CHARACTERIZATION OF DISCRETE DISTRIBUTIONS

BASED ON CONDITIONALITY AND DAMAGE MODELS

Contribution to the Theory of Discrete
Univariate’and Multivariate Distributions,
with Particular Emphasis on Conditionaiity

Characterizations Using‘Methods Related

to the Rao-Rubin Property.

JOHN PANARETOS, Dip.Maths., M.Sc.

A Thesis Submitted to the Postgraduate School of Mathematics,
University of Bradford for the Degree of

DOCTOR OF PHILOSOPHY.

1977.



To Kikd



(i)

PREFACE

Let X and Y be two non-negative, integer-valued random variables,
such that X 2 Y, and let Z=X-Y. When the conditional distribution of
YIX=n is used for making inferences about the distribution of X or the
distribution of Y, this model is called a conditionality model.

Rao (Classical and Contagious discrete distributions 1963),
introduced a new version of the conditionality model; he called this
a damage model. In this model X represeﬁts an observation which is
produced by some natural process and'which may be partialiy damaged;
Y|X=n is the destructive process. Thus Y stands for what we actually
observe of X (the remaining part of X).

Rao and Rubin (Sankhyd 1964) obtained a characterization for the
Poisson distribution using damage model theory and a condition which
has éome té be known as the Rao-Rubin condition.

In this thesis an extension of the Rao-Rubin characterization which
has been suggested by the work of Shanbhag (1976) has been used
to characterize many well-known discrete distributions as the distribution
of X or as the distribution of Y|X=n when the other one of the two is
given. This model is extended to provide characterizations for truncated
distributions. '

A new model is suggested enabling us to characterize finite discrete
distributions, truncated and untruncated.

Bivariate and Multivariate extensions of all the re;ults obtained
in the Univariate case are derived.

Finally, the damage model is examined in the more general situation

where either the distribution of X or the distribution of Y|X=n is a

N



compound distribution. Some interesting characterizations are provided
by this situation.
Many of the results existing in the literature in this field ave

found to be special cases of our results.
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