EVALUATION OF SEMI-PARAMETRIC ESTIMATION METHODS OF THE EXTREME-VALUE INDEX AND ROBUSTIFYING MODIFICATIONS
Tsourti
Zoi
Supervisor: I. Panaretos
CHAPTER
1
INTRODUCTION
1.1 Preface
1.2 Genesis and Historical Development
1.3 Fields of Application1.4 Overview
THEORETICAL BACKGROUND
PARAMETRIC APPROACH TO MODELLING EXTREMES2.1 Introduction
2.2 Theory of Regular Variation
2.3 Limit Laws for Maxima2.4 Generalized Extreme-Value Distribution
2.5 Limit Laws for Minima
2.6 Generalized Pareto Distribution
2.7 Examples and Counter-Examples
SEMI-PARAMETRIC APPROACH TO MODELLING EXTREMES3.1 Introduction
3.2 Maximum Likelihood Estimation
3.3 Method of Probability Weighted Moments
3.4 Comparison of ML and PWM Estimation Methods for GEV Distribution
3.5 Modified ML Estimators
3.6 Other Estimation Techniques
4.1 Introduction
4.2 Pickands Estimator
4.2.1 Derivation
4.2.2 Choice of k
4.2.3 Properties of Pickands Estimator
4.2.4 Quantile estimation
4.2.5 Modifications - Developments on Pickands Estimator
4.3 Hill Estimator
4.3.1 Derivation
4.3.2 Choice of k
4.3.3 Properties of Hill Estimator
4.3.4 Quantile estimation
4.3.5 Modifications - Developments on Hill Estimator
4.3.6 Asymptotic Behaviour of Hill Estimator Based on Dependent Data
4.4 Adapted Hill Estimator
4.5 Moment Estimator
4.5.1 Derivation
4.5.2 Properties of Moment Estimator
4.5.3 Quantile estimation
4.6 Other Semi-Parametric Estimation Methods
4.6.1 Moments Ratio Estimator
4.6.2 Kernel Estimators
4.6.3 QQ-Estimator
4.6.4 "k-records" Estimator
4.6.5 Other Extreme-Value Index Estimators
4.7 "Peaks Over Thresholds" Estimation Methods
SMOOTHING AND ROBUSTIFYING PROCEDURES FOR SEMI-PARAMETRIC
EXTREME-VALUE INDEX ESTIMATORS
EXTREME-VALUE ANALYSIS5.1 Introduction
5.2 Smoothing Extreme-Value Index Estimators
5.2.1 Smoothing Hill Estimator
5.2.2 Smoothing Moment Estimator
5.3 Robust Estimators Based on Excess Plots
5.4 Simulation Comparison of Extreme-Value Index Estimators
5.4.1 Details of Simulation Study
5.4.2 Discussion of Simulation Results
5.5 Methods of Selecting k
5.5.1 Regression Approach
5.5.2 Bootstrap Approach
CONCLUSIONS6.1 Introduction
6.2 Exploratory Data Analysis
6.2.1 Description of the Data
6.2.2 Investigation of Independence
6.2.3 Investigation of Heavy Tails
6.3 Extreme-Value Analysis
6.3.1 Estimation of Extreme-Value Index γ
6.3.2 Estimation of Large Quantiles
7.1 Discussion
7.2 Open Problems