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Chapter 3 

Analysis of Mixtures 

 

3.1 Introduction 

 

Finite mixtures of distributions have provided a mathematical based 

approach to the statistical modelling of a wide variety of random phenomena. 

Because of their usefulness as an extremely flexible method of modelling, 

finite mixture models have continued to receive increasing attention over the 

years, from both a practical and theoretical point of view. Indeed, in the past 

decade the applications of finite mixture models have widened considerably. 

Fields in which mixture models have been successfully applied include 

astronomy, biology, genetics, medicine, economics, engineering, and 

marketing among many other fields in the biological, physical and social 

sciences. In these applications, finite mixture models underpin a variety of 

techniques in major areas of statistics, including cluster and latent analysis, 

image analysis, and survival analysis, in addition to their more direct role in 

data analysis and inference of providing descriptive models for distributions. 

The usefulness of mixture distributions in the modeling of heterogeneity 

in a cluster analysis context is obvious. Any continuous distribution can be 

approximated arbitrarily well by a finite mixture of normal densities with 

common variance (or covariance matrix in the multivariate case). Thus, 

mixture models provide a convenient semiparametric framework in which to 

model unknown distributional shapes, whatever the objective. A mixture 

model is able to model quite complex distributions through an appropriate 

choice of its components to represent situations where a single parametric 

family is unable to provide a satisfactory model for local variations in the 

observed data. Inferences about the modeled phenomenon can be made 
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without difficulties from the mixture components. A full account of the theory 

and applications of mixtures can be found in Karlis & Xekalaki (2003). 

 

 

3.2 Basic definitions 

 

Let 1 2 nY ,Y , ...,Y  denote a random sample of size n, where jY  is a p-

dimensional random vector with probability density function ( )jf y  on p . In 

practice, jY  contains the random variables corresponding to p measurements 

made on the j-th recording of some features on the phenomenon under study. 

We let ( )T T T T
1 2 nY Y ,Y , ...,Y , where the superscript T denotes vector transpose. 

Note that we are using Y to represent the entire sample; that is, Y is an n-tuple 

of points in p . Where possible, a realization of a random vector is denoted 

by the corresponding lower-case letter. For example, 1 2( , ,..., )T T T T
ny y y y  

denotes an observed random sample where jy  is the observed value of the 

random vector jY . 

Although we are taking the feature vector jY  to be a continuous random 

vector here, we can still view ( )jf y  as a density in the case where jY  is 

discrete by the adoption of counting measure. We suppose that the density 

( )jf y  of jY  can be written in the form 

1

( ) ( )
g

j i i j
i

f f


y y     (3.2.1) 

where the ( )i jf y  are densities and i  are non-negative quantities that sum to 

one; that is 

),...,2,1(10 gii      (3.2.2) 

and 

1

1
g

i
i




     (3.2.3) 

The quantities 1 2, ,..., g    are called the mixing proportions or weights. As 

the functions 1 2( ), ( ),..., ( )j j g jf f fy y y  are densities, it is obvious that (3.2.1) 
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defines a density. The ( )i jf y  are called the component densities of the 

mixture. We shall refer to the density (3.2.1) as a g-component finite mixture 

density and refer to its corresponding distribution ( )jF y  as a g-component 

finite mixture distribution. 

In this formulation of the mixture model, the number of components g is 

considered fixed. However, in many applications, the value of g is unknown 

and has to be inferred from the available data, along with the parameters in 

the specified forms for the component densities. 

When the number of components is allowed to increase with the sample 

size n, the model is called Gaussian mixture sieve; see Geman and Hwang 

(1982), Roeder (1992), Priebe and Marchette (1993), Priebe (1994), and 

Roeder and Wasserman (1997). 

