( )  is the generalized inverse function of the d.f. F, i.e. it is the
well-known quantile function.

2.4 Generalized Extreme-Value Distribution
According to the fundamental theorem of Fisher-Tippet, the possible limiting d.f.�s of

maxima are of three distinct types. In the previous section, we explored some of their

properties and it is an immediate result that there are large analogues among the three

extreme value d.f.�s. Actually, these three d.f.�s can be summarized into a single family

of distributions, known as Generalized Extreme-Value distribution, using a different

parametrization. The idea of this unification is attributed to von Mises (1936), though

often is also attributed to Jenkinson (1955). The corresponding definition is:

Definition : Generalized Extreme-Value distribution (GEV) (see Embrechts et al., 1997)

The GEV d.f. Hγ is defined by the formula

( )[ ]
( )[ ]

H x
x if

x if
γ

γγ γ

γ
( )

exp

exp exp
=

− + ≠

− − =







−1 0

0

1

where 1 0+ >γx , i.e. the support of Hγ, is

x > − −γ 1  for γ > 0 ,

x < − −γ 1  for γ < 0 , and

x ∈ℜ  for γ = 0.

The corresponding p.d.f. (for 1 0+ >γx ) is given by the formula
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( ) ( )[ ]
( )( )[ ]

h x
x x if

x x if
γ

γ γγ γ γ

γ
( )

exp

exp exp .

( )

=
+ − + ≠

− + − =







− + −1 1 0

0

1 1 1

One can easily derive the correspondence between the generalized extreme-value

distribution and the three standard extreme value d.f.�s. Specifically,

for γ > 0 , Hγ  → Φα with α γ= −1 ,

for γ < 0 , Hγ  → Ψα with α γ= − −1 , and

for γ = 0, Hγ  → Λ.

The parameter γ  is called �shape parameter�, though it is often referred to as �extreme-

value index� or �tail index�.

Such a one-parameter representation of the three standard cases in one family of d.f.�s

will turn out to be particularly useful. Actually, its introduction was mainly motivated by

statistical applications.

In the figure below, we give a visual inspection of the form of the limiting d.f. of

normalized maxima, depending on the shape parameter γ. It is really interesting to note

the extensive similarities that exist among the graphs of GEV p.d.f. with γ equal to +0.1, -

0.1 and 0. The similarities are spotted in the middle part of the density, for γ in the

interval [-2, +2]. The tails of the p.d.f.�s are the ones that differ. In any case for γ=0.1 x

cannot be smaller than �10, for γ=-0.1 x cannot exceed 10, while for γ=0 x can take any

value in the axis of real numbers.



Theoretical Background

19

-15 -10 -5 0 5 10 15

0.0

0.1

0.2

0.3

0.4

GEV, γ=0.1 (x>-10)

-5 0 5 10 15

0.0

0.2

0.4

0.6

0.8

GEV, γ=1.5 (x>-0.67)

-15 -10 -5 0 5 10 15

0.0

0.1

0.2

0.3

0.4

GEV, γ=-0.1 (x<10)

-15 -10 -5 0 5

0.0

0.5

1.0

1.5

GEV, γ=-1.5 (x<0.67)

-15 -10 -5 0 5 10 15

0.0

0.1

0.2

0.3

0.4

GEV, γ=0 (x∈ℜ )

Figure 2.1. Probability density functions of the Generalized Extreme-Value distribution for shape-

parameter values γ = ± ±01 15 0. , . ,  .
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In the previous section we have presented characterization properties separately for

each standard extreme value d.f. After the unification, a �global� characterization property

can be developed, which includes all the three limit laws for maxima. Notice, also, that

the maximum domain of attraction of Hγ is constructed in the same way as the maximum

domain of attraction of the three standard extreme value d.f�s. Actually, there are two

forms to characterize GEV.

Theorem: Characterization I of Generalized Extreme-Value distribution (Embrechts et

al., 1997)

The d.f. F with right endpoint xF ≤ ∞ belongs to the maximum domain of attraction of

Hγ (F ∈  MDA(Hγ)) if and only if, for 1 0+ >γx ,

( )( )
( )

( )
lim

u x xF

F u xa u
F u

x if

e if→

−

−−

+
=

+ ≠

=







1 0

0

1γ γ

γ

γ

where a x( )  is a positive, measurable function.
An interesting probabilistic interpretation stems by observing that

( )( ) ( ) ( )( )F u xa u F u P X u a u x X u+ = − > >( ) . That is, the above characterization

provides a distributional approximation for the scalled excess over the (high) threshold u.

