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CHAPTER 9.

CONCLUSIONS.

Discussion

The aim of this thesis has been to study characterizations of
discfete‘distributions based on the conditional distribution of the
random variable Y for a fixed X, where X > Y. The damage model which ish
a particular case of the general model, has also been examined. Before
the introduction of the Rao-Rubin characterization of the,Poissoh
distribution, Fogether with the damage model, most of the’characteiizations
of discrete distributions in this field were ﬁased on the assumption,of
independence between Y and Z (ZzX-Y) (e.g. Moran (1952), Chatterji (1963),
Patil and Seshadri (1964)). ‘

Under this assumption these authors characterized -the distributions
of Y and Z by means of the distribution of Y|X.

Rao and Rubin géve a new aim@nsion to the problem. They characterized
the distribution oka by assuming‘that the distribution of Y[X has a given
form and that it satisfies what is néw‘known as. the R-R property. ’

Shanbhag's 1976 results provided a general characterization; this
contains many results (including that of Rao;Rubin) as special cases.

The proof of Shanbhag's results did not require the complicated‘mathematics
that was needed for the Rao-Rubin proof.

The Rao-Rubin condition and its variants along with some new methods
are the basic ideas thaf we have used and have developed in order to
acquire meaningful characterizations for many well-known discrete

distributions; these have also enabled us to make more general other
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char;cterizations that had been introduced already. The area of
characterizations of truncated discrete distributionsv(which had
previously received little attention) have been examined in some detail.
Most of the results obtained, ‘have been extended to the bivariate and
multivariate cases. |

In Chapter 2 we have given the full version of the elementary
proof given by Shanbhag (1974). It has been said already, that the
extension brovided by Theorem 3.1.1 yields the R-R fesult as a special
case.  However, Shanbhag's elementary proof given in Theorem 2.1.1
remains -interesting because it provides a nice way of solving the
functional equation G(q+t) = ¢ G(t) in the case where G(t) is a p.g.f.
with'0 < ¢ < 1. We should mention here that Acz&l (1975) derives the
general solution of this functional equation under the assumptions that

G(1)=1 and G(t) > O as

et) = o |qP('c), t e (-o,4x)

with P(t) an arbitrary periodic function of period Q.
Aczél then goes on to determine the solution of the same functional
equation under the assumption that G(t) is a log-convex function with

G(1)=1; he obtains the solution

BTN L] LIS S

3
which reduces to the solution that Rao-Rubin and Shanbhag obtained for
G(t) under the assumption that G(t) is a p.g.f.

Acz€l maintains that his assumptions (i.e. that G(1)=1 and G(t) is

log-convex) are weaker than the conditions imposed by Shanbhag, which in
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Aczel's opinion are

(a) 6(1)=1
(b) G(t) > O for all real t

‘(e¢)  6(t) analytic on the real line

@ < [G'(t)] >0,

dt (G(t)

It is clear that Aczél has overlooked the fact that Shanbhag, as indeed
Rao and Rubin, was dealing with the problem of solving this functional
equation on the sole assumption that G(t) is a p.g.f., in which case

(a) is automatically satisfied. On the other hand, (b), (c) and (d)

are not conditions that have tc be imposed, but properties that G(t)
possesses because it is a p.g.f. satisfying the given functional equatlon.
These properties have been proved in Section 2.1.

(Aczél has replaced the fact that G(t) can be differentiated any
number of times and has a Taylor power series expansion everywﬁere &5
converging to G(t) by acsumption (c).) .

It is evident that Aczél is dealing with the problem of determining
‘the general solution qf G(g+t) = ¢ G(t) with G(1)=1 and G(t) log-convex. .
This is different from the problem dealt with by Shanbhag and stated in
Theorem 2.1.1, hecause the ¢lass of 1og—convex functions does not
include all p.g.f.'s. This can be seen from the fact that there exist
p.g.f.'s which are not log-convex. For example for the Binomial

distribution, G6(t) = (q+pt) and hence :
& d np. s ' np.
prey log G(t) = T [qu} = - '(—P—Vpﬁq <0

,G[*R};o

if t £ - %. We may observe that in the case where, t = -

oo
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and hence we can say immediately that the G(t) does not satisfy the
functional equation. B
To give another example, where G(t) > 0 for all t; let us take
G(t) = p+qt2, 0<p<1l,q=1-p. Clearly,
d _ 2qt
¢ log G(t) = E;ggr

and
2

2.2
d - 2pg - 2q t
S log G(t) = _Eﬂ____gr__
a8

(ptqt?)

If we now consider these t's for which tz > % we .can see that

2 ,
g;f log G(t) < O and hence that G is not log-convex.
Wang (1975), also, in his attempt to present an alternative proof’

of -Theorem 2.1.1 simpler than the one gi?en by Rao and Rubin claims

6'(t) _ G'(t+kq) G'(t) _ fas
T T etk RN k. However, to claim th;s,

that because then

) ‘ .
he should have shown first (as we have done in Theorem 2.1.1) that g?%§l

is a monotonic mon-decreasing functién; however Wang4omitted to do this.
In Chapfer 2, also, we starteé‘to examine the problem of characterizing
the distribution of Y|X when the distribution of X is truncated.
Srivastava and Singh (1975) conjectured that if X is truncated Poisson
then the R-R condition holds iff P(Y=r|X=n) is "modified binomial.
In Chapter 2 a counter-example was given in order to show that this
conjecture was not justified. Srivastava and Singh were the first people
to investigate characterizations of the conditional distpibution of Y[x
(the "survival distribution" in terms of the damage model) based on the
R-R condition, in the case where X follows a truncéted distribution.

Chapters 3, 4, 5 and 6 are devoted to this topic.
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InlChapter 3 we reproduced on extension of the R-R characterization
obtained by Shanbhag (1976). The importance of this extension lies in
the fact that it characterizes a whole class of distributions by means
of the R-R condition. This gave us the opportunity to obtain several
characterizations of well-known distributions based on the R-R condition.
It also helped in obtaining characterizations for the conditional
disf;ibution of Y|X in relation to the R-R con?ition, when the form of
the.distribution of X is known. Again this is a new aspect of
characterizationé in this field. Up to mow, only Srivastava and
Srivastava (1970) have examined this situation, and then only for'thx
particulaf case where X follows the Poisson distribution. To get the
characterization in this case, they had to impose.the restriction that
the parameter A of the Poisson is a variable. This‘restriction was
lifted in Corollary 3.3.1 at the expense of another restriction
concerning the form of the distribution of Y|X.  In this area we made
use of some well-known: decomposition theorems.

Another interesfing facet revealed by Theorem 3.1.1 is that the
sole assumption that the distribution of Y|X is of the form %_bn_r/é~;
the R-R condition implies that the random variables Y and X-Y are ’
independent.  In other words, it shéws that independence of Y and X-Y
over the set X-Y=0 implies complete independence for Y and X-Y. - This,
as it was pginted out in Section 3.2, makes the result of Theorem 3.1.1
more general than the one given by Patil and Sesﬁadri (1964).

In Chapter 3 characterizations of truncated forms of the distribution
of X through the R-R condition were also examined. The paper by Rac
and Rubin (1964) seems to be the only previous work’on characterizations

from this point of view. As was pointed out in Chapter 2, they
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characterized the truncated Poisson distribution. Chapter 3vprovides
a general characterization for truncated forms of the distribution of X3
several results are given as corocllaries. Among them is the one for the
truncated Poisson, the new proof of which is much simpler than the proof
suggested by Rac and Rubin and given in Chapter 2. :The question of
extending Moran's (1952) result to the truncated case was also raised
in dhapter 3, but as was shown this cannot be done. A counter-example
was given showing that if the conditional distribution of X]Y‘is .
truncated Binomial, then Y and X-Y can be of other forms, in addition to
being Poisson and Truncated Poisson’respectively.