 

 

3.3  Interpretation of mixture models 

 

An obvious way of generating a random vector jY  with the g-

components mixture density ( )jf y , given by (3.2.1), is as follows. Let jZ  be 

a categorical random variable taking on the values 1,2,…,g with probabilities 

1 2, ,..., g   , respectively, and suppose that the conditional density of jY  given 

jZ i  is ( )i jf y  (i=1,2,…,g). Then the unconditional density of jY  (that is, its 

marginal density) is given by ( )jf y . In this context, the variable jZ  can be 

thought of as the component label of the feature vector jY . In later work, it is 

convenient to work with a g-dimensional component label vector jZ  in place 

of the single categorical variable jZ , where the i-th element of jZ , ( )ij j iZ  Z , 

is defined to be one or zero, according to whether the component of origin of 

jY  in the mixture is equal to i or not (i=1,2,…,g). Thus, jZ  is distributed 

according to a multinomial distribution consisting of one draw on g categories 

with probabilities 1 2, ,..., g   ; that is, 

1 2

1 2{ } j j gjz z z

j j gpr     Z z    (3.3.1) 
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We write 

Mult (1, )j gZ π     (3.3.2) 

where 1 2( , ,..., )T
g  π . 

In the interpretation above of a mixture model, an obvious situation 

where the g-component mixture model (3.2.1) is directly applicable is where 

jY  is drawn from a population G which consists of g groups, 1 2, ,..., gG G G  in 

proportions 1 2, ,..., g   . If the density of jY  in group iG  is given by ( )i jf y  for 

i=1,2,…,g, then the density of jY  has the g-component mixture form (3.2.1). 

In this situation, the g components of the mixture can be physically identified 

with the g externally existing groups 1 2, ,..., gG G G . 

In biometric applications for instance, a source of heterogeneity is 

often age, sex, species, geographical origin, and cohort status. In these cases, 

the population is a mixture of g distinct groups that are known a priori to 

exist in some physical sense. 

However, there are also many cases involving the use of mixture 

models where the components cannot be identified with externally existing 

groups as above. In some instances, the components are introduced into the 

mixture model to allow for greater flexibility in modelling a heterogeneous 

population that is apparently unable to be modelled by a single component 

distribution. At the extreme end of that, we obtain the nonparametric kernel 

estimate of a density if we fit a mixture of g=n components in equal 

proportions 1
n , where n is the size of the observed sample. For example, if 

1 2, ,..., ny y y  denotes an observed (univariate) sample of size n, then we obtain 

the kernel estimate of the density jY  given by 

1

1
( ) (( ) / )

n

j j i
i

f y k y y h
nh 

 


   (3.3.3) 

if in (3.2.1) we set g=n and 1
ni   and take 1( ) (( ) / )i j j if y h k y y h   for some 

kernel function ( )k   and parameter h. Usually, the kernel ( )k  , which is a 

density, has its mode at the origin; see for example, the monographs of 

Devroye and Györfi (1985), Silverman (1986), and Scott (1992) on 

nonparametric density estimation. 
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Thus, for values of the number of components g between 1 and the 

sample size n, mixture models can be viewed as a semiparametric compromise 

between (a) the fully parametric model as represented by single (g=1) 

parametric family and (b) a nonparametric model as represented in the case of 

g=n by the kernel method of density estimation. 

Thus, it can be seen that the mixture models occupy an interesting niche 

between parametric and nonparametric approaches to statistical estimation. 

As explained by Jordan and Xu (1996), mixture model based approaches are 

parametric in that parametric forms ( ; )i j if y θ  are specified for the component 

density functions, but that they can also be regarded as nonparametric by 

allowing the number of components g to grow. Hence, mixture models have 

much of the flexibility of nonparametric approaches, while retaining some of 

the advantages of parametric approaches, such as keeping the dimension of 

the parameter space down to a reasonable size. Mixture models, therefore, 

provide a convenient method of density estimation that lies somewhere 

between parametric models and kernel density estimators. 

