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 CHAPTER 3. 
 

SIMPLE REGRESSION MODELS FOR REE–COMPARISONS 
 

3.1 Introduction 

Statistical modeling is one of the most interesting areas of statistics. 

The applications where statistical modeling is used are numerous and are 

related to various fields, including econometrics, engineering, and 

pharmacology. Regression analysis is used to investigate and model the 

relationship between a response variable and one or more predictors. 

In this chapter we will try to derive linear models that predict REE of 

Greek elite athletes. It is the first time that a real sample of Greek athletes is 

used for creation of such predictive equations. Also it is a great opportunity to 

compare the derived equations with established similar equations of the past 

(see 2.4) and come up with interesting conclusions.  

   

3.2 REE VS weight - Regression 

 As we can see from the correlation table 2.6.1, body weight is highly 

correlated with REE. Weight is the most important explanatory variable for 

REE. Equations 2, 3, 5 and 6 of chapter 2.4 use only weight to predict REE. 

The scatter plots of REE versus WEIGHT (Figure 3.2.1), for both sexes, 

indicate obvious linear relationship between them.  

Figure 3.2.1 Scatter plots of REE VS Weight by sex 

(Regression lines and 95% confidence intervals) 
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Table 3.2.2 Simple predictive equations-1 for REE 

Males Females 

REE = 628.84 + 14.27⋅Weight REE = 643.53 + 10.31⋅Weight 

489.02 =adjR  374.02 =adjR  

95% C.I. of Constant (491.83, 765.84) 95% C.I. of Constant (536.78, 750.28) 

95% C.I. of Weight (12.52, 16.01) 95% C.I. of Weight (8.52, 12.11) 

By comparing the two derived equations we can conclude that the 95% 

confidence intervals of weight-coefficients are distinct since  (8.52, 12.11) ∩ 

(12.52, 16.01) = ∅. 

The energy needs per gram of body mass are significantly higher for 

males than for females, fact that can be explained by the differential of body 

composition between the two sexes (as has been presented in the table 1.5.1). 

 

3.3 Assumptions of linear model  

Diagnostics plots and tests are used in linear models in order to check 

the basic assumptions of the linear regression. The following plots and tests 

indicate satisfaction of the assumptions for both males and females. 

Figure 3.3.1 Normal P-P plots of standardized residuals by sex 
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Normal P-P Plot of Stand. Residuals

Regression Model for Females
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The Kolmogorov Smirnov test for normality of errors gives a P-value for 

Males equal to 0.898 and for Females equal to 0.828. So we do not have 

evidence to reject the null hypothesis that says that errors follow a Normal 

distribution. The mean error of both sexes is zero. 
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Figure 3.3.2 Scatter plots of standardized Residuals by sex 

Stand. Residulas VS Stand. Predicted Values
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.  

In both scatter plots, residuals seem to indicate homoscedasticity, linearity 

and independency since they look like being between two parallel lines 

(Draper and Smith, 1981). Also from these Scatter plots one outlier for each 

model is identified with standardized residual greater than 3. 

  

3.4 REE VS weight, height and age - Regression 

 We will use weight, height and age, as explanatory variables for REE 

since are the most easily measured. Harris and Benedict equations (see 

equation 1 in section 2.4) also use the same explanatory variables. The 

equations that are derived are the following: 

Table 3.4.1 Simple predictive equations-2 for REE 
Males Females 

REE = -140.56 + 12.01Weight + 

6.09Height - 7.13Age 

REE = 729.29 + 11.17Weight - 

0.28Height - 4.77Age 

531.02 =adjR  375.02 =adjR  

95% C.I. of Constant (-608.15, 327.03) 95% C.I. of Constant (213.93, 1244.65) 

95% C.I. of Weight (9.78, 14.25) 95% C.I. of Weight (8.23, 14.11) 

95% C.I. of Height (3.12, 9.06) 95% C.I. of Height (-4.03, 3.46) 

95% C.I. of Age (-12.53, -1.72) 95% C.I. of Age (-10.81, 1.26) 

 

We can see that coefficients of height and age for females are not 

significantly different from zero. Consequently, we should remove one or 

both of these variables from the model. 
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Something that should be investigated is the problem of 

multicollinerity, which refers to high correlation among the explanatory 

variables that does not allow one to examine the individual effect of each 

explanatory variable. In the presence of multicollinearity the estimates of the 

unknown parameters are not stable. This means that small changes in the data 

may lead to large changes in the parameter estimates. In addition, the 

regression coefficients may have very large standard errors, while at the same 

time the R2 is high. Finally, the coefficients may have a wrong sign.    