Talwalker (1970) and Srivastava and.Srivastava (1970) examined the
R-R condition in the Bivariate case for the specific model in which the
original is double Poisson and thé survival.is double Binomial,
Chapter 4 of this thesis deals extensively with bivariate characterizations
based on the R-R property. The importance of this Chapter is that it
provides a characterizétion for a class of distributions, members of
which are thdsg characte£ized by Talwalker and Srivastava and Srivastava.
It can also be observed that the theory by which the results of Chapter 4
were obtained is much simpler than that which has been used up to now
and gives improved versions of known results, |

It should be pointed out here, that the model we used fhroughdut
Chapter 4 is simpler than the one baséd on ‘the "damage" concept used
by some of the previous workers in the field. This is so, because,
using the notation adopted by Rao and Rubin, the R-R condition for the
damaged case, i.er P(Y1=13,Y2=r2|damaged) can be viewed as any one of

the following three probabilities.
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P(Y, =z, ,Y,=r, lx1 Y L%, > ¥,), P(Y e LY e X > Y X =),

P(Y1 =y LY, =r, [X > ¥ X, > Yx)'

Only one of these three probabilities is needed to obtainﬂthe required
result. It is interesting to see that éll the results obtained in
Chapter 3 and 4 remain valid even when the R.H.S. or the L.H.S. of the
R-R condition as given there, is replaced by the P(Y=r|X >Y) in the
univariate case and the P(Yl=ra,Yé=r}1X;> Y;,Xi:Yz) in the bivariate one.

The results obtained in Chépter 3 are useful in extending Moran's
result when the parameter p of the binomial (n,r,p) is independent of n.
As has been stated alfeady Moran (1952) has shown that, if X=Y+Z and Y,Z
are independent then P(Y=rlX=n) = [:J ;fq?—' iff Y,Z are Poisson
distributed. Patil and Seshadri obtained the saﬁe result as a particular
case of their more general theorem. The above result caﬁ be further
extended as follows.

Suppose that X, Y, Z are three non-negative, integer-valued random
variables with X=Y+Z, and that the conditional distribution of fTX is

independent of the parameter of the distribution of X. Then,

(i) If either Y or Z follow Poisson distributions, and P(Y=r|X=Y) =
= [ﬁ] p'Q?—' 0 < p <1, ptq=l, then Y,Z are independent Poisson

r.v.'s.:

¥ n=g

(ii) If P(Y=r) = P(Y=r|X=Y) and P(Y=r|X=n) = [3] P q , then Y,Z are
independent Poisson r.v.'s.

(iii) If (Y,Z) follows a Bivariate Poisson with p.g.f.

Glt, ,t.) = 'Al(ti—l)+xz(tz—l)#kxi(titz_l
12537 T ¢ ,; o
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and P(Y=r|X=Y) = P(Y=r), then

P(Y=rlx=n) = {n} rq .

Proof

(i)  Because Y]X=n ~ Binomial we have the joint p.g.f. of Y and Z as

Gy ,(t, 1) = G, (pt +qt,). Without loss of generality we may
-AHAt,
e 71

assume that Y ~ Poisson. . Then GY(tl) . We also have )
GY(‘tl) = Gx(Pt1+q ),

e-A+At1

i.e. G (pt +q) =
Consequently

Gy 2 (t st = G (pt +qt,) = 6, {(pt, +qt, -q)+q}

A A '
—3+1;(pt1+qt2—q) ) —§+I-)-(pt1+qtz)

= e e .

Gy,z (tl ’tz) = Gy(t1 ) Gz(tz)’
which implies that Y and 2 2re independent Poisson r.v.'s.

(ii) 'We have seen already that if Y|X ~ Binomial and the R-R condition
holds, then X is a Poisson r.v. and Y and Z are independent,

“ Hence each follows a Poisson distribution.

(iii) Since (Y,Z) has a Bivariate Poisson distribution we find that

z~-i i

. y=i
—(}\1+>\2+A12)min(v,z) A A,

P(Y=y,Z=2z) = e =0 (y-1)t(z-i)1ir °
Hence 5
e—'()‘l AR, ): A
£ - . —nlo=nY = P(Y=I‘5Z=O) = ; : ‘I‘_!-
P(Y=r|X=Y) = P(Yar|2=0) = Z5r2ennd = S E T T
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-A A
. 1"
i.e. P(Y=p|X=Y) = e oT -
However, .
o tym ) ogn)
P(Y=r) = e -
and P(Y=r) = P(Y=r|X=Y).
A (£-1) O+, , ) (E-1) ‘
Hence e = e which implies that

A1=AI+A12 i.e. Alz=0.
As a result of this it is clear that Y, Z are independent Poisson

r.v.'s, and so YIX ~ Binomial.

‘The Multivariate extension of Theorem 3.1.1 is given in Chapter U4;
this is interesting for two rezsons. Firstly, it examines in general
the problem of characterizatidns based on a multivariate version of the
R-R condition. Secondly, this condition is simpler than the corresponding
one _

(P(Y=p) = P(z=£|undamaged) = P(E=§]démaged)
uéed by Talwalker to obtain a characterization of‘the Multiplé Poisson
distriﬁution; Here also, with the’exception of Talwalker, Chapter 4
makes the fifst attempt to study characterizations based on the R-R
property in tﬁe Multivariate case. For the first time also characterization
of the c§nditioﬁal distribution of X|§ have been obtained.

The bivariate and mqltivariate extensions of Thebrems 3.5.1, 3.6.1
and 3.6.2 (which in fact give 3.5.1 and 3.6.1 as special cases), proved
particularly useful because they opened the way for characterizations
of truncated bivariate and mﬁltivariate distributions and also for
characterizations based on truncated forms of the conditional distribution

of Y|X.
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The characterization of the Negative Mﬁltinomial distribution
given iﬁ Chapter U4 provides an extension of a presult by Janardan (1974).
He showed that if Y and Z are independent, then théy have Negative
Multinomial distributions iff the conditional distribution of 3]5
(where X=Y+Z) is Multivariate Inverse Hypergeometric. In fact the "if"
part. of this result can be derived by assuming that relation (ﬁ.S.B) holds.
This‘assumption is clearly more relaxed than the assumption of independence
of Y and Z. ' ' '
In the same paper’Janardan defivéd the Multivariate extension of
the Patil and éeshadri theorem. Comménts similar to those reléting to
the univariate case (Chapter 3, Section 3.2) can be made concerning
his extension and theorem 4.5.1.
' In Chapter 5 we dealt with fhe problem of characterizations’when
the r.v. X is known to have a finite distribution. The main result
provided by Theoran5.1.1 is interesting, since it shows that, when the
conditional distribution of YlX_has a particular form then the first £
probabilitiés of the distributionyfg, nz0,1,...,N are determined
uniquely, the remaining N-m being arbitrary,‘provided that Y and X-Y
are independent ovér the set X-Y=0,1,.,.,8; £20,1,...,N-m, fixed.

In the extreme case that £=N~m, all the,probabilities P;,'n=0,l,...,N

S

-are determined uniquely. On the other hand, the relation

P(Y=r|X=Y) = P(Y=r|X=Y+l) =...= P(Yzr|X=Y+N-m) ' (9.1.1)

is equivalent to Y and X-Y being independent. This is so, because

a
P(Y=pr|X=n) = -
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P

n
= 2 bn—r r=0,1,...,my, n-r=0,1,...,N-m
n

P(Y=r,X-Y=n-r) =
0 r=m+ly. .. Ny n-r=N-mtl,...

Therefore,

P(Y € m,X-Y < N-m) = 1. (9.1.2)

Relation (9.1.1) shows that (9.1.2) is eqﬁivalent to Yvand’X—vaeing
independent. & '

The dituation with Y and X-Y independent has also béen examined
by Patil and Seshadri (see Chaptef 3, Seéfion.3.2). However, our.set~up
allows us to look at their problem from a different point of view.
For finite forms of the distribution of X their,result~caA be stated
as follows: !

if X and X-Y are independent then

ab
£ n-r

P(Y=r|X=n) = r=0,1,...,0 o (9.1.3)

g

b .
= = 2 6" for some 8 > 0 n=0,1,...,N. (9.1.4)
n

°
Because of our earlier remarks, our findings' in Chapter5—in the extreme
case that»%EN—m¥-provide the following extension of Patil and Seshadri's
result.
Suppose ‘that the conditional distribution of YIX is of the form
(9.1.3). Then the distribution of X satisfies (9.1.4) iff Y and X-Y
are independent. We-have also seen that if (9.1.%4) holds, then

‘knowledge of X and independence of Y and X-Y do not always imply that
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the conditional distribution of Y[X is uniquely determined. For
example, while this is true when X is Binomial (in which case the
Hypergeometric is the only possible form for the distribution of Y]X)
it is‘not true if X is Negative Binomial (then Y]X ~ Negative Hyper-—
geometric is a solution but it is not'the only solution).