Concerning the modeling of count data, the fitting of a single Poisson 

distribution often forces too much structure on the data leading to problem 

such as overdispersion. The use of a mixture model allows a compromise 

between the homogeneous Poisson model and nonparametric models, which, 

although avoiding strong distributional assumptions, have other disadvantages 

including high-data dependency of model estimates (Böhning et al. 1994; 

Böhning, 1999). 

 

 

3.4 Conventional approaches of classification 

 

3.4.1 Mapping percentiles 

 

Let us assume that a certain characteristic of interest is recorded for 

some aggregated unit such as an area (county, municipality, etc.). Let 

1 2, , , nx x x  be the sample for the n areas under consideration. Then the 

classification of each area is based on the percentiles of the empirical 
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distribution of the 1 2, , , nx x x . Recall that the p-th percentile of some 

continuous random variable X with distribution function F is given as that 

value px  in the sample space of X, for which F( px )=p, 0<p<1. This means 

that each area is classified according to the characteristic’s value into the 

associated percentile. 

A map of the areas under consideration is then used to print the 

classification, using a different color for each obtained group. The researcher 

can choose which percentiles to use. For example, the median (for p=0.5), the 

quartiles (for p=0.25, p=0.5, p=0.75) or the quintiles (for p=0.2, p=0.4, 

p=0.6, p=0.8) can be used. It is obvious that the choice of percentile will 

force a certain pattern or structure in the map. Therefore, this technique has 

its deficiencies. 

 

 

3.4.2 Mapping p-values 

 

This conventional method is often used to construct disease atlases and 

it based on the standardized mortality ratio (SMR). The SMR is defined as the 

ratio of observed O and expected E mortality cases, where the number of 

expected cases is computed on the basis of an external inference population. 

For the analysis it is assumed that in area i the observed number of deaths Oi 

follows a Poisson with parameter λΕι: 

( , ) ( , ) exp( )( ) / !io
i i i i i i if o E Poisson o E E E o       

Here, /i i ix o E  is the observed SMR in area i, i=1,2,…n, whereas λ is 

the theoretical SMR. The conventional display map is based on the p-value 

under the homogeneous Poisson distribution: 

( ) ( , ) ( 1, ) ...i i i i i iP O o Poisson o E Poisson o E      , if ix   

( ) ( 1, ) ( 2, ) ... (0, )i i i i i i iP O o Poisson o E Poisson o E Poisson E         , if 

ix  . 
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λ is either set to 1 (no increased risk) or replaced by the MLE under 

homogeneity 1

1

n

i
i

n

i
i

O

E
 









. 

This method has also a number of deficiencies. The significance of some 

SMR will depend much on the size of the area, in the sense that areas with 

small population sizes have greater chances to show significant result. In 

addition, the method is unable to detect a homogeneous population. 

 

 

3.4.3 Mapping Empirical Bayes estimates 

 

One of the disadvantages of the previous conventional methods is that 

they assume a homogeneous population. Practice has shown that it is better to 

assume that there is a distribution of   valid in the population. This leads to 

empirical Bayes estimates. We consider the Bayes risk 

2( ( ) ) ( / ) ( )
x

x f x p dxd


     


   (3.4.1) 

with respect to the Euclidean loss function 2( ) 


. Here ( )p   denotes the 

distribution of   in the population, which may be continuous or discrete. If x 

is a standardized mortality ratio x=O/E, for which O conditional on   is 

Poisson with mean  E, then E(X)=   and Var(X)=  /E. 

We are interested in finding a Bayes estimate ( )x


 which minimizes 

(3.4.1). This can be easily accomplished by considering linear Bayes 

estimators ( )x x   


. In this case the best linear Bayes estimator 

(Böhning, 1999) ( )x x   


 is given by 
2

2 / E


 




 and (1 )a    , 

where μ is the mean and 2  is the variance with respect to ( )p  . 