  A very simple method for detecting multicollinearity is based on the 

calculation of correlation coefficient between any pair of the explanatory 

variables. If this coefficient takes a value close to ±1 then this is an indication 

of the presence of multicollinearity. Furthermore, we can compare these 

correlation coefficients with the R2 coefficient of the model. If any of the 

coefficients is greater of R2 there may be multicollinearity and we should be 

cautious or just exclude one of the two correlated explanatory variables 

(Jarrett, 1987).  

The condition number is a statistical index that most Statistical tools 

provide in order to detect multicollinearity. A condition number greater than 

15 indicates a possible problem and a number greater than 30 suggests a 

serious problem with multicollinearity. 

For both sexes the problem of serious multicollinearity is suggested 

since: 

Males’ Condition Number = 57 > 30 

Female’ Condition Number = 73 > 30 

Previous bibliography has not referred to the multicollinearity problems in 

equations despite the strong correlation that always exists between weight and 

height. 

An other possible solution is to apply principal components analysis to weight, 

height and age in order to produce uncorrelated components (PCs) and avoid 

regression on correlated explanatory variables. Other than dealing with 

multicollinearity, what does principal components regression have going for 

it? At the very best, the PC’s are so readily interpretable that they become the 

new variables in the prediction model. At the very worst, they are not 
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interpretable at all but one can still relate the responses to the original 

predictors, by transforming back the model (Jackson, 1985). 

Table 3.4.2 Principal Components of weight, height and age for Males 

Variable PC1 PC2 PC3 

AGE 0,060 0,188 0,980 

HEIGHT 0,522 -0,843 0,130 

WEIGHT 0,851 0,503 -0,149 

The first principal component explains the 78.6% of the total males’ variance.  

PC1 = 0.060 AGE + 0.522 HEIGHT + 0.851 WEIGHT 

 

Table 3.4.3 Principal Components of weight, height and age for Females 
Variable PC1 PC2 PC3 

AGE 0,126 0,200 0,972 

HEIGHT 0,558 -0,824 0,097 

WEIGHT 0,820 0,530 -0,215 

The first principal component explains the 84.7% of the total females’ 

variance. 

PC1 = 0.126 AGE + 0.558 HEIGHT + 0.820 WEIGHT 

The regression equations, using only the first principal components, are the 

following: 

Males:    REE = -359 + 13 PC1males (R2
adj = 52 %) 

Females: REE = 43 + 8.4 PC1females (R2
adj = 35 %) 

 

In this case principal components do not help in any way since they are not 

interpretable at all and cannot be used as a replacement of the originals 

variables. 
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3.5 Regression models using fat free body mass information 

 Fat free body mass is, also, very important explanatory variable for 

REE. Equation 4 in section 2.4 uses only fat free body weight and age for 

creating an equation that fits for both sexes. 

 

Figure 3.5.1 Scatter plots of REE VS Fat-Free Weight 

(Regression lines and 95% confidence intervals) 
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Table 3.5.2 Simple predictive equations-3 for REE 
Males Females 

REE = 462 + 19⋅Fat Free Weight REE = 552 + 14⋅Fat Free Weight 

466.02 =adjR  378.02 =adjR  

95% C.I. of Constant (298, 627) 95% C.I. of Constant (431, 674) 

95% C.I. of Fat Free Weight (16, 21) 95% C.I. of Fat Free Weight (12, 17) 

 

In 4.2 and 4.3 we will see that using a dummy variable of sex, interacted with 

Fat Free Weight, we are driven to the conclusion that the two coefficients of 

Fat Free Weight are significantly different between sexes. 

 Although we should try deriving a common equation using Fat Free Weight 

and age in order to compare it with Ravussin and Bogardus equation (see 

section 2.4). 
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Figure 3.5.3 Scatter plot of REE VS Fat-Free Weight for both sexes 

(Regression lines and 95% confidence intervals) 
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Using age we manage an even better R2

adj without facing the problem of 

multicollinearity.  

The new equation is the:  

REE = 394.67 + 22,45 NOFAT.WT – 9.7 AGE, 684.02 =adjR  

95% C.I. for Constant: (304.21, 485.12) 

95% C.I. for Nofat.wt: (21, 24) 

95% C.I. for Age: (-14, -5.4) 

Diagnostics plots (Figure 3.4.4) indicate that the assumptions of the linear 

regression are satisfied and the model is statistically acceptable. 

Figure 3.5.4 Diagnostic plots 
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Also the Kolmogorov-Smirnov test for normality of errors gives a P-value 

equal to 0.942. So we cannot reject the null hypothesis that says that errors 
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follow a Normal distribution. The scatter plot indicates one outlier 

(observation 208) with standardized residual greater than 3. 