In Chapter 5, the R-R condition was also examined for the
situation when the distribution of Y|X is Hypergeometric; Patil and
Ratnaparkhi showed that if X is Binomial then the R-R condition is
satisfied. Our Corollary 5.2.1 shows that a relation giving more
information thaﬁ the R-R condition is valid. On the other hand, é

counter-example was given, showing that the R-R condition does not

necessarily imply that X is Binomial. The condition
P(Y=r|X=Y) = P(Y=p|X=Y+1) = ... = P(Y=p|X=Y+N-m)

was éhown to be the minimum required for this purpose.: All‘the
previously mentioned results were also extended to the truncated'case.

~Chapter 6 provided the Bivariate and Multivariate extension of the
results obtained in Chapter 5, concerning finite distributions. The
result obtained by Janardan (1974) about the Multinomial distribution
has been exténded. Comments similar to those made about the Negative
Multinomial in Chapter 5, were also given.

In Chapter 7 we examined the daﬁage model when the parameter of the
Binomial survival is itself a variable, and when the parameter of the
Poisson as original is a variable. General forms for the p.g.f. of the
resulting distribution in general and the resulting distribution when
no &amage has occurrel, were obtained in both cases. Relations between

these p.g.f.'s were also derived. Various special cases were considered,

¢
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and the corresponding distributions were studied.  The interesting
thing here was the effect that mixing in the original (or in the survival
distribution) has upon the model. ‘

In addition to the various special cases that were examined as
corollaries in Chapter 7, the form of the resulting distribution can be
obtained for many other cases. This is so, because .the ﬁesults obtained
weré for a general form of the mixing distribution. (Discrete or
continuous.)

Another interesting property of the damage model was revealed in -
Chapter 8, where the effect of the convolution was stuaied. As it was

£ :
shown, the p.g.f. of the resulting r.v. Y = z Y, is the product of

the p.g.f.'s of the r.v.'s Y s provided that the X 's are independent
Poisson variables with pafameters % which themselves.are variables,
and the damaging processes in each case are Binomials with the same
probability p of surviving. The more general case where there is a oy
different Py of having Y2=r£ survivals, was also:examined. -

The characterizations of the Poisson distribution as well as tHat
éf the mixed Binomial, which we also derived in Chapter‘B,(Theorems
8.2.1, 8.3.1), were very general and included many other results as
sﬁéciai,caées.‘ On the other hand, Theorems 8.2.2 and 8.3.2 revealed
the way things change if one considers both the original and the
survival as miﬁed;distributions.

‘ Finally, an extension was obtained of the R-R characterization
of the Poisson distributions based on a relation of the f.m.g.f. of the
resulting r.v., and the p.g.f. of the undamaged resulting r.v. This
result is important, because it uses the mixed Binomial as the survival

distribution; it is the first attempt to extend the R-R characterization
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to the case where the parameter of the survival Binomial distribution
is a random variable with a given probability function.

As a concluding remark, it can be said that the results obtained
in this thesis provide a thorough investigation .into characterization
thebr& of discrete distributions truncated and untruncated in the
Univariate and Multivariate cases. It can also be said that a gap which
existed in the field has been filled by introducing characterizafions_
of many Qell-known discrete distributions (e.g. Hypergeometric, Binomial,
Negati&e Hypergeometric, Compound Poisson) which had received little

attention up to now.

Statistical Importance of the Results.

9.2.1 Introduction.

Iﬁ this Section we are going to examine’the statistical significance
of the results presented in this thesis. Emphasis will be placed on the
connectiﬁn with the R-R condition for the Poisson model. We will also
&iscuss the contribution of Shanbhag's ‘extension of the R-R characterization
and will refer to the pfactical situations where the results concerning
truncated distributions may be useful. The statistical applications of
the results concerning bivariate and multivariate discrete distributions
will be studied. Finally we will considerpractical situations»whére the
damage model has a compound form of original or survival distribution.
Throughout this Section an attempt will be made to illustratebthe

contribution of the characterizations obtained to applied statistics.

8.2.2 The R-R Condition in Relation to the Poisson Model.

The Poisson distribution, on which Rao's (1963) and Rao and Rubin's
(1964) papers are based, is,in the words of Fisher, of first importance

’



-203-

among discontinuous distributions. It was first derived by S.D. Poisson
(1781-1840) - see Haight (1967) - as the limit‘of a Binomial distribution.

Bortkiewicz - see again Haight (1967) - renewed interest in the
Poisson distribution after it had been neglected for half a century and
gave many elementary pfoperties including difference and differential
equations for the probabilities.

Since then it has been used to explain’many physical phenomena. A
comprehensive account on the history of the Poisson distribution and its
applicétions can be found in Haight (1967).

The -damage model introduced by Rao_(1963) is one of thf recent
models in which the Po;sson distribution plays an important role. This
model is based én the assumption that an original observation produced
by a natural process (e.g. number of eggs, number of accidents, etc.)
may be partially destroyed or may be only ﬁartially ascertained. In such
a casé the original distribution will be distorted. Suppose that the
model underlying the partial destruction of the original observation‘
(i.e. the survival distribution) is known.  Then we can derive the‘
distribution appropriaté to the observed values, knowing the original
distribution. » i

'Thevdamage model theory can be employed to give furfher information
in certaiﬁ situations where the Poisson distribution has been used.

Consider,for example,the following situation studied by Feller (1957).
Suppose that the number of eggs laid by an insect is Poisson distributed.
Each egg has a’probébility p of developing. If we assume mutual
independénce of the eggs we find that the distribution of the survivors
is Poisson with parameter Ap (where A is the parameter of the original”

Poisson distribution). The R-R condition tells us that the distributien
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of survivors is the same as the distribution of survivors. coming from a
sample of eggs all of wﬁich have developed; it is also the same as the
distribution of survivors who cgme from a sample of‘eggs from which at
least one has not de&eloped. In addition, the R-R condition has another
important consequence. It indicates that if any two of these three
distributions are equal, theﬁ the only possible form of the distribution
of the number of eggs laid by the insect is the Poisson form.

Another case where the damage model is applicable is that of
chromosome breakages in cells produced by X-rays. Feller (1957) has
- observed that for a given dosage and time of exposure the number n of
breékages in individugl cells hés a Poisson distribution with mean 2.

. Bach breakage has a fixed probability q of healing, whereas with probability
P =1 - g, the cell dies, Here again the resulting distribution of the
observable breakages is Poisson with mean Ap. The R-R condition is
applicablg here; it shows that the distribution of the observable breakages,
given that in all breakages the cell died, and the distribution of observable
breakages, given that at least one breakage was heaied, are also Poisson (Ap).
- Thevabove two exaﬁbles illustrate cases whéfe fﬁé damage model theory
is directly applied. However, there are other statistical problems which,
although they do pot seem, at first glance; to fall into this category, can
-also be studied in-the light of the R~R condition and the related results.
The follqwing examples are indicative of this fact,

As pointed out by Haight (1967), Falechini (1949) applied the Poisson -
distribution to the number of University graduates. It is now reasonable to
assume that the number of male graduates given the t&tal number of graduates
is Binomially distributed. Let p denote the probability of a male graduate,
Then on the basis of the results examined we can safely infer that the
distribution'of male graduates and the distribution of female graduates are

also Poisson with parameters Ap and A(l-p) respectively (where A is the

parameter of the original Poissondistribution).
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The R-R condition also indicates that the distribution of male
graduates is the samé as the distribution of graduates given that all
the graduates are mala. Moreover, the R-R characterization proves that
if these last two distributions are identical, the Poisson is the only
appropriate distribution for the ﬂumber'of graduates.,

Kendall (1961) usea fhe Poisson model to describe the number of
strikes begun in'a given week in the United Kingdom. The damage model
.theory can be utilized here for making inferences in the folioWing way.

