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CHAPTER 8.

SOME INTERESTING PROPERTIES AND CHARACTERIZATIONS BASED

ON THE DAMAGE MODEL.

Introduction

In the previous chapter we examineq the effect of mixing on the
damage model. In this chapter we study the role of convolution in the
model under investigation, and arrive at some interesting results. Then
we look at the problem of characterizing the distribution of X using the
distribution of Y, when YIX is known. Finally a more general characterization
of the Poisson distribution is derived using a relation between GY(t) and

(1).

GY|x=Y

The Effect of the Convolution

 If we assume ‘that the distribution of Y|X is Binomial then the

following properties will hold.

Property 8.1.1

Let us suppose that the r.v's % i=l,...,s are independent and
identically distributed each with p.g.f. G(t). Then, after binomial

damage, the p.g.f.'s for % and for Y |% =Y are, respectively:

Gy (t) = G(qtpt) (8.1.1)
i

and

0y = Spv) (8.1.2)

G _ &
Y [X =Y G(p)
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] s
Now consider X = Z X as the original r.v. and let Y = Z Y.
i=1 i=1

then the p.g.f. of the distribution of X, the p.g.f. of the distribution of Y

and the p.g.f. of the distribution of Y]X=Y are, respectively,

6 (t) = {e(®)¥ (8.1.3)

G, (t) = G (gtpt) = {G(g+pt)) (8.1.4)
and

e, (pt) .
, X _ Je(pt)

MGYIXSY(t) 5;753—' & {ETgT"} (8.1.5)

Note that if the X 's are not identically distributed, then
s - s s

Gx(t) = !lIlle (t), and GY(t) = Gx(q+pt) = 1IIIGXi (g+pt) = ;ExGY‘ (t);

. .
also GYIX_Y(’C) L GY‘ IX, =y (t).

Property 8.1.2.

Let us now study the case where the r.v.'s X, 'i=1,2 are distributed
as Poisson (Ai ) A f()\i ) i=1,2 where O < A <=, and f(ki ) is absolutely

continuous. Then

: e Ai p(t~1)
Gy () = J e £ i=1,2 (8.1.6)
i
]
and J R (pt-1) £0, )d\
G L) = 2 (8.1.7)
Y |Xs % ® N (p-1)
e £( )y
-
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Consider now the Model where X ~ Poisson (X) ~ F(A) where A = A, +i, and

A s}, are identically distributed. Then

PR J EO-2,) £0,) (8.1.8)
0

- [ Ap(t -1) ) ’
Gv(t) = J J e F-x) £(3,) dxzdxv (8.1.9)
00 '

and

X -1
j AP (1) £0,) dry

Gy |xev — . (8.1.10)
: e £x-1,) £00,) d,dx
1]
If we denote by
LIF(A),t) = I eMrO) ‘ (8.1.11)

9

the Laplace transform of F(A), then (8.1.6), (8.1.7), (8.1.9) and (8.1.10)

become, respectively

G, (t) = £{f()\i),p(l—t)}

£{£( ), 1-pt} |
GY{ 1% =Y, © = EENY, 1pF (8.1.12)

6, (t) = £{J' £(a-3,) £(3,) ar,, p(l—t)} A (8.1.13)
/]
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.CU £00-1,) £0,) ar,, l-pt}

(t) =—> (8.1.14)

GY|X=Y -
.C{r f(A-lz) f()\z) a, » l—p}

o

But it is known that the Laplace transform of the convblution of two r.v's
is equal to the product of the Laplace transforms of the p.d.f.'é of the
two r.v's.

Consequently, we can rewrite (8.1.13) and (8.1.14) as follows:

G (t) = L{£f(A), p(1-t)} x £{£(2,), p(1-t)} (8.1.15)
r{f(xl), 1-pt} x £{f(xz), 1-pt} .
GY]X=Y(t) = L{f(AI), l_P} % £{f(lzj’ 15T (£.1.186)
‘or, by using (8.1.11), (8.1.12)
G, (1) = GYl(t) GYZ(t)' | . (8.1.17)
E ~. 8.1.18
GY{X”(t) GY1 |% =y, (t) GYngsz(t) (8.1.18)

Hence, (8.1.17) and (8.1.18) show that if X is Poisson (A) ~ £(A) with
A=} +1,, then the p.g.f.'s of Y and YIX=Y can be obtained directly as the

product of the corresponding p.g.f.'s of Y, .Y, and Yi[Xa=Y;, Y21X2=Y2.