  

3.6 Comparisons between different equations 

 In this section we will compare the derived equations with the 

equations that have been presented in section 2.4. In order to do this we will 

check if the coefficients of these equations are included in the 95% 

confidence intervals for the coefficients of our equations. If a coefficient does 

not belong to the respectively 95% C.I, we conclude that the equations are 

statistically different. Tables, 3.6.1 and 3.6.2 help in comparing relative 

equations. 

Table 3.6.1 Males’ equations 
Males Variables - Coefficients 

Name Constant Weight Height Age Fat-Free 

Equation 1 629 ±137 14 ±2    

FAO 679  15.3     

Schofield 688  15.1     

Henry and Rees 672  13.4     

Piers and Shetty 849.6 10.6    

Equation 2 -140±467 12 ±2 6 ±3 -7 ±5   

Harris-Benedict 66.5  13.8  5  -6.8   

Equation 3 395 ±90   -10 ±4 22.5 ±1.5 

Rav. & Bogardus 441    -2.4 21.9  

 Included in the relative 95% Confidence Interval of Coefficients. 

 
Table 3.6.2 Females’ equations 

Females Variables - Coefficients 

Name Constant Weight Height Age Fat-Free 

Equation 1 644 ±106 10 ±2    

FAO 496 14.7    

Schofield 688  15.1    

Henry and Rees 614.8  11.5     

Piers and Shetty 595.1  10.9     
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Equation 2 729 ±516 11 ±3 -0.3 ±4 -5 ±6  

Harris-Benedict 665.1  9.6  1.8  -4.7   

Equation 3 395 ±90   -10 ±4 22.5 ±1.5 

Rav. & Bogardus 441    -2.4 21.9  

 Included in the relative 95% Confidence Interval of Coefficients. 

 Harris – Benedict equations use weight, height and age as explanatory 

variables, so they will be compared with the derived equations – 2. Harris – 

Benedict equations’ coefficients are included in the respectively 95% C.I. 

with some of them almost equal, so we can conclude that Harris – Benedict 

equations are not statistically different from the derived equations 2. We have 

to mention the problem of multicollinearity and that the coefficients of Height 

and Age, of the females’ equation, are not significantly different from zero 

for our derived equations. 

 FAO equations use only weight as explanatory variable and they can be 

compared with the derived equations – 1. The coefficients of FAO equation 

for males are included in the respectively 95% C.I. Contrary to males, 

females’ FAO equation is statistically different from the derived equation 

since coefficients are not included in the respectively 95% C.I.  

 Schofield et al’ equations show the same comparing results with FAO 

equations. Again females’ equations are statistically different. 

 Both Henry and Rees equations are not statistically different from the 

derived equations – 1. The males’ equations are almost the same and so Henry 

and Rees equations can be selected as the most representative for our males’ 

sample. 

 Piers and Shetty equation for males is statistically different from the 

derived equations - 1. Contrary to males, females’ equation is almost equal 

with the derived females’ equation - 1. Piers and Shetty equation for females 

can be selected as the most representative equation for our females’ sample. 

 Ravussin and Bogardous equation use fat free body weight and age as 

explanatory variables and will be compared with the equation - 3. The 

comparison shows statistically different coefficients for age and almost the 

same coefficients for fat free body weight. 
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For ordinary multiple regression models, the R2 index is a good 

measure of the model’s predictive ability, especially when applying the model 

to other datasets (Frank and Harrell, 2001).  In order to choose the most 

representative established equation for the total data sample we will calculate 
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ii  for each of them as shown in the following table. 

 

Table 3.6.3 R2 on total data sample for foreign equations  
Equations R2 on total data sample (Males and Females) 

Harris – Benedict 0.49 

FAO 0.58 

Schofield et al 0.58 

Ravussin and Bogardous 0.47 

Henry and Rees 0.69 

Piers and Shetty 0.67 

 

Henry and Rees equations seem to be the most representative of the above 

equations with R2 = 0.69 on the total sample of Greek athletes. 

 

3.7. Conclusions 

 As we can see from the previous section some of the equations, 

presented in 2.4, do not statistically differ from those derived in this analysis.  

The information mostly used is weight that seems to be the most 

important explanatory variable for REE. Some of these equations seem to be 

rather representative for our sample and especially Henry and Rees equation 

for males and Piers and Shetty equation for females. On the total data sample 

Henry and Rees equations are those with the highest R2. 

The Harris – Benedict equations use also height and age but not any 

information about body composition (fat proportion) is used.  

Ravussin and Bogardous equation use fat free body weight and age in 

one equation that represent both males and females. No fat body weight 

information is included in the equation. It has to be investigated if fat free 

body mass can be considered as unisex in terms of energy expenditure. 
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To summarize Henry and Rees are the best of the equations existing in 

the literature with all model-coefficients inside the relative 95% confidence 

intervals of our derive equations-1 (see tables 3.6.1 and 3.6.2). 
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