The estimation of μ and 2  is the next step. The characterization 

empirical Bayes estimates is a result of this aspect. Conventionally, the 

marginal density 
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



0

)(),(),,(  dpEoPoissonEof iiii  

is considered and maximum likelihood estimates are found with respect to 

this mixture density. At this point one can either assume that )(p  is 

parametric, continuous density or leave )(p  be completely nonparametric. In 

the first case Φ denotes the associated to )(p  parameters, whereas in the 

second case Φ would coincide with the nonparametric mixing distribution. 

When )(p  takes specific forms then specific marginal distributions are also 

achieved. For example, when ),;( gp   is a Gamma distribution we obtain a 

negative binomial distribution. Therefore, estimating μ and 2  leads to 

maximum likelihood estimation of the parameters of a negative binomial 

distribution. 

The posterior distribution of   is defined as 

0

( | ) ( ) ( | ) ( )
( | )

( ; ) ( | ) ( )

f x p f x p
f x

f x P f x p d

   
  

 


 

if P is a parametric distribution with density )(p , or 





k

l
ll

jjjj
j

pxf

pxf

Pxf

pxf
xf

1

)|(

)|(

);(

)|(
)|(




  

if P is nonparametric and discrete. Having )|( xf   or its estimate available 

the posterior mean, which we called the empirical Bayes estimate of   is 

given as 





  dxfxEx )|()|(EB . 

Application of mapping using these empirical Bayes estimates in real 

data (Böhning, 1999) has shown that this method improves some of the 

deficiencies of the two conventional ones, yet some problems still remain 

open. 
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3.5 The number of subpopulations g is unknown 

 

As we noticed before, the number of support points g is not always 

known a priori and it must also be estimated from the data. In this case we use 

semiparametric maximum likelihood methods for mixtures by maximizing the 

likelihood over all the mixing distributions with finite support. 

Semiparametric maximum likelihood methods are rather important. As 

Laird (1978) has shown, if the true mixing distribution is continuous we are 

restricted to estimate the mixing distribution by a finite-step distribution, i.e. 

by reducing the mixture model to a finite mixture model with unknown 

number of support points. Moreover, the number of support points is crucial 

in many applications since it determines the number of subpopulations 

comprising the entire population. It is obvious that this case is much more 

complicated than the case of known g and special algorithms and numerical 

methods are needed. 

We first have to examine under which conditions a semiparametric 

maximum likelihood (SML) estimate for finite mixtures exists. Lindsay’s 

theorem (1983a) gives sufficient conditions for examining if the global 

maximum has been obtained. 

In order to describe these conditions we need to introduce some 

notation. Let ( , )D G P  be the directional derivative of the log-likelihood from 

the mixing distribution P at the direction of another mixing distribution G. 

 
0

(1 ) ( )
( , ) lim

e

e P eG P
D G P

e

   
  

 

 
   (3.5.1) 

This quantity measures the infinitesimal change of the likelihood when a 

new distribution G is added to the mixing distribution P. Of special interest is 

the case when the new mixing distribution G is a degenerate distribution at 

the point θ. Then we can define the gradient function 

1

( | )
( , ) 1

( ; )

n
i

i

f x
D P

f x P




 
  

 
     (3.5.2) 

( , )D P  plays an important role in the case of semiparametric maximum 

likelihood method for mixtures. Using the gradient function we can state the 



 

 26

following theorem of Lindsay (1983a), which provides sufficient conditions 

for an estimate to be a SML estimate. 

 

Theorem 3.1 (Lindsay 1983a): Ĝ  is the SML estimate of the mixing 

distribution G if and only if the following relations hold. 

a) 0)ˆ,( GD  , for each θ which is a support point of Ĝ  

b) 0)ˆ,( GD  , for all other values of θ, not in the support of Ĝ . 

 

This theorem applies also in the case of a multidimensional vector of 

parameters θ, such as the case of finite normal mixtures with unequal 

variances. 

Theorem 3.1 suggests that all the support points of the SML estimate are 

the local maxima of the gradient function. It also provides useful tools for 

calculating the SML estimate. 