Note Property (8.1.2) can be extended to the situation where X ~ Poisson ~

£(1) with

A =,x1+xz+...+xa, 0 < Ai < oo, i=l,2,...,s_

with % identically distributed. This follows since
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£(A) = J £(3,) J f“,-l)"'J £(3,) f[x -7 Ak} X, ...d)
° 0 0 k=2 (8.1.19)

Thus

_ L) )\p(t—l) 0 00 ) s
G (1) = j e f f(x')f f(X’_l)...r f()\z)f[}\- Zxk) dh, ...dA A

. k=2
0 ] 0 0

= o[ s0p [70, . [0, RN LI p1-0)}
0

k=2
o [}

T £{E0y), p(1-0)},
i=1

and hence

6 () = T e (1), (8.1..20)

Similarly

() = TG [x = (v). (8.1.21)

G
YJX= =1 541%™

Property 8.1.3

We now-examine the more general situation, in which
the distribution of X is Poisson (i) ~ f(A) with A=A1+Az and Al,Az are
not necessarily identically distributed. Then, if £ (% ) denotes the p.d.f.

of A, izl,2.

£(A) = j OO0 £00) ax (8.1.22)
0 ‘ .
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and hence
(F w1
GY(t) = J J e i (A—)\l) fl_(ll) dada
00
= £{I f2 ()\—)\1) f! ()\1) .d}\l, p(l—t)}
°
= £{£, (3, ), p(1-0)} x L{£ (A ) p(1-0)} .
So,
(t) = G, (t) x G, (v).
% A Y,
In the same way
Gy, (1) G v (t) ¢ —y (B)
¥ |x-v Y |% =Y Y, %, =Y,
In general, if X ~ Poisson ~ f£(1) with
AoE Ot 0<) <=

and A is r.v. with p.d.f. %’(% ) i=1,2,...,5 we have

£(1)

]
0o o

i
i=2 )

which implies that

00 00 ) -3 n
- Ap(t 1)
G (t) = J e J f;(xg...fzf;(xz) fl[x - kggxk] gxz...da‘gx
[1] [\] 0

n

T £{£0, ), pQ=t}.
i=1

[f‘(ks) j £ _I(As_l)...j £,(0,) fl{)\ - 1A ] Ay e
0

(8.1.23)

(8.1.24)
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This gives
G (t) = in G, ().

().

A similar expression holds for GY ]'x=Y

Property 8.1.4

‘.»Let us now consider the general case where for )\ = ()\1 ,Az 500G ,A‘)
we define X = (X1 ,X2 NOOC ,Xs ) to be a vector of s-independent Poisson
variables such that E(X’ ) = Aj s 3¥1,40.05. Let Y = (Y1 ,Yz,...,Y') be a

vector of independent and non-negative integer~valued r.v.'s such that

P(Y, =r, ]Xj=n’) = B q s 371,..4,8. (8.1.25)

Further assume that ) = (Al ”‘a seensh ) is a random vector of positive
components with distribution function F()‘1 ,Az 3000 ,7\, ). . Then the p.g.f.

of the distribution of (¥,Y) will be given by

n n
2 - 1 s
G y(ts2) = ] I T
g N 4.0 LOUES 1 s
1 s
n n n
- H § 1 s -
= ,51 (q+p, 7 ) Pgtl et
LAPRR Y
= Gx(l: (gtpz)) = J G’fla‘.dF(l) (where uy = (ulvl sesesll v‘))
. A1t (q +p, 2))
=E(G}=3Lne‘ ! ”)
x| Tl
i.e. by
s -x{1-t (g +p z )}
G, . (t,z) = E[H et ARy ] (8.1.26)
Kt =7~ i=1 a2 aC , .

.
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For the p.g.f. of Y we have

G {z) = E[ I e . . (8.1.27)

Gy(z) = E{ Tl e (8.1.28)

which if all P, = p, simplifies to,

6, (z) = E{e"xp(l“Z)} ) ’ (8.1.29)

8.2 = Some Characterizations of the Distribution of X when the Distribution of

Y|X is Given.