The appropriate scaling factor is a u( ) .

Theorem: Characterization II of Generalized Extreme-value distribution (Embrechts et

al., 1997)

The d.f. F with right endpoint xF ≤ ∞ belongs to the maximum domain of attraction of

Hγ (F ∈  MDA(Hγ)) if and only if, for x, y>0, y≠1,

lim ( ) ( )
( ) ( ) ln

ln
s

U sx U s
U sy U s

x
y

if

x
y

if
→∞

−
−

=

−
−

≠

=










γ

γ γ

γ

1
1

0

0

where ( )U t F t( ) = −← −1 1 , t>0.
A reformulation of this relation leads to an estimation procedure for quantiles outside the

range of the data, while a special case of this formula is also used to motivate the

Pickands estimator of γ. These issues will be further elaborated on chapter 4.
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A sketch of the proof for both characterization properties is given in Embrechts, et al.

(1997). This theorem is one of the basic results in extreme value theory. In a concise,

analytical way, it gives the essential information collected in the previous section on

maximum domains of attraction. Moreover, it constitutes the basis for numerous

statistical techniques. In simple words, it provides the necessary and sufficient conditions

for a d.f. F to have maxima that converge weakly to a non-degenerate d.f. If F does not

satisfy the above conditions then its maxima do not converge in any distribution. Another

point that we should mention is that the limit d.f.�s  are unique only up to affine

transformations, i.e. in each case the exact limiting d.f. is not necessarily the standard

GEV distribution but it can be a d.f. of the more general location-scale GEV family,

defined in the sequel. Still, this does not cause any identification problem, since in any

case, by appropriate normalization of maxima, we can end up in the standard GEV. This

is the reason for which, in most parts of the present thesis we are mainly concerned only

with the standard GEV.

! Max-Stability of Extreme Value Distributions

A characteristic property of extreme value distributions is that they are closed (up to

affine transformations) for maxima (max-stability property). In general, the definition of

max-stability is the following

Definition : Max-Stable Distribution  (Embrechts et al., 1997)

A non-degenerate r.v. X (the corresponding distribution or df) is called max-stable if

max( ,..., )X X c X dn

d

n n1 = +

holds for i.i.d. X, X1, ..., Xn, appropriate constants cn > 0, dn ∈  ℜ  and every n ≥ 2.

From the definition alone we can see that every max-stable distribution is a limit

distribution for maxima of i.i.d. r.v.�s. Moreover, max-stable distributions are the only

limit laws for normalized maxima. This is indicated by the following theorem (whose

proof is supplied by Embrechts et al., 1997).
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Theorem : Limit Property of Max-Stable Laws (Embrechts et al., 1997)

The class of max-stable distributions coincides with the class of all possible (non-

degenerate) limit laws for (properly normalized) maxima of i.i.d. r.v.�s.

Now, we can formally state and prove the max-stability property of extreme value

distributions.

Proposition

The extreme value distributions (Fréchet, Weibull and Gumbel) are max-stable

distributions and they are the only distributions with this property

Proof :

First, we are going to show that, indeed the extreme value distributions satisfy the

defining property of max-stable distributions.

-  Fréchet case

Let X, X1, ..., Χn be i.i.d. from Fréchet(α), with common distribution function

[ ]F x
x

x x
( )

,

exp ,
=

≤

− >






−

0 0

0α
(2.1),

Mn=max(X1,..Xn) with distribution function ( )( )F x F xM
n

n
( ) =  (2.2)

Substituting (2.1) in (2.2), we get

For x>0

[ ]( ) [ ] ( )[ ]
( )

F x x nx n x

F x F n x

M

n a

M

n

n

( ) exp exp exp

( )

= − = − = −

⇒ =

− − − −

−

α α α

α

1

1

For x≤0, ( ) ( )F x F n xM
n

n
( ) = = = −0 0 1 α

That is,

max( ,... , )X X n Xn

d

1
1= α

which proves the max-stability of the Fréchet d.f.

-  Weibull case

Analogously to previous case, let X, X1, ..., Χn be i.i.d. from Weibull(α), with common

distribution function
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( )[ ]F x
x x

x
( )

exp ,

,
=

− − ≤

>







α 0

1 0
(2.3)

Mn=max(X1,..Xn) with distribution function ( )( )F x F xM
n

n
( ) = (2.4)

Substituting (2.3) in (2.4), we get

For x≤0

[ ]( ) [ ] ( )[ ]
( )

F x x n x n x

F x F n x

M

n a

M

n

n

( ) exp ( ) exp ( ) exp

( )

= − − = − − = − −

⇒ =

α α α

α

1

1

For x>0, ( ) ( )F x F n xM
n

n
( ) = = =1 1 1 α

That is,

max( ,... , )X X n Xn

d

1
1= − α

which proves the max-stability of the Weibull d.f.