A natural approach is to apply the EM algorithm for successive values of 

g. For each value of g we check if the conditions are satisfied, otherwise we 

proceed with the next value of g. It is interesting that the likelihood can be 

maximized with few support points and the addition of a further support point 

will not increase the likelihood. This is the case when the likelihood function 

for fixed g, has multiple maxima, making the maximum likelihood estimate 

inconsistent. Pfanzagl (1988), discussed the consistency of the maximum 

likelihood estimates for mixture models. 

Böhning et al. (1994), proposed to check for the conditions of theorem 

3.1 by choosing a large number of values in a reasonable interval and 

checking if the maximum of the gradient function is a value very close to 0 

that occurs on the support points of the SML estimate. This lies on the fact 

that small perturbations due to the computer accuracy may not allow the 

researcher to calculate a value that is exactly 0. However, such an approach 

for checking if SML estimate has been found is time demanding and simpler 

conditions are needed. 

The uniqueness of the SML estimator has been showed by Simar (1976) 

for the case of Poisson mixtures. Lindsay (1983a, b) and Lindsay and Roeder 

(1992, 1993) showed that the SML estimator is unique for members of the 
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continuous exponential family. They also showed that the SML estimator is 

unique for discrete mixtures if and only if the probability distribution 

evaluated using this SML estimator of the mixing distribution coincides with 

the observed relative frequency distribution. Obviously, for discrete 

distributions with support in the positive axis, like the Poisson distribution, 

the probability function evaluated using the SML estimate of the mixing 

distribution will give positive probability to values greater than the maximum 

observed value. Hence, this estimated probability distribution will not 

coincide with the observed relative frequency distribution. 

The results of theorem 3.1 provide useful guides for checking if the 

global maximum is obtained. If we plot the gradient function, this ought to 

have 0 values at all points on the support of the solution, and if the global 

maximum is attained, is ought to be restricted down the 0 line. Thus, by 

plotting the gradient function we can check if the solution is the SML 

solution. Otherwise, if there exist points outside the support of the solution, 

for which the gradient is 0, or points with a positive gradient, we have to add 

points because the global maximum has not been attained. 

 

 

3.6 The number of support points 

 

The maximum likelihood estimate for a g-finite mixture is not 

necessarily the SML estimate. It is just the best possible solution with the 

given number of support points. The natural question at this point is whether 

we know something about the number of support points. Simar (1976), was 

the first one who concentrated on the particular case of maximum likelihood 

estimation for Poisson mixtures. He provided the following theorem 

concerning the number g of support points. 

Theorem 3.2 (Simar, 1976). If g denotes the number of support points 

of the SML estimate of the mixing distribution, and N represents the largest 

observed value then 

a) If 1 0   then 
2

2

N
k

    
, while if 1 0   then 

1

2

N
k

    
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b) In every case k q  

where [a] is the integer part of a, and q is the number of distinct values in the 

sample. 

 

Laird (1978), conjectured that the number of support points in mixtures 

from continuous densities cannot be larger than the sample size. She also gave 

an interesting guide to this search. For a mixed distribution the problem of 

counting the number of support points is equivalent to counting the number of 

modes of a mixture of n conjugate densities. For example, for the case of the 

Poisson probability function, the Gamma density is the conjugate. So if we 

have assumed a mixed Poisson probability function, then we take a mixture of 

n Gamma distributions, with parameters 1ix  and 1 respectively, i=1,2,…,n, 

and we count the number of modes. This approach gives us an upper bound 

for the number of support points. 

Lindsay (1983a), proved the conjecture of Laird (1978), namely that the 

number of components cannot be larger than the sample size. Lindsay and 

Roeder (1993), gave a result similar to Simar’s for general discrete 

distributions. 