As we mentioned in the introduction, many authors have derived

characterizations of the distribution of X using the distribution of Y

or else the one of Y!X, provided that the latter has a given form. In what
follows we derive general characterizations of this kind using mixing

forms for the distribution of Y|X.

Theorem 8.2.1 (Characterization of the Poisson Distribution)
Suppose that for the non-negative, integer-vaiued r.v.'s X and Y

we have that

a 1 .
P(Y=r|X=n) = J {n) pq © ar(p) ; (8.2.1)
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i.e., Y|X is Binomial ~ F(p).

, Then X is Poisson (1) iff Y is Poisson (Ap) ~ F(p).

Proof

The "only if" part is straightforward. For the "if" part, suppose

that Y is Poisson (Ap) ~ F(p), i.e.

P(Y=p) = Jle—xp LA%%—- dF(p) r=0,1,...

]

On the other hand, we have in general

P(Ysr) = ] P(X=n) P(Y=r|X=n)

n=r

which in our case, because of (8.2.1) becomes

© 1
P(Ysp) = ] P J [‘If] pq " dr(p) r=0,1,...

(]

(8.2.2) and (8.2.3) give

1 o . & *
J I P [ﬁ] pq dF(p) = Je—b Q%?“ dr(p) r=0,1,...

1] g : 0

The x-th factorial moment of the distribution (8.2.2) is given by

L I
IERE J Ie? Q) r(ro1). . (ox1) dF(p)

1

(r) (xp)* ar(p).

Mix]

"
©

(8.2.2)

(8.2.3)

(8.2.4)

(8.2.5)

Similarly the x-th factorial moment of the distribution (8.2.3) is

given by
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1 o
Xr(r—l)...(r-x-fl) j an [:] Pt qn-—r aF(p)

T=X

(r)

Ml x]

[}

1 o ‘
J I r(r-1)...(r-x+1) ] P, [1;] FET ar(p)

1l n »
= J ) ] v(r-1)...(r-x+1) [2] prqn_'} P dF(p)
0 n=x =X
1 L
= J I n(n-1)...(n-x+1) px} P ar(p) . (8.2.6)

]

(because the x-th factorial moment of the binomial distribution is

n(n-1)...(n-x+1)p ). (8.2.6) gives

) 1
Y ](r) = u[x](n) I p dr(p), ] (8.2.7)
)

-

where u{x](n) denotes the r-th factorial moment of {Pn}.

Combining (8.2.4), (8.2.5) and (8.2.7) we find that

g @ = A X=1,2,. 0 (8.2.8)

Consequently the factorial moments of the distribution of the random
variable X are thé same to those corresponding to Poisson distribution.
This implies that the random variable X has the same moments as a Poisson
Vafiable. Since the Poisson distribution is uniquely determined by its
moments - the result follows.

Applying Theorem 8.2.1 to the various mixtures that we have studied

previously, the following results can be obtained as special cases.

Corollary 8.2.1
Suppose that P(Y=r|X=n) is Binomial ~ Beta as in 7.1.1. Then

G, (t) = lFi{oz;d-fs;A(t—l)}

iff X is Poisson.
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Corollary 8.2.2

Suppose that YIX is Binomial ~ Beta Truncated to the right, as

in 7.1.2. Then,

Ql[a,l‘83a+lgx,kx(t-l)]
2E;(a,l—B;a+l;x)

G, (t) =
iff X ~ Poisson (A).

Corollary 8.2.83:

Suppose . that Y]X is Binomial ~ Right Truncated exponential (as
examined in Section 7.1.3). Then,

: .
1/6[;At [} A- 1]

N

1 -
At—é-k 1 -e 8
iff X ~ Poisson (1A).

Corollary 8.2.4

Suppose -that Y]X is Binomial ~ Right Truncated Gamma ({see Section

7.1.4). Then,

1
1I;(u;a+l;x(t—l)-§)

G (t) =
Y 1
1fl(a;a+;,—§)

iff X is Poisson (A).

Remark = Since Theorem 8.2.1, holds for any form of F(p) continucus or
discrete it is apparent that it can be used to provide characterizations
for many other distributions.