-  Gumbel case

Let X, X1, ..., Χn be i.i.d. from Gumbel, with common distribution function

( ) [ ]Λ x e x= − −exp , x ∈  ℜ (2.5)

Mn=max(X1,..Xn) with distribution function ( )( )F x F xM
n

n
( ) = (2.6)

Substituting (2.5) in (2.6), we get

[ ]( ) [ ] [ ] [ ]
( )

F x e ne e e e

F x F x n
M

x n x n x x n

M

n

n

( ) exp exp exp exp

( ) ln

ln ( ln )= − = − = − = −

⇒ = −

− − − − −

That is,

max( ,..., ) lnX X X nn

d

1 = +

which proves the max-stability of the Weibull d.f.

Up to this point, we have showed that the extreme value distributions are max-stable.

In order to show that they are the only max-stable distributions, we just have to combine

the theorem of �Limit property of max-stable laws� with the Fisher-Tippet Theorem.

Indeed, according to Fisher-Tippet Theorem, extreme value d.f.s are the only possible
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limit laws of (properly normalized) maxima. On the other hand, the limit property of

max-stable laws dictates that the class of max-stable distributions coincides with the class

of all possible (non-degenerate) limit laws for (properly normalized) maxima of i.i.d.

Graphically we have that

{Extreme Value Distributions} ⇔ {Limit Laws of properly normalized Maxima}

and

{Max- Stable Distributions} ⇔ {Limit Laws of properly normalized Maxima}.

Consequently,

{Extreme Value Distributions} ⇔ {Max- Stable Distributions}.

Up to now, we have focused on the GEV as limiting d.f. of the extremes of other

d.f.�s, i.e. we were within the context of extreme value theory. At this point, we are going

to concentrate on the properties of Generalized Extreme-Value d.f. itself , i.e. we are

going to investigate Generalized Extreme-Value d.f. from the point of view of

�distribution theory�.

"

! Location � Scale Family of Generalized Extreme-Value distribution

If a r.v. X has d.f. Hγ , then the r.v. µ σ+ X  has the d.f. H x H x
γ µ σ γ

µ
σ, , ( ) = −





. µ ∈ℜ is

the location parameter and σ > 0  is the scale parameter. The support of the d.f. is

adjusted accordingly to the GEV.

Notice that the location parameter µ is the left endpoint in case γ > 0 , and the right

endpoint if γ < 0 .

! Distributional Characteristics of Generalized Extreme-Value distribution

- The mean exists only for γ <1, and is given by ( ) ( )
E Hγ

γ
γ

=
− −Γ 1 1

, where Γ(.) is

the Gamma function.
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- The variance exists only for γ <1 2 , and equals ( ) ( ) ( )
Var Hγ

γ γ
γ

=
− − −Γ Γ1 2 12

2 .

- The GEV densities are unimodal with mode 
( )

mod( )Hγ

γγ
γ

=
+ −−1 1

 for γ > −1,

while they are J-shaped for γ ≤ −1.

The case γ = 0 is included in the latter formulas by considering limits with γ tending to

zero. That is,

( ) ( ) ( )E H E H x e dxx
0 0

0

= = − =
→

−
∞

∫lim ln
γ γ λ , where λ=0.577216 is Euler�s constant,

( ) ( )Var H Var H0 0

2 6= =
→

lim
γ γ π , and

( )mod H0 0= .

2.5 Limit Laws for Minima
Up to now, we have been entirely concerned with the study of maxima, i.e. the largest

values of a d.f. Still, not few are the cases and practical situations where we are primarily

interested in the minima (smallest values). Fortunately, the study of minima is totally

equivalent to the study of maxima, since it holds that

( ) ( )min ,... , max ,... ,X X X Xn n1 1= − − − .

All the findings, mentioned above, concerning maxima have an analogous formula and

hold for minima as well.

So, there is an one-to-one relationship between limiting d.f.�s of maxima and minima.