Intuitively, when we try to estimate a mixed Poisson distribution with g 

support points the number of estimated parameters is 2g-1. If we have 

observed only N different values, then with N parameters we can theoretically 

fully reconstruct the observations (since we then have a non-linear system of 

N equations with N unknowns). Therefore, we need to restrict the number of 

support points. Adding one more component implies that the unknown values 

to be estimated exceed the number of estimating equations leading to 

intractabilities. Since we are only interesting in maximizing the likelihood 

and not in solving the system of equations explicitly, the problem lies in that 

the constraints for the maximization are too many. 

However, when the mixture is discrete, the restriction of the number of 

support points prevents us from estimating the continuous mixing distribution 

with a finite approximation with many support points and hence closer to a 

continuous one. A simple example is the case of a Gamma mixing distribution 

for a mixture of the Poisson distribution, which leads to the negative binomial 
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distribution. If the mean is not large, the estimation will provide us with an 

estimate with few support points which will not resemble the true Gamma 

mixing distribution. 

 

 

3.7 Algorithms for Semiparametric Maximum Likelihood 

estimation for mixtures 

 

In this section we will present some of the algorithms used in order to 

obtain the semiparametric maximum likelihood (SML) estimate of the mixing 

distribution. As we noticed before, the number of support points g is 

unknown, making the procedure of the estimation complex. 

Although a simple manner to deal with this problem would be to derive 

the maximum likelihood estimate for successive values of g using the EM 

algorithm and the conditions of theorem 3.1 as a stopping rule, this would 

require a lot of computational effort. More sophisticated algorithms have been 

proposed in literature, using special methods of numerical analysis. The main 

idea for them is to start with an initial solution with a few support points, 

usually one or two, and then add one or more new points at each step, 

sometimes replacing old but “bad” ones until some criteria are fulfilled. In the 

following paragraphs a description of these algorithms is given. 

For the properties of the semiparametric maximum likelihood estimate 

of the mixing distribution see Karlis (2001). 

 

 

3.7.1 The Vertex Direction Method (VDM) 

 

The Vertex Direction Method (VDM) uses the gradient function defined 

in (4.5.2) in order to obtain the SML estimate of the mixing distribution. As 

in most methods, we start with some initial value 0P  for the mixing 

distribution. iP , in general, represents the estimate of the mixing distribution 

after i steps. In each step we add as a new point the value of θ which 

maximizes the gradient function. The probability associated with this new 
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support point must be calculated so that for the new estimate 1iP  the log-

likelihood increases, namely )()( 1 ii PP   . Generally, 1iP  is a convex 

combination of iP  and P , where P  is a distribution which puts all its mass 

at the point θ, thus it is a degenerate distribution. In other words, 

 PPP ii  )1(1 , where α is obviously the probability assigned at the new 

support point. 

Therefore, the VDM algorithm consists of the following steps: 

 

Step 1: Find max  to maximize ),( iPD  . 

We are therefore interested in finding a new “good” support point. By 

maximizing ),( iPD   we find the best point to the direction towards the new 

estimate 1iP . Thus, the new support point is max . 

Step 2: Find α to ensure that   )()1(
max

ii PPP    . 

At this step we construct the new estimate, adjusting the probabilities of 

the “old” support points so that the new probability estimates add up to 1. 

Step 3: Examine if a global maximum is attained by means of the 

conditions of theorem 4.1, otherwise go back to step 1. 

 

It is obvious that steps 1 and 2 require a lot of numerical work. At step 

1, maximization can be achieved by initially searching in a grid of distinct 

points in some interval. A good choice for such an interval is between 0 and 

the maximum observed value in the sample. Then one may start from the 

point where the gradient function has its maximum to locate the maximum by 

some iterative scheme like the Newton-Raphson. The strategy is that the grid 

search reaches the maximum, which is then located easily via a standard 

maximization algorithm. The process is carried out by searching for the point 

where the derivative is 0. However, this may lead to the minimum near the 

point instead of the maximum itself. Thus, we have to check if the obtained 

value is a minimum or a maximum. 