We now move to a slightly more general case and establish the

following theorem.
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Theorem 8.2.2 (Characterization of the Mixed Poisson distribution)

Let us assume that

. .
P(Y=r|X=n) = J (n] p!qn-'df‘z(p) (8.2.9)
0
i.e. Binomial ~ F,(p).
Suppose that the distribution of X is uniquely determined by its

factorial moments and that

J N'dF () < @ for A >0, x0,l,.... (8.2.10)

°
Then, the distribution of Y is Poisson (Ap) -~ E;(A) . Fz(p) iff
" X ~ Poisson (A) ~ f;(}).
Proof

The "if'" part of the proof is straightforward.  As far as the "only
if" part is concerned, by following the argument of the proof of
Theorem 8.2.1 we have that the f.m.g.f. of the distribution of X is
given by -

o
PRGN I A" dE(X). (8.2.11)
0
It is now known that the f.m.g.f. of the mixed Poisson distribution is
of the form (8.2;11). Since we have assumed that the distribution of X
is uniquely determined by its f.m., the result follows.

Note It can be observed that if F, is degenerate, then Theorem 8.2.2

reduces to Theorem 8.2.1.
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8.3 Characterization of the Distribution of Y[

In this section we examine characterizations of the distribution
of YIX, when it is given that X is of Poisson type. First we present

the followinggeneral result.

Theorem 8.3.1 (Characterization of the Mixed Binomial)
Suppose that the distribution of X is Poisson with parameter A and
that the distribution of Y|X is independent of A. Then Y ~ Poisson (Ap) ~ F(p)
iff Y|X is Binomial ~ F(p).
Proof ' "If" part. ("Only if" part already proved in Theorem 8.2.1.)

We have been given that

1 x
P(Yzp) = J’ S —(-A—P;?— ar(p) . (8.3.1)
]
and
_ o e
P(Ysr) = ] e {5 P(Y=r|X=n). (8.3.2)
Hence '
) n ' T . x
J e —ﬁ—, P(Y=r|X=n) = f &P 9{?— ar(p) . (8.3.3)
n=r °

This is a functional equation in P(Y=r|X=n). The Binomial ~ F(p) is a
solution of (B.3.8). This is so because for P(Y=r|X=n) ~ Binomial * F(p)

the L.H.S. of (8.3.3)can be written as

i (n-r)!

1 r n-r '
j oA (Ap? 7 (Aq) ar(p)
1]
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To show that this is the only solution, suppose that there is another

one P#(Y=r|X=n). Then we would have

-2 An S (V= =
e " =5 P*(Y=r|X=n). (8.3.4)

P(Y=r) = o

KRl

From (8.3.2) and (8.3.4) we would then have

J e %T [P*(Y=r|X=n) - P(Y=r|X=n)] = O
i.e.,
0 'n
I I3 [P#(¥=r|X=n) - P(Y=r|X=n)] = O . (8.3.5)

But we know that P(Y=r|X=n) is independent of A. ' Thus equating the
o .
‘coefficients of %T of both sides of (8.3.5) we see that

P*(Y=r|X=n) = P(Y=r|X=n), =n >,

and the theorem follows.
As a result of Theorem 8.3.1 the following characterizations can be

obtained., -

Corollary 8.3.1 (Characterization of the Binomial ~ Beta)
Suppose that X ~ Poisson (1); then Y|X is Binomial ~ Beta iff Y is

Gurland with p.g.f. given by (7.1.8).

Corollary 8.3.2 (Characterization of the Binomial ~ Right Truncated Beta)
Suppose that X ~ Poisson (A) and that Y]X is independent of A. ‘Then

Y|X is Beta truncated to the right iff the p.g.f. of Y has the form (7.1.12).

)
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Corollary 8.3.3 <{(Characterization of the Binomial ~ Right Truncated
Exponential)
If X ~ Poisson (1) and Y|X independent of A, we have Y|X ~ Binomial ~

Right truncated Exponential iff the p.g.f. of Y is given by (7.1.16).

Corollary 8.3.4 (Characterization of the Binomial ~ Right Truncated
Gamma )

Assume that X ~ Poisson (A) with A independent of Y|X. Then Y|X

is Binomial ~ Right Truncated Gamma iff Y follows a distribution with

p.g.f. given by (7.1.19).

Note It is interesting to point out here that ‘the result of Theorem
8.3.1 as far as its "only if" part is concerned is not valid any longer
if one assumes that the distribution of X is Poisson + P;kk) and the
distribution of Y is Poisson ~ F;(A) 3 Pz(p).