More particularly,

if ( )( ) ( )P X b a x H x
i n i n n

nmax
≤

→∞− ≤ +  → 

then ( )( ) ( )P X d c x H x
i n i n n

nmin
≤

→∞≤ +  →  − −1 ,

where c an n=  and d bn n= −  .
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This yields that the possible limiting d.f.�s of minima can be only of three types (in the

sense of Fisher-Tippet) :

Converse Fréchet : 
[ ]~ ( ) ( )

exp ( ) ,

,
Φ Φα α

α

x x
x x

x
= − − =

− − − ≤

>







−

1
1 0

1 0
α > 0.

Converse Weibull : 
( )[ ]

~ ( ) ( )
,

exp ,
Ψ Ψα α αx x

x

x x
= − − =

≤

− − >






1

0 0

1 0
α > 0.

Converse Gumbel : ( ) ( ) [ ]~ expΛ Λx x e x= − − = − −1 1 , x ∈  ℜ .
The limiting d.f.�s of minima can also be simply called converse extreme value d.f.�s.

Some well-known special cases are:

- The converse Gumbel ~ ( )Λ x  is also called Gompertz d.f. This is the d.f. that satisfies the

famous Gompertz law

- ~ ( )Ψ1 x  is the exponential d.f. on the positive half-line

- ~ ( )Ψ2 x  is the Rayleigh d.f. that is also of interest in some particular statistical

applications. A characteristic relationship is that if the areas of random circles are

exponentially distributed, then the diameters have a Rayleigh d.f.

Under the unified representation (γ-reparametrization) the limiting d.f. of minima is the

Converse Generalized Extreme-Value distribution :

( )[ ]
( )[ ]

~ ( ) ( )
exp

exp exp
H x H x

x if

x if
γ γ

γγ γ

γ
= − − =

− − ≠

− =







−

1
1 0

0

1

where 1 0− >γx , i.e. the support of ~Hγ  is

x < −γ 1 for γ > 0
x > −γ 1  for γ < 0
x ∈ℜ  for γ = 0.

Another characteristic property of maxima which is �transmitted� to minima is that of

max-stability. More precisely, the limiting d.f.�s of minima are characterized by the min-

stability. That is, the d.f�s converse Fréchet, converse Weibull and converse Gumbel are

the only distributions for which it holds that
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( ){ } ( )( ) ( )P X d c x F d c x F x
i n i n n n n

n
min
≤

≤ + = − − + =1 1

for a certain choice of constants cn > 0, dn ∈  ℜ , where (Xi) are iid random variables with

common d.f. F ( ~Φ , ~Ψ , or ~Λ ).

The min-stability can also be expressed in terms of the survivor function F , that is

( ){ } ( ) ( )P X d c x F d c x F x
i n i n n

n
n nmin

≤
> + = + = .

2.6 Generalized Pareto Distribution
Another very useful distribution in the context of extreme value theory is the

Generalized Pareto Distribution (GPD, in short). Apart from the theoretical connection to

the extreme value theory, the GPD has been extensively used in practical applications for

statistical inference in extremes. Many statistical procedures in the field we are working

have been inspired by GPD. More details for this will be provided in following chapters.

The formal definition of the GPD is as follows.

Definition : The Generalized Pareto Distribution (Embrechts et al., 1997)

The Generalized Pareto distribution Gγ is defined by the formula

( )
G x

x if

e ifx
γ

γγ γ

γ
( ) =

− + ≠

− =







−

−

1 1 0

1 0

1

where the support of Gγ is
x ≥ 0  if γ ≥ 0, and
0 1≤ ≤ −x γ  if γ < 0.

The corresponding p.d.f. is
( )

g x
x if

e ifx
γ

γγ γ

γ
( )

.

( )

=
+ ≠

=







− +

−

1 0

0

1 1

The following figure displays the generalized Pareto p.d.f. for several values of the

parameter γ. As was the case in the GEV p.d.f., large similarities exist among the graphs

of p.d.f. of the GPD for γ is equal to +0.1, -0.1 and 0. Their main difference is that in the

case of γ= -0.1 x cannot exceed 10, while in the two other cases x can become infinitely

large.
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Figure 2.2. Probability density functions of the Generalized Pareto distribution for shape-parameter

values γ = ± ±01 15 0. , . ,  .
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In order to obtain the full statistical family of GPD's, we have to add location and

scale parameters ν ∈ℜ , and β > 0  respectively. So, the related location-scale family

Gγ;ν,β is

G x G x
qγ ν β γ

ν
β, ( ) = −






 , where the support is adjusted accordingly. The location

parameter ν is always the left endpoint of the support of the distribution. Notice also that,

for γ > 0  the GPD corresponds to Pareto d.f., for γ < 0  to Beta d.f., while for γ = 0 we

get the standard exponential distribution.