The main problem associated with this step, is that the maximum may lie 

outside the admissible range. It may be negative or the gradient function may 
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increase to the infinity. In both circumstances the maximum cannot be found 

and the algorithm stops. 

In step 2 the value of α must be found. Böhning (1989, 1995), describes 

algorithms for finding a value for α. He calls these algorithms as monotone 

step algorithms. He shows that the problem of finding the value of α, can be 

reduced to a problem of estimating a closed area. Hence, algorithms used for 

estimating an area are useful for finding a value for α. 

Apart from the monotone step algorithms another choice would be to 

find an α which maximizes )( 1iP  with respect to α. Böhning (1995) shows 

that )( 1iP  is concave with respect to α and thus a maximum value exists 

which is very easy to locate by a numerical algorithm.  

In case we have a restriction for the number of support points we must 

add this condition at step 3. This holds for the Poisson case. 

The algorithm itself has some serious disadvantages. The first is that it 

is very slow in its convergence behavior. Böhning (1995), proposed some 

improvements for the VDM. These improvements, however, had a marginal 

effect because of some inherent disadvantages. In addition, the algorithm is 

very sensitive to the initial value (or values). Inappropriate initial values can 

destroy the algorithm. This is due to the fact that in step 1 we are not able to 

find a maximum since the quantity ),( iPD   is monotonic or because the 

maximum is outside the admissible range. On the other hand, the initial point, 

even if it is a “bad” one, remains at the final estimated mixing distribution, 

since the algorithm only adds points without removing the old “bad” ones. 

This may cause the destruction of the algorithm. For the Poisson case where 

the number of support points is usually small, the algorithm is not satisfactory 

since we have to estimate very few support points. This is not a sever problem 

in cases where there is no such a strict limitation for the number of support 

points, as in the case of mixtures of normal or other continuous distributions, 

since the effect of the initial point is negligible after the adding of a large 

number of new points. 

A further problem is that the mean of the estimated mixing distribution 

should be equal to the one estimated from the sample. This is due to the fact 

that the gradient function and its derivative evaluated at the support points 
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ought to be zero in order for the estimate to be a maximum likelihood 

estimate. This complicates the steps of the VDM algorithm.  

For further discussion on this algorithm see Karlis (2001). 

 

 

3.7.2 The Vertex Exchange Method (VEM) 

 

The Vertex Exchange Method (VEM) tries to overcome some of the 

advantages of the VDM algorithm. It is faster in convergence than the VDM 

algorithm. It also deals with the problem of “bad” support points. The main 

idea of this method is to exchange “good” vertex directions for “bad” ones 

that are already in support of the current mixing distribution. To do that, there 

is an additional step in which it finds the worst of the old support points and 

examines if the new point max  can replace at all the “bad” point min . In this 

case the “bad” point is eliminated. Lesperance and Kaldbfeish (1992), 

described the algorithm in detail. 

The algorithm consists of the following steps: 

 

Step 1: Find max  to maximize ),( iPD   over all possible values of θ. 

This step leads to the new support point. Grid search with a 

complementary numerical search is a useful tool for finding it. 

Step 2: For all the points in the support of iP  calculate the gradient 

function ),( iPD  . Find the point min  which has the minimum value over all 

the support points. 

Step 3: Set )(
minmax

*1
 PPpPP ii  , where *p  is the probability of the 

“bad” support point. 

The meaning of this expression is that we take some proportion α of the 

probability of the “bad” support point and we assign it to the new support 

point. If α=1, we reject the “bad” support point. If α=0 we do not change our 

estimate at all. The problem is again to find the value of α to ensure that 

)()( 1 ii PP   . As before, a monotone step-length algorithm or direct 

maximization are possible methods. 
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Step 4: Examine if the global maximum is obtained. 

 

With the VEM method it is not necessary to add a point at every 

iteration. However, if the new point is “bad” then the algorithm will fail. This 

method is more dynamic than VDM and it converges quicker than the VDM 

algorithm. Lesperance and Kaldbfeish (1992), gave examples to show the 

superiority of the VEM algorithm. Böhning (1995), suggested some slight 

improvements of the algorithm. 