Let us define as "short strikes" the strikes which end in the same week

they started, and also define as "long strikes" those which go on in the

following week(s). 1In the damage model set-up consider as original 1
distribution the distribution of the number of strikes begun in a given
week. Defihe as resulting distribution the distribution of short strikes, -
Assume that the distribution of the number of short strikes given the
total number of strikes begun in a particular week is Binomial (p is the
probability that a strike started in that week will be short)., In such a
situation we can deduce from the R-R condition that the distribution of
the number of short strikes is the same as the distribution of the number
of short strikes given :that all strikes were shorts it is also the same
as the distribution of the number of short strikes given that there was
at least one long strike,

Feller (1957) applied the Poisson distribution to the number of
misprints, One can consider as original distribution the distribution of
the number of misprints and as resulting distribution the distribution of

the number of misprints spotted with a Binomial survival law.

\
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In this case the R-R condition tells us that the distribution of tﬁe
number of spotted misprints is the same as the distribution of the number
of misprints in a sample where all the misprints have been spotted; it is
also the same as the distributien of the number of misprints in a sample
where we know that there are some misprints which have been missed.

Moreover, in the gbove two examples the R-R condition implies
something more important. In fact it implies that if any two of the
-distributioﬁs mentioned‘are equal, then the original distribution can only
be of a Poisson form.

Haight (1967) refers to another case'wﬁere the Poisson distribution
‘has beeﬁ found to give a satisfactory fit. He indicates that Friedman
(1956) has given a model in which the number of bidders for a contract is
assumed to be Poisson. If one is interested in a more detailed study of
the aboye médel one mayconsiderbthé distribution of the number of bidders
for the contract as the resulting distribution. Then tﬁe distribution of
the number of people who have originally shown interest in the contract
will play the role of the original distribution.

Accident theory is an important field'of statistics where the model
related to the R-R condition may be useful, One can consider X to be the
number of accidents in a given location and Y to be the number of fatal
accidents. Alternatively, X can be assumed to be the number of accidents
and Y the number of reported. accidents. This latter model could be
interesting in actuarial studies. Of course the R-R condition here suggests
that the insurer will not be able to obtain any mére information about the-
original distribution if he selects in his sample individuals who have
reported all their accidents from the information he will obtain if he
samples from people who had accidents but they.haQe not necessarily

reported all of them.
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Another broad area of applied probability where our results may be
uséful, is the area of stochastic processes. The Poisson process is among
the most important of these processes. Here again there are cases where
the damage model theory may be adopted. The following examples are
charaﬁteristic.

‘ Consider the particles arriving at a Geiger counter (see Parzen (196:
Suppose that they arrive in accordance with a Poisson process X(t) at a
mean rate of A per unit time. The Geiger counter activates a recording
mechanism containing a defective relay whicﬁ operates correctly with
probability p. Consequently, each particle arriving at the counter has
probability p of being recorded. For t 2> 0 let Y(t) be the number of
particles recorded in the interval O to t; As we have seen, Y(t) is a
Poisson counting process with mean rate Ap. The R-R condition implies
that the distribution of Y(t)f(i(t) = Y(t)) is the same as the
distribution of Y(t)](X(f5 > Y(t)) and is also the same as the
distribution of f(t). This is @ property satisfied only if the process
X(t) is Poisson.

In a similar manner we can examine the problem in which customers
pass by a shop in accordance»with a Poisson procéss at’a mean rate A and
each customer has probability p of entgring the shop. Analogously we can
study the problem where seeds are distributed over an areakin accordance
with a Poisson process where each seed has §nly prosébility p of

germination.
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The Poisson process has been widely used alsc in the theory
relating to telephone calls, Haight (1967) points out that the number
.of calls placed in é given time interval can be assumed to be Poisson
distributed. In practice, one may assume that there is a number of
calls which, althoﬁgh placed, are never made. It is.then reasonable
to consider the distribution of the number of calls made, as the
resulting distribution, with the distribution of the number of calls
‘placed, representing the original distribution.
The Poisson distribution and the Poissén éroce;s also have applicatior
in a number of other fields like reliability, inventory control, medicine
etc. A comprehensive list of these applications is given in Chapter 7 of
Haight (1967).
A careful study of the above examples reveals an important feature
of the damage model.
It is evident that when the original distribution is Poisson with
parameter A and the survival distribution is Binomial with parameter p,
the resulting distribution is also Poisson with parameter Ap. This means
“that in the resulting distribution the parameters of the original and the
survival distribution gef confounded; in other words, they cannot be
 separately estimaﬁed. (Analogous results hold for other forms of the
‘original distribution such as the Binomial and the Negative Bihomial).

In this situation it is natural to qék the following question. Would it
be possiﬁle to recover some of the information, if it could be ascertained
whether én observation is undamaged or whether it has some sort of damage?
Howe?er, the R-R condition tells us precisely that this ascertainment
would not offef any help since in all cases the resulting distributions

are identical, i.e.

P(Y=r) = P(Y=r|X=Y) = P(¥=r]X> Y)
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The R-R characterization, on the other hand, shows that this happens
only if the original distribution is Poisson. This property of this
particular form of the damage model generates an interesting statistical
problem, namely that of finding a methoq of estimating A and p.

Another point which is worth pointing out here is the importance
‘bf making sure that the parameter p of the Binomial survival mechanism
is independent of the process X(t), before applying damage model theory.
To illustrate this, consider the example given by Parzeﬁ (1962) concerning
the paralyzable (or type II) nuclear particle counter with a constant
locking time L. This is a counter in which a particle arriving at the
counter locks the counter for a time L, regardless of whether or not it
was registered. Let X(t) be the numbér of pé;tiéié;warriving at the
counter in the time interval (0,t) and let Y(t) be the number of particles
registered if and only if no particles arrived during the preceéding time
interval of length L.

vCénsequently, the probability that a particle is registered is
pze AL. Clearly, the’time intervals between the‘arrivals of succesive
particles are independent. Therefore, the registering of a particle is
independent of the registering of other particles. It might be thought
that the damage model theory apblies here, and hence, because {X(t}, t >0}
is é Poisson process, {Y(t), t >0} is also a Poisson process. However,
this is not the case, since the event that é particle is registered is not »
~ independent of the process {X(t), t > 0}. (The process Y(t) has been
studied>by Parzen (1962)).

The above example indicates the need for a modification of thé damage

model theory in order to cope with such situations.
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9.2.3. On the Utility of the Characterizations Concerning the

Poisson Distribution.

Characterizations‘conéerning the Poisson diétribution - as indeed
characterizations in éeneral —‘may be useful in applied statistics for a
number of reasons.’ Such reasons are the following:-

First of all, a characterization’ involves a particular property which
is unique for the characterized distributioﬁ. In our results forlexample,
the R-R condition for the Poisson model‘with Binomial survival distribution
was proved to be valid only if the original distribﬁtion is Poisson. The
statistical significance of this fact hés been demonstrated in the examples
presented in %he.previous sectioﬂ.

A characterizat;onvwill_also be useful because it can guide the choice
of assumptioﬁs that we have to impdse in a given problem. It tells us, for
example, whether in a certain situation a particular assumption is
redundant or not. The R-R characterization is a typical example. Suppose
that-a person is not aware of the R-R characterization of the Poisson
distribution in the way that it is stated by Theorem 2.1.1 (p26). Instead,

‘suppose that he only knows the similar result proved by Van-der-Vaart and
others (see p2l). Then he would probably try to see whether the functicnal
‘equation G(q + t) = C6(t) is satisfied for all values of q in (0,1), if

he Qished to show that the distribution corresponding to G is Poisson.
However, this is not necessary. As it was shown by Theorem 2.1.1, we

need to vérify the equation for only one Qalue of q.