The strong connection of Generalized Pareto d.f. to extreme value theory is revealed

in the following considerations. Indeed, if we take a more thorough look at the first

characterization property of the maximum domain of attraction of generalized extreme-

value d.f. (MDA(Hγ)), we notice that the left-hand side of the relation can be rewritten as

( ) ( ) ( )F u xa u
F u

P X u xa u X u P X u
a u

x X u F a u xu

+
= > + > = − > >







 =

( )
( )

( )
( )

( ) ,

where Fu stands for the conditional distribution of X given that X>u.

That is, if X ∈  MDA(Hγ), then it holds that, for 1 0+ >γx ,

( )
lim

( )u x xF

P X u
a u

x X u
x if

e if→

−

−−

− > >






 =

+ ≠

=







1 0

0

1γ γ

γ

γ

which gives a distributional approximation for the scaled excesses over the (high)

threshold u by the GPD. The appropriate scaling factor is a u( ) . In this context, Fu is

called excess d.f.

So, by making use of the previous definition, we can easily derive the following

proposition, which reveals the connection of the Generalized Pareto distribution to

extreme-value theory.
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Proposition : Limit distribution of scaled excesses over high thresholds (Embrechts et

al., 1997)

If the d.f. F with right endpoint xF ≤ ∞ belongs to the maximum domain of attraction of

Hγ (F ∈  MDA(Hγ)) then, for 1 0+ >γx ,

lim
( )

( ), ( )
u x

d

a u
F

P X u
a u

x X u G x
→ −

− > >






 = γ .

Properties of GPD

Maybe, the most important property of the GPD is the one known as �POT-stability�,

(POT stands for Peaks Over Threshold), i.e. the class of GPD's is closed with respect to

changes of the threshold. Formally, we have the following proposition.

Proposition : POT-Stability of Generalized Pareto Distributions (Reiss and Thomas,

1997)

Generalized Pareto d.f.�s are the only continuous d.f.�s such that for a certain choice of

constants bu  and au , it holds that

[ ] ( )F b a x F xu
u u+ = ( ) ,

where [ ] ( )F x P X x X u F x F u
F u

u ( ) ( ) ( )
( )

= ≤ > = −  is the exceedance d.f. over the

threshold u (truncation of F left at u).

That is, the truncated version of a GPD remains in the same family of d.f.�s.

The usefulness of this proposition lies on the fact that if we can assume that the d.f. of

the scaled excesses over a high threshold v is well approximated by GPD, then the same

holds for any higher threshold u>v. This remark will turn out to be of great practical

interest in the case of estimation of the extreme-value index γ, as we will see in

subsequent chapter.
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Other Properties of Generalized Pareto Distributions

Let Gγ β,  be a GPD with shape parameter γ and scale parameter β (when written as β(u) it

implies dependence of β on u).

! For every γ ∈ℜ , F ∈  MDA(Hγ) if and only if

( )lim sup ( ) ,u x x x u
u u

F F

F x G
→ < < −

−
− =

0
0γ β ,

where ( )F x P X u x X uu ( ) = − ≤ > , x≥0, is the excess d.f. over the threshold u.

! For every xi, i=1,2 (to the appropriate domain of support),

G x x
G x

G xx
γ β

γ β
γ β γ

,

,
,

( )
( )

( )1 2

1
21

+
= + .

This property is a reformulation of the POT-stability property.

! If γ <1, then for u xF< , it holds that

( )e u E X u X u u( ) = − > = +
−

β γ
γ1

,  β γ+ >u 0,

where e(u) is called mean-excess function.

This property shows that the mean-excess function is linear with respect to u. This

remark is a key-point to many statistical techniques (estimation methods for γ) that we

will present later.

! If γ <1, then the followings hold:

E(X) < ∞

E X
r

r

1 1
1

+



















=

+

−
γ
β γ

,    for r>-1/γ

E X k
k

kln !1+





























=

γ
β

γ ,    k ∈  N

( )( )[ ] ( )( )E X G X
r r

r

γ β
β
γ, =

+ − +1 1
,    (r+1)/|γ| > 0.
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Moreover,

if γ < 1/r, r ∈  N, then ( ) ( )
( )E X

r
rr

r

r
=

−

+

−

+ −

β γ

γ γ

Γ

Γ

1

1 11
!.