The choice of initial values is still a problem. “Bad” initial values may 

lead to “bad” choices of new points and, since the algorithm exchanges one 

point with another at each iteration, it may delay very much to get rid of the 

“bad” points. For the Poisson case, where the number of admissible support 

points is small, the VEM algorithm does not give satisfactory results. 

 

 

3.7.3 The Intra Simplex Direction Method (ISDM) 

 

The VDM and VEM algorithms and their modifications have the 

computational disadvantage that one must keep track of and perform 

computations over the complete accumulated set of support points at each 

iteration. All of them add at the most one new support point. 

Lesperance and Kaldbfeish (1992), proposed another method, known as 

the Intra-Simplex Direction Method (ISDM). In contrast to the other two 

methods, at each step of ISDM several new points are found instead of one. 

At step 1, instead of finding the global maximum, several local maxima points 

**
2

*
1 ,...,, r  are found. Then we must find the probability assigned to each of 

these points maximizing the corresponding likelihood as in step 2 of the VDM 

and VEM algorithms. It is obvious that this method requires a lot of 

computational work. In general, it is hard to obtain all the local maxima and 

we need a very careful search to do so. In fact, the added labour is in step 2, 

because from the grid search for the maximum of step 1 we have already 

calculated the gradient function for several values of θ. The EM algorithm is 

an adequate choice for finding the probabilities of step 2. As Lesperance and 



 

 34

Kaldbfeish (1992) point out the complicated computations at each iteration 

are compensated by the smaller number of iterations until the global 

maximum is attained. Again, this approach is not appropriate for the Poisson 

case since, as we said before, the number of iterations is usually small. 

 

3.7.4 Related algorithms 

 

Dersimonian (1986, 1990), proposed an algorithm similar to Simar’s that 

uses the conditions given by Lindsay (1983a) for examining if the maximum 

is obtained. Her algorithm treated the case of mixtures of normal, 

exponential, binomial and Poisson distributions, starting from a uniform 

estimate. She assigned equal probabilities to equally spaced points. It uses the 

EM algorithm until some kind of convergence is achieved and then, by 

maximizing the gradient function, it finds a new support point. Then the EM 

algorithm is applied so as to maximize the likelihood for the new set of 

support points. The algorithm stops when we cannot add a new support point 

or the conditions of Lindsay (1983a) are satisfied. 

An interesting connection with algorithms used in the field of D-optimal 

designs is discussed by Böhning (1989, 1995). He showed that searching for 

the ML estimate of a mixing distribution is equivalent to searching for a D-

optimal design. Hence, results from this field are applicable. This is the 

reason why, in some cases, algorithms appear with different names. The 

author cited a large number of references. In the same paper he described in 

detail the monotone step-length algorithms. Lindsay (1983a, b), also 

described the similarity with D-optimal designs. 

Heckman and Singer (1984), used the SML estimate for estimating the 

mixing distribution in duration models. They showed how much sensitive is 

the estimation based on a specified mixing distribution and they proposed the 

SML estimate as a method to avoid biasing the results by choosing an 

arbitrary mixing distribution. Böhning (1989), described the geometry of the 

likelihood of mixtures. Similar is the work of Lindsay (1983a, b). They both 

showed pictorially, in a few dimensions, how we proceed to maximize the 

likelihood, giving an excellent insight to the whole procedure. Also this 

approach gives some knowledge about how we can improve our search. 
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Lindsay (1995) gave some bounds for the possible improvement of the 

likelihood in each step of the VDM algorithm. 

Constrained maximization is described by Lesperance and Kaldbfeish 

(1992), Böhning (1995) and Susko et al. (1997). Lesperance and Kaldbfeish 

(1992) proposed a semi-infinite programming routine for the maximization, 

which seems to work very well. 
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