One of the most significanf contributions of chgracterizations to
applied statistics is in model building. From this aspect, they enable us

. to know whether one set of conditions is equivalent to another set of

Ercrs g o B

conditions. This may reduce a complicated problem to an equivalent but
possibly simpler one. The Poisson process for instance has several
equivalent formulations. - It is a Renewal process with exponential intervals.

It can also be viewed as a process X(t) with stationary independent
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increments such that x(1) has a Poisson distribution. It is then clear

that it is better for tﬁe investigator to work with the formulation which is
more easily verifiable. If, for example, it is easy to show that the
intervals are independent and identically distributed with exponential fit,
one can in that context say immediately that the process can be viewed

as Poisson.. In another case it may happen that the inveéstigator will fiﬁd
it easy to see that the process has independent increments such that

the conditional distribution of X(T)[X(t) fér 7.< t €« is binomial with
parameter p independent of the given value of X(t). One would then ask
whether one can conclude just from this information that the process is
non-homogeneous Poisson. The result of Moran studied in the thesis provides
the required answer and tells us thaﬁ the process is indeed Poisson of

the required type.

The comments presented in the thesis concerning the R-R characterization
of the Poisson distribution provides the investigator with a means of
constructing equivalent formulations regarding the Poisson distribution,
in particular, they suggest that if the conditional distribution of (¥|X=n)
is Binomial with p independent of the parameter{s) of the distribution of
X, then testing the hypothesis that ¥ follows Poisson is equivalent to
testing the hypothesis that ¥ and X-Y are in&ependent. (Tests of independence
for discrete distributions have been .considered in the literature, e.g.
Ahmed (961)). This is also equivalent. to testing‘the hypothesis that the
distribution of the damaged observation is the same as the distribution of
the undamaged observation. In addition this is equivalent to teéting the
hypothesis that the distribution of the undamaged observation is the same
as the distributipn of the observation when the classification as damaged
or undamaged is not known. Hence if the investigator wants to test any

of the above hypotheses it is sufficient for him to test ‘any of the

.
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equivalent ones; he will choose the ome which is simpler for his particular

case.

9.2.4 Shanbhag's Extension of the R-R Characterization

The extention of the R-R characterization given by Shanbhag is, in the
general case, of mathematical rather than statistical interest. However,
the results we obtained as special cases are of some statistical value.

It is the aim of this section to discuss tﬁeée particular cases.

The mbst important is the one concerning the model where the survival
distribqtion is Negative Hypergeometric and the original distribution is
Negative Binomial.

At first glance it might seem that a Negative Hypergeometric form for
the survival distribution is not as meaningful as a Binomial form, as far
as practical applications are concerned. However, the derivation of the
Negative Hypergeometric.as a BinomialaBeta distribution indicaﬁes that this
is not so. Quite to the contrary, it happens that certain real life situationé
are betterkexplained by assuming that the parameter p of the Binomial
distribution is not. a constant, but instead that it is a variable following
a Beta distribution. A good example of a situation like this is given by
Griffiths (1973). He took as the Binomial.distribution the distribution of
the total number of cases if a non-infectious disease arising in households
of a given size. ﬁe then derived the Beta—Binomial distribution allowing
for variation between households by letting p have Beta distribution. In
terms of our model, one éan consider the distribution of the total number of
cases arising in households of size n to be the distribution of Yi(X=n) , -where
the distribution of X corresponds to the distribution of the size of families.

The Negative Binomial was first used as.an empirical distribution. This.

was the result of realising that in many cases a better agreement between
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observed facts and mathematical theory could be obtained by use of the Negativ
Binomial distribution réther'than by the use of tﬁe Poisson distribution.
Experience showed for example that accidents do not always fall in the
category of randon Poisson phenomena. Since then the Negative Binomial
distribution has .very often been the first choice as alternative when it has
been felt that a Poisson distribution migh£ be inadequate. While it does
not have the same flexibility as certain contagious distributions with more
thaﬁ two assignable parameters, it often gives an adequate representation
when the strict randomness required for tﬁe Poigson distribution does not
hold sufficiently well.

As a direct consequence of the empifical evidence, attempts were made. to
find matﬁematical explanations for the Negative Binomial,result; This led
to the discovery of a number of models giving rise to the Negative Binomial
distribution. Among the most important are those related to the Poisson-Gamma
4mixture, birth-death processes, Poisson-Logarithmic generalisation and the
inverse binomial saﬁpling.

The Negative Binomial dist;ibution as Poisson—Gamma mixture was first
adopted by Greenwood and Yule (1920) in connection with accident theory.
They assumed that the number of accidents for each individual was Poisson,
But that the mean value of accidents varied from individual ;o individual,
due to psfchophysicai factors, according to a Gamma probabiiity law. (The
parameter X is now called accident proneness). - In terms‘of the damage model,
we can consider the distribution of the number of accidents’as the original
Negative Binomial distribution. We can then assume that each accident is
"reported with probability p which varies from accident to accident, depending
on the nature of the accident -social or fj.nancial pressures may encourage
the individual not to report all the accidents he:'incurs . If we allow p

to be Beta distributed, then our,NegatiVe Binomial model with Hypergeometric
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survival is applicable, The effect of the R-R condition here is identical
to the effect it had in the accident example discussed in Section 9.2.2.

As pointed out by Bartko (1961) the use df tﬁe Negative Binomial in .
connection with birth-death processes was considered by Yule (1924), Furry
(1937) and Kendall (1949). Yule is concerned with the mathematical theory
of evolution, Furry with cosmic-ray showers and Kendall with the process in
general.,

Quenouille (1949) proved.tﬁat the Negative Binomial distribution arises
as the distribution of the random sum of n independent variables each having
the same logarithmic series distribution, where n is a Poisson random
variablé.

An ekample of the above moael is -the problem examined by Ashford (1972)
concerning patient contacts with the doctor. - He assumed that episodes of
illness occur as events in a Poisson process with parameter A. Each episode
may be assumed to give rise to a variable number of contacts of a given type
with a doctor (e.g. home visits) which can be considered to have a form of
the logarithmic series dsitribution. On the assumption that the number of
contacts arising out of different episodes are independent, and also
independent of the number of episodes, then the Negative Binomial can be
obtained as the distribution of the number of contacts. In our set-up
the distribution of the total number of contacts with the GP can be considered
as the distfibution of X. Assume that each contacting patient is referred to
a.consultant wifﬁ probability p. If p is assumed to vary from patient to
patient (depending on the seriousness of his illness) according to a Beta
distribution, then the conditions for our model are satisfied. The R-R

~condition and the characterization in this case may help iq building
- equivalent formulations for the model, and also in examining the distribution

of the number Y of subsequent contacts with the consultant.
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Inverse Binomial sampling is of primary importance in the consideration
of the Negative Binomiai distribution. It occurs inithe following gemeral.
type of situation. Consider a population consisting of individuals belonging
to two different classes. Then the number of individuals of the second class
drawn before the k-th, say, individual of the first class, follows a Negative
Binomial distribution. (Drawings are made without replacement).

In our model suppose that in'a survéy.concerning the Governmen;‘s pay
policy X represents the number of Labour voters questioned before k
Conservative voters have been interviewed. Suppose that each of these Labour
voters favours the Government's pay policy with probability p. Suppose that
p varies from Labour voter to Laboﬁr votercdepending on his Trade Union
affiliation, and that p follows a Beta distribution. Then Y will represent
the number of Labour voteré in favour of the Government's pay policy who
were questioned before k Conservative ﬁoters had been interviewed. Our
results show that Y will also follow Negative Binomial distribution. They
also suggest that Y|X=Y, Y|X>Y and Y are identically distributed. They also

, p?ove that Y and X~Y are independent.

“The:.examples presented in this section illustrate how some of ouf results
based on Shanbhag's extension of the R-R characterization can be used in
practice. It is important to point. out héfe that the R-R cqndition for the
Negative Binomial model with Negative Hypergeometric damage ﬁas the same

implications as for the Poisson model with binomial damage.
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Truncated distributions are not used as often in practice as untruncated
ones. They arise when some of the non-negative integers are omitted from
the range of possible values. This happens either because these values are
theoretically meaningless under . the model,or else because they are
unobservable in practice.