# Let N be a Poisson r.v. with parameter λ (P(λ)), independent of the i.i.d. sequence

(Xn) with a Gγ β,  d.f., and MN = max(X1, ..., XN). Then, it holds that

( )P M x x H xN ≤ = − +



















=

−

exp ( )
/

; ,λ γ
β

γ

γ µ σ1
1

,

where ( )µ βγ λγ= −−1 1  is the location parameter and σ βλγ=  is the scale parameter.

The essence of this property is that if the number of exceedances over a high threshold is

exact Poisson and the excess d.f. is an exact GPD, then the maximum of this excesses has

an exact GEV distribution.

The above properties suggest the following approximate model for the exceedance times

and the excesses of an i.i.d. sample

∗  The number of exceedances of a high threshold follows a Poisson process.

∗  Excesses over high thresholds can be modelled by a GPD.

∗  An appropriate value of the high threshold can be found by plotting the empirical

mean excess function (and searching for that point from which linearity seems to

start).

∗  The distribution of the maximum of a Poisson number of i.i.d. excesses over a high

threshold is a GEV.
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2.7 Examples and Counter-Examples
In a previous section we have mentioned the necessary and sufficient conditions, for a

d.f. to have maxima that converge weakly to a particular d.f. form. These conditions may

seem particularly complicated and difficult to be fulfilled. Still, many, if not most, of the

well-known distributions have been proven to fulfil these conditions, thus, leading to a

formal study of the maxima of such distributions. In the table that follows we present a

list of such d.f.�s, accompanied with the shape parameter γ of the MDA(Hγ) to which

each one of them belongs.

Table 2.2. Distributions belonging to MDA(Hγ), γ ∈ℜ .

Name Distribution Function F(x) Shape
parameter γ

Uniform (0,1) x -1

Beta Γ
Γ Γ

( )
( ) ( )

( )α β
α β

α β+ −− −∫ u u du
x

1 1

0

1 -1/β

Reversed Burr
( )

1−
+ −











−

β
β τ

λ

x xF

−1 τλ

Extreme Value ( )( )exp /− + −1 1γ γx γ

Benktander II ( )1 1− −






− −x xβ βα

β
exp 0

Weibull ( )1− −exp λ τx 0
Exponential ( )1− −exp λx 0

Gamma
λ λ

m
m u

x

m
u e du

Γ ( )
− −∫ 1

0

0

One-sided
Logistic

e
e

x

x

−
+

1
1

0

Lognormal ( )1

2

1
22 2

2

0 πσ σ
µ

u
u du

x

exp ln− −



∫ 0

Benktander I
( )1 1 21− +





− + +x xxα β β
α

ln ln
1

1+α
 if β=0

0          if β>0
Pareto 1− −x α 1/α
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Burr 1−
+









β
β τ

λ

x
1/τλ

Generalized
Pareto

( )G x xγ
γγ( ) = − + −1 1 1

γ

Loggamma λ λ
m

m
x

m
u u du

Γ( )
(ln ) − − −∫ 1 1

0

1/λ

Loghyperbolic ( ) ( )D u u du
u

x

exp ln ln− + + − + − −



∫

φ α δ µ φ α µ
2 2

2 2

0

1/α

Log-logistic
β
β

α

α

x
x1+

1/α

Fréchet exp( )− −x a 1/α

Cauchy ( )
1

1 2π +−∞
∫ u

du
x

1

The above table presents only some of the cases of d.f.�s which belong to the

maximum domain of attraction of the generalized extreme-value distribution (Hγ). A

much longer list could have resulted if we had considered not only distributions with

completely specified d.f.�s, but also d.f.�s for which only tails are specified. For example,

Pareto-like d.f.�s belong to MDA(Hγ), with γ>0, while exponential-like d.f.�s belong to

MDA(H0).

Still, there are important distributions, commonly used in practice, which could not be

included in the above list. Indeed, one needs certain continuity conditions on F at its right

endpoint to include F at MDA(Hγ), which rules out many of the discrete distributions.

Neither the normalized maxima of i.i.d. Poisson distributed r.v.�s, of Geometric r.v.�s nor

of negative Binomial r.v.�s converge to a non-degenerate limit distribution. More

particularly, it can be shown (see Embrechts et. al, 1997) that for any d.f. with a jump at

its finite right endpoint, no limiting distribution for maxima exists, whatever the

normalization. Additionally, in case of discrete d.f.�s with infinite right endpoints, jump

heights which do not decay sufficiently fast (i.e. lim ( )
( )n

F n
F n→∞ −

<
1

1 ) prohibit the existence

of non-degenerate limit distributions for normalized maxima.