Two distinct classes of left-~truncated distributions were dealt with
in Chapters 3 and 4. Tﬁesa“corresponded to truncation of the first e
frequencies (truncation at c-1), and truncation of the zero frequency
(truncation at zero). The first class is more general and ingludés the
second class as .a special casé. We dealt with this first class mainly
because of its mathematical interest. However,the zero truncated class has
an important statistic&l interpreta;ion. This happens because cases where
the zero class is either missing or non-observable arise very frequently
in practice. In the sequel,we focus attention on practical situa;ions where
the.zero truncated Poisson and the zero-truncated Negative Binomial

" distributions are applicable. (The truncated Poisson andrthe truncated
Negative Binomial were the forms we dealt Vith in Chapter 3). We also give
a practical instance of a (c-1)-truncated Poisson distribution. These
examples are examined in relation to the reéults studied in the thesis.

An example‘of a zero-truncated Poisson distribution is given by Haight
(1967) (Section 3.1). Assuming thatlthe number of courses taken by university
students is Poisson distributed we have (from the definition of a student)
that at least one course is taken by each student. Hence the zero category
would not be germane to the discussion and the random variable would be
&efined over the truncated domain n = 1,2,3.... . This is an example where
the zero class is theoretically meaningless for the model. In connection

with our study we may consider 'as X the number of courses taken by university
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students and‘as Y the number of these coursés which are of theoretical nature
(p is the probability that a course chosen will be theoretical). The R-R
condition here implies that the distribution of the number of courses taken
by students who havé chosen only theoretical courses is the same as the
distribution of the number of theoretical courses taken by all students with
the zero class excluded. On the other hand, if these two distributions

are the same, then the truncated Poisson is the only appropriate distribution
fof X.

A classical example of zero-truncated distribution where the zero class
is practically unobservable is given by Rao (1963). It arises in connection
with the birth of children with a specific genetic defect (for example,
albinism in families éarrying the appropriate gene. If the genetic
character of the parenté can be observed only by means of the birth of such
children, all families with normal children, or with no children, will escape
notice even though they may well belong to the pbpﬁlation being sampled.
In\fhis case,Athe domain of definition will ben = 1, 2,.... defective
children. In terms of the damage model,X may be considered to represent the
nuﬁbef'of defective children and Y the number of male defective children.

'(b will be the probability that a defective child is a boy).

' Another model using the zero truncated Poisson distribution has been
studied by Placket (1953). He was interested in the distributioﬁ of the number
ofiworkers Xin a faétory having n accidents in a given period of time. He
concentrated on ﬁhe values 1,2... of n. He reasoned that, while it was
a simple matter to count over that period of time the number of workers
sdstaining one, two, or more accidents, the number of persons incurring ho
accidents could not be enumerated owing to fluctuations in the size of the
féctory population during that period. In the damage model setiupnY‘can be

considered to represent the number of severe accidents in the same pericd of
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timeb(p,is the probability that an accident will be severe). Here again the
R-R condition may be used to provide information about the distribution of
Y truncated at zero, Y|(X=Y) and Y|(X>Y).
A model for a (c-1) truncated distribation would hold in the study of
the number of students attendiﬁg a particular course. Universities are
known to be under pressure to abandon coqrges attended only by a few students.
A (c1) truncated distribution seems therefore to be appropriate. Our model
" would be useful if we wantéd to study tﬁe number of students who are likely
to get an 'A' mark in that course. (p here is the probability that a student
taking the course will get 'A'). The characterization concerning the (~-1)
truncated Poisson distribution provides useful information in such a study.
An example when the zero truncated Negative Binomial distribution is
applicéble is given by Bartko (1961). He suggests this is connection with
his use of the Negative Binomial distribution to represent the number of
representatives of different species of butterflies obtained in
- a collection. He points out that in such a stqdy’only
the frequencies of numbers greater than zero will be obsefvable. This happens
beéause the collection by itself gives no indication of the number of
. species which have not béen collected. (In cases like the above an alternative
v choice has been thev logarithmic distribution). Our characterization of
thr truncate&~Negative Binomial distribution may be useful for discriminating
between these two models. The characterization tells us that, under the
assumption that Y|X is Negative Hypergeometric, the hypothesis that X is
zero truncated Negative Binomial has the following equivalent formulations:
X-Y and Y truncated at zero are independent; Y truncated at zero and YiX=Y
are identically distributed; Y|X=Y and YIX>¥ are identically distributed.
If the nature of a particular problem enables the inveétigator to prove

or disprove one of the equivalent formulations, then, in the light of the
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pharacﬁerizaﬁion, he can conclude whether the distribution of X is zero
truncated Negative Binoﬁial or not, (In the latter case the research worker
might then turn to the logarithmic distribution).

The model with truncated survival distribution is mainly of mathematical
interest. However, it could also arise in practice in the following way.
For example, in the Griffiths model examined - in section 9.2.4, suppose that
it is impossible to observe the zefo class for the number of cases of the
noh—infectious disease arising in a househol& of a given size. (This will
happen if we have data of those households in whiéh there is at least one
case, but cannot observe the number of households with no cases at all).

In such é situation, as Griffiths pointé out, the zero truncated Binomial ~
Beta wili apply. »

It is evident from the examplés given in this section that the R-R
condition for the cases where either the original or the sufvival distributior
is truncated gives the saﬁe sort of information as for the untruncated case

~meﬁ£ioned in.9.2.2. The only‘difference is that here the informafion refers
to.the resulting distribution truncated at the same point as either the

original or the survival distribution.

9.2.6 TFinite Distributions and the Damage Model

In this section we consider the applicability of the results obtained
in Chapfer 5 concerning finite distributions. A damage model interpretation
of these results will be described.

It has been bointed out in the thesis (Chapter 5) that the R-R condition
(P(Y=r)‘= P (Y=r|X=Y)) does not characterise finite distributioﬁs. Our

results demonstrated that in such cases the required condition was

P(Y=r[X=Y) = P(Y¥=r|X=Y+l) =.... = P(¥=rix¥Y+z) ; (9.2.1)
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where £ is fixed and 1 <% ¢ N~m..

Thﬁs the initial métivation for the study of tﬁié problem was purely
mathematical, However,its iﬁportance from the statistical viewpoint should
not be neglected.

Relationship(9.2.1)was proved Fo'be a characterising condition for the
first % frequencies of finite discrete distributions('modified distributions')
This can be useful in some statistical problems wheié one is interested in
knowing what happens withih a reasonable distance from the origin of a
distribution, e.g. when the bulk of tﬁe'probability mass is concentrated towarc
zero.

Consider,for example,a population consisting of N individuals inoculated
against a disease. The number X=n of individuals attackgd by the disease,
even though they have.been inoculated, will have probabilities which will tend
to be negligible as n approacheé N. Then one can ignore the behaviour of the
tail of the distribution Eeyond a certain‘point £+m and concentrate on the firs
&+ m probébilities. Corollary 5.2.1 can then be utilised.k Suppose that
X represents the number of individuals who will be attacke& even though
they have been inoculated. Assume that m individuals out of N have been
attacked in the past. Further denote by Y the number of individuals who will
be re—attacked (élearly.Yéx). It is then reasonéble to assume that for a
given sample of n attacked out of N individuals, the distribution of the
number Y=r of the individuals who will ée re~attacked will be hyper-
geometric. The éonditions for corollary 5.2.1 will then be satisfied.
Accordingly, condition (9.2.1) for & = N—m,will‘characterize the firét 24+m
probabilities Pn of the distribution of X; these will be proportional to
Binomial probabilities. Note that Pn will tend to the Binomial probabi}ity

as &> N-m. This implies that the finite original distribution is such that
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trun?ating the frequencies.beycndﬁfngivés risé to thé Binomial distribution
truncated beyond £*m.In other words relation (9.2.1) provides only partial
information about the o:iginal distribution. However, if we know beforehand
that the distribution of X has its frequencies tfuncated beyondﬁfn(Pn=0,n>2+ﬁ
then (9.2.1) will characterize all the frequencies of the distribution of X.
In relation to our example X will be characterized as a random variable
having ‘the Binomial distribution truncated beyond £+m.

This was an example concerning the application of the results of

Chapter 5.

9.2.7 Bivariate and Multivariate Distributions

Our purpose in this section is to demonstrate how the results on multi-
variate distributions can be utilised in practice.

We will investigate cases giving rise to the multivariate distributions
vhich have been dealt with in the fhesis. In particular, we will discuss
models. leading to the positive and Negative Multinomial and to the Multiple
Poisson distributions. Statistical inference will then b¢ madé,in the light
of the information prévided by the relevant results stu&ied‘in the thesis.

Multivariate distributions are very often applicable in real-life
situations in which we deal with populations consisting of several types of
individuals (e.g. a population of members classified according‘to height,
weight, intelligence, financial status etc.)

The»extension of our results concerning modified finite distributions
to the multivariate case led to the characterization efiithe Multinomial
distribution.

This is one of the most important multivariate distributions from the
point of view of practical applications. It is applied in circumstances
similar to those in which a binomial distribution might be used when there

0
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are multiplerca;egories of events instead of a simple dichotomy. Consider,
for instaﬁce, a pppulatioh exﬁibiting s+l qualities Ql"" Qs and neither
Ql, nor Q2"" nor QS which is denoted by Qo' ?hen, if the corresponding
proportions are Pys> ++v+ Pgs Py thg joint distribution of the numbers Ty
of individuals exhibiting the ith quality i =1,2,...; s in a sample of
n is the multinomial distribution. An illustrative example is that of
tossing s dice and asking for the probability of getting the ith face T

. . . . . . . 1 .. s
times, i = "1,... 6. Clearly, this is multipomial with p;= g i.e. it is

given by sf 6_slrl§r2! I

Conditions for a Multinomial distribution are also satisfied whenever
data obtained by random sampling aré groﬁped in a finite number of mutually
exclusive groups. This suggests that one can apply the Multinomial
distribution to many problems requiring estimation of a population distributio
say ﬁgé). In fact, since Po(x)’is specified, we may calculate the probability
P, of an observation falling in the ith class. Then, if n, denotes the
~observed frequencies in the ith class tZJﬁ_= n), theigi's are Multinomially
distributed and the likelihood function will be given by n! 2 p;;ni/q !

Consider the characterization of the Multinomial distribution as given
by the corollary 6.5.3. This could be of statistical interest in the
fdllowing way. |

Assume that we have a population of size N consisting of individuals of
various intelligence standards (slow, élow but able to concentrate, fairly
intelligent,...). Let X i= 1,2,.;.,3 be the number of individuals of the
iTth standard i = 1,2,...,s and‘Yi be the number of the ith standard

individuals who are unempioyed.
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Then, for given X = nout of N, ¥ can be reasonably assumed to be
YRV a
distributed in the Multivariate Hypergeometric form.

This set up corfesponds to the theoretical model studied by
Corollary 6.5.3. Hence, this model can be used for deducing a
Multinomial form for 2& + Similarly, if %% is assumed to be
Multinomial we can have information about the distributions of
Y [(X=n)and Y.

N N

The Negative Multinomial distribution has also been examined in
chapter 4. in relation.to the results concerning the multivariate
extension of the R-R condition.. It arises in situations where we go on
making trials until exactly n occurences of the sth outcome have been

noted and we require the joint probabilities of n, occurences of the ith

outcome (i = i,...,s - 1) noted before the nth occurence'of the sth
outcome. Clearly it is a generalization of the Negative Binomial and
just as the latter can be deduced from a number of ‘different models, so
can' the Negative Multinomial.

Thus, Bates and Neyman (1952) arrive at this distribution in the
context of accidents, as a result of mixing s independent Poisson random
variables with parameters proportional.to a gamma variable.

In particulaf, they assumed that the various kinds of accidents

--incurred by an individual were independently distributed as Poisson random
variables with parameters Aai, i=1,2,....,8. They thus obtained the
Negative Multinomial by assuming that A.was a Gamma ;andom variable
associated with the individuals p¥oneness to accidents.

‘Consider now the importance of the characterization of the distribution
as given by corollary 4.5.4. In a given problem where conditions are
satisfied for a muléivariate Inverse Hypergeometric distribution to be

.

the distribution of the conditional r.v. Y{GL=tﬂ we are  able to deduce
nonon
a Negative Multinomial distribution for X. Such a form for the distribution
s
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of Y](X?n) may not seem feasible in practice.. However, it is a distribution
usez i:lzgnnection witﬁipollen analysis, Janardan (1973b) for instance,
assumed that counts of various kinds of pollen grains found at a given depth
in sediment follow independent Binomial distributions with constant proportior
‘ p. He then allowed p to vary from deptﬁ to depth, according to a Beta
distribution. Averaging over all depths in this manner he obtained the
multivariate Inverse Hypergeometric as tﬁe joint distribution for counts of
various kinds of pollen grains. Therefore, in a problem of pollen analysis
with multivariate Inverse Hypergeometric survival mechanism . the results

of corollary 4.5.4 may indicate that the counts X of the difierent'pollen\

n
species have a ﬁegative Multinomial distribution. Similarly, they might
indicate.that X has a distribution which is definitely not the Negative
Y

Maltinomial.

A special class of multivariate distributions which has been examined
in the thesis, is the class of multiple distributions. These are multivariate
distributions with independent components.

One has to admit that fhe assumption of independent marginal distribution
is unlikely to be satisfied exactly. There are, however, situations where
for reasons of mathematical simplicity éne considers such distributions as
first approximation. This approach has thé advanfage of making the problem
mathematically tractable. |

In an accident study, for example, we could divide the time interval
from t = 0 to t = T into s non-overlapping sub~intervals. Secondly, we could
assume that accidents are due to pure chance. In other words we could assume
that what happens in one time period has no effect upon what happens in any
other period. Furthermore, let us assume that an individual can have at

most one accident in the short interval of time At with probability depending

on time alone. Then the joint distribution of the numbers of accidents for
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the s sub-intervals is the multiple Poisson.
The examples and discussion of this section show the degree of the
statistical importance of the results produced:in the thesis concerning

multivariate distributions.

9.2.8 The Damage Model with a ‘Mixéd Poisson ‘as the ‘Original Distribution

In this section we examine practical situations leading to the mixed
Poisson distribution. We also discuss applications of damage model theory
in such situations. Finally we indicate how the characterizations rélated
‘to this model and obtained in Chapter 8 can be used for making statistical
inference.

Situations arise vefy often in practice where a Poisson distribution
with a constant parameter does not fully describe the phenomenon under
investigation. This happens frequently for example in entomological
and bacteriological studies, as well as in absenteeism studies and accident’
studies., Thisvis the result of inhomogeneity in the underlying population.,
A possibility in these circumstances is that the population consists of two
or more homogeneous populations.  Therefore the underlying distribution .

will be given by

o _ n
PX=n) = [ e . 37- dF (1)

o

=}

where F(1) is an- arbitrary distribﬁtion function .

Applications of mixed Poisson disﬁributiéns go as far back as 1920 when
Greenwood and Yule used the Poisson-Gamma distribution to describe accident
data (see section 9.2.4).. ‘Purchasing behaviour is another phenomenon which
has been studied using a Poisson-Gamma model. Chalfield and Goodhart (1970)

assumed that for each individual household the number of packets bought in
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successive periods of equal lengtﬁ, can be regarded as a random variable,
having a Poisson distribution with mean A, Tﬁeyithen allowed A to vary from
household to household having a Gamma distribution in the whole population.

In many‘applications of mixed Poisson distribution the phenomena in
question correspond to a Poisson process. This is the case for example
in the model of the PoissonTruncated Gamma used by Kemp (1968b) in relation
to collective risk theory. She argued that for insurance applications it is
more realistic to assume limited risk having the form of a ﬁail-truncated
Gamma distribution.

The Poisson-Beta is another mixture of the Poisson distribution which
we have considered. This is a special éase of Gurland's distribution (1958).
Hé assumed that the distribution of observed larvae survivors in a plot of &
field. is Poisson (Ap) with p fluctuating frém plot to plot according to a
Beta distribution. : .

Our results in Chapter’' 7 provide the form of the resulting distribution
after Binomial damage in all these cases. Consequently,in practice,one can
readily obtain the resulting_distribution for different forms of the original
distribution. .

The form of the resulting distribution when no damage has occurred has
been derived for various cases (i.e. the distribution of Y!X=Y). A second
interpretation (other than the damage interpretation) can be given to these
forms of distribution. For each of the cases which have been examined,
P(Y=r|X=Y) = Pt_s(r,r)/z Pr s(r,r). We can then consider the probability
s(r,r) (e.g. the probability P(Y=r|X=r) to be the weight in a weighted model.
The weight répresents the probability that an observation is actually included
in the sample. Weighted models have been considered by Rao (1963), Kemp (1973)
and Patil and Rao (1976). In this case the distribution of Y{(X=Y) will be a

weighted form of the original distribution.
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‘The results of Chapter 8 have the following statistical interpretation.
Suppose that in a practical situation we know that a Binomial survival
mechanism is operating, and’tﬁat the observed distribution is Poisson. Then
we are able to infer that the original distribution is‘also mixed Poisson.
What is more important is that the original mixed Poiséon distribution has
tﬂe same mixing distribution as'the observed one.

The results of Chapters 7 and 8 apply also to other forms of mixed
Poisson distributions which we have not mentioned specifically.. Such mixtures
include the PoissonRectangular studied by Bhattacharya and Holla (1965).

They include also the PoissonPoisson (Neyman type A) which was studied by
Neyman (1939) in connection with the distribution of larvae in a field.

Thus it is evident that the results concerning mixed Poisson distribution

are of immense use in applied statistics.

9.2.9 The Damage Model with a Mixed Binomial as the Survival Distribution

In this section we deal with the statistical significance of the resulcé
of Chapters 7 and 8 of the thesis, which are based on the assumption that the
survival distribution is of a mixed Binomial form. We will give some examples
where such a situation arises in practice, and we will try to find their

) relation to our results. v

The Mixed Binomial distribution'arisés when the parameter p of the
Binomial distribution is not a constant but varies according to some,d£SCributiox
This happens in practice when sampling is taking place over an extended area or
an extended period of time. It has been observed that data derived in. this
way do not conform to the simple Binomial type.

The Binomial-Beta model has already been mentioned earlier as a model

for the Negative Hypergeometric distribution. Another interesting model for

the Binomial-Beta distribution has been given by Kemp and Kemp (1956). The
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authors derive it as the distribution followed by point quadrat percentage
cover data. Their theofetical consideration was that for a given location of
a frame of n pins the number of contacts of tﬁe species under study is
Binomial. The expected proportion of contacts however was assumed to vary
from location to location, and was assumed to have a Beta distribution.

The same model has been adopted by Chatfield and Goodhart (1970). They
assumed that the number of weeks out of;n-in‘which a consumer makes at least
one purchase is Binomially distributed with parameters n and p where the
value of p varies from consumer to consumer, and has a Beta distfibution over
the whole population.

Other forms of mixed Binomial distribution such as the Binomial-Right
truncated Gamma do not seem to arise in practice. They are mostly of
mathematical interest.

The forms of the distribution of Y and Y|(X=Y) were derived for many
different forms of mixed Binomial, under the hypothesis of a Poisson,original
distribution.

‘ As far as the charactefizations based on mixed Binomial survival
distribution are concerned apart from‘their mathematical interest, they
contribute in a positive way in some épplied problems.

Consider ,for example,the number X of cars passing, in a given period of
time, through a junction with traffic lights. Let the number of cars out of
n which’pass while the lights are red be Binomially distributed Qith
paramefer p.- Assume further than p'is not 4 constant, but that it is a
random variable associated with the driver's tendencies to commit an offence.
Then the number of cars out of n passing when the red light is on,’will have
the Beta—Binomiél distribution.

If it can be ascertained that the distribﬁtion of cars passing agaiunst

a red light is Poisson (Ap)aBeta then we can deduce a Poisson distribution
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for X.

In the same examplé, assuming a Poisson distribution for X, then .we can
deduce a PoissonaBeta for the number of drivers wﬁo cross against the lights.

It seems that the BinomialaBeta is the form of mixed Binomial survival
distribution most likely to occur in practice. : The mixed Poisson model with
mixed Binomial survival distribution is a generaiizétion of the previous two
models. It corfesponds to the case where the parameters of the original and

the survival distributions are both random variables.

9.2.10 Concluding Remarks

This section has examined practical situagicns where results studied
in this thesis can be useful. Although the study was mainly mathematically
motivated, it is clear from this discussion that the results can be applied
to many practical problems.

On the other hand, this section has disclosed that some of the results
presented suggested other interegting problems of a statistical mature which
need attention. These include the problem of finding a method for estimating
the‘parameters A and p in the damage model when the original distribution is
Poisson and the survival distribution is Binomial. They also include the
problem of studying the necessary modifications in the damage model theory
to deal with cases where p depends on the process X(t).

Finally this section has demonstrated the extent to which our

characterizations may be used to simplify statistical problems.

N
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9.3 Scope for Furtheéer Research

This section suggeéts directions in which the work of this thesis could
be extended.

1. Theorem 3,1.1 in Chapter 3 provides the basis for characterizations of
discrete distributions. Tt would be interesting to:extend this result
to the continuous case.

2. The R-R characterization and all its variants and extensions have been
examined under the assumption that the conditional distribution of Y|X is
independent of the parameter A of the distribution of X.  What would be
the effect of having the distribution of Y|X dependent on . A?

3. Characterizations of Bivariate and Multivariate distributions with
independent components were derived in Chapters 4 and 6. It is possible
to obtain similar characterizations for Multivariate distributions whose
components are not indepedent although of course the methods required
are more complicated. However, in most of these cases characterizations
based on the conditions introduced in Chapters 4 and 6 will result in
characterizing distributions of non-standard form. Perhaps some changes
in the conditions used in Theorems 4.1.1, 4.5.1; 6.1.1 and 6.4.1 would

- ‘help to obtain meaningful characterizations for this kind of distributions

4, The derivation of simpler proofs for Tﬁeorems 4,5.1 and 6.1.1 may be of
some interest. |

"5. A "generating model" as opposed to the damage model would arise if one
assumes the distribution of Y|X to be Pascal of the form

r~1
P(Y=r[x=n)_ = pnqr n r=n, n+1,....§ n=l1,2...

n~1

instead of Binomial; in this case of course the resulting r.v. Y will be

larger than X, i.e. we will have X=Y~Z. Such a situation can arise for
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example if X represents the number of motorway accidents resulting in
injuries in a giveﬁ locality and for a given period, and Y stands for

the number of injuries in tﬁese X accidents.

This model could be studied along lines similar to those for the damage
model. (It is evident, for example, that in the case where X is also
Pascal, Y comes out to be Pascal witﬁ its parameter confounded with the
parameter of the distribution of X.) It would be interesting therefore
to find out Bow many of tﬁe results obtained for the damage model could
be transferred to this "generating model". It seems however that the R-R
condition as it stands is not very useful for obtaining characterizations
based on this model. Another kind of condition may be more helpful.
Should such results be obtainable then one could go on to combine the two
situations and to study a more complicated model in which Y|X follows a
birth-death process.
To characterize the compound Poisson distribution by Theorem 8.2.2, we
had to impose the condition that the distribution of X is uniquely
determined by its factorial moments; this condition is, of course, very

stringent. Is it possible to relax this condition ?

-The results of Chapter 7 and 8 can be extended easily to the Bivariate

and hence to the Multivariate case. Similar extensions would be possible

for the truncated case.

. All the results in Chapters 7 and 8 were derived with either the

distribution of X having a compound Poisson form or the’distribution of ¥|x
having a coﬁpound Binomial form.

Other forms of compound distributions could be studied and parallel
results could possibly be obtained. (One obvious choice would be the

compound Binomial for X and the compound Hypergeometric for YIX).