In these circumstances an argument similar to the one used in
Theorem 8.3.1 leads to the conclusion that the distribution of‘YIX must
satisfy the following eﬁuatidn '

4 00 > n . .
P(Yr) = ” e_.)‘%TdFI(A)} s(xyn) . (8.3.6)
n=r
Ciearly the Binomial F;(p) is a solution. To see whether it is
unique, suppose that s*(r,n) gives a second solution. Then, we would

have

J o {s(r,n)-sv'-(r,n)} aE Q) = 0 . (8.3.7)
P n

However (8.3.7) does not imply that
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X e—A %» {s(r,n)—s*(r,n)} = 0 (8.3.8)

i.e. that s(r,n) = s%(r,n),
because if we consider s%*(r,n) such that

g%(r,n) =

{s(r,n), n=ktl, k42,0 ..

s(r,n)-c , n=0,1,2,...,k
r,n

then (8.3.7) is equivalent to

] k n
J E e_A AT ¢ dr(x) =0
n=7r neoxn 1
i.e. to -
lec & =0 (8.3.9)
rn n
n=r °
where
I S W
£ = J e " oy dr, (1) : (8.3.10)
0

Since we can find c ﬂx¢ 0 for which (8.3.9) holds, we come to the
conclusion that there exist solutions of (8.3.6) other than the Binomial *
F(p).

However a characterization of the mixed Binomial can be obtained in

this case by making certain restrictions on the form of f;(k).

This is done in the theorem that follows.

Theorem 8.3.2
Let us suppose that the distribution of X is Poisson (1) E;(A)

where E;(A) is absolutely continuous with density

-0x ¢(2)
y(e)

£ (o) = e where A e (a,b) with ¢(1),y(6),8 > O.

(8.3.11)
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Let us also assume that the distribution of Y|X is independent
of 6. Then the distribution of Y is mixed Poisson of the form Poisson
(Ap) ~ P;(A) ~ F,(p) iff the distribution of Y]X is mixed Binomial with
mixing distribution F, (p).
Proof The "if" part is straightforward.

To show that s(r,n) = Binomial -~ Fz(p) is the only solution, suppose

that there is another one s*(r,n). Then we would have

2T oar T
J et & $(2) {s(r,n)-s*(r,n)}dr =0

which implies that

A AT $(2) {s(r,n)-s*(r,n)} = 0 for A e (a,b).
2 n! ‘

i.e., that
s*(r,n) = s(r,n).

Another Extension of the R-R Characterization

In Chapter 2 we examined the R-R characterization of the Poisson

distribution. As we saw, if Y[X is Binomial, then X is Poisson iff

G(pt)
G(gtpt) = G(p)

We are now going to give a more general characterization of the Poisson
distribution, which includes the characterization by Rao and Rubin.

This characterization is based on the general relation (7.2.2) that
holds between the p.g.f.'s of ¥ and Y|X=Y in the case where Y|X is Mixed

Binomial; it can be stated as follows.
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Theorem 8.4.1

Let us consider the random vector (X,Y) with non-negative, real

components such that P(X=n) = P , n=0,1,..., with P # O and
D n /]

P(Y=r|X=n) = b(r,n,p) " F(p) = 0 <p < 1. (8.4.1)

Then, Pn is Poisson iff

G, (t+1) = C*GY]x 40 (8.4.2)

where
(0™ = Gy [5ey (O)- (8.4.3)

~ Proof

The "only if'" part has been proved in Theorem 7.2.1. On the other hand,
as it was shown in the previous chapter (Section 7.1), the p.g.f. of

Y is given by

1
Gy(t)' = J G(pt+q) dr(p) .
0

Hence,

1
G, (t+1) = f G(pt+l) dF(p). (8.1.1)
0

Also as in (7.1.3) we have

1
j G(pt) dr(p)

(IR N (8.4.5)

1
J G(p) dr(p)

0

GY[x:v

Substituting (8.4.4) and (8.4.5) in (8.4.2) gives
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n ) 1 .
f G(pt+l) dF(p) = ¢ J G(pt) dr(p) (8.4.6)
] 0o

with C constant.

(8.4.6) implies that

© 1
| I ) arp) = ¢ j I Ot ar(p)
n=0 n=0
[1] 1]

a=0

E Epn r [;} > dF(p)}t‘ c ,:fop' {

r=0 =r ;
(1] o

oo n 1 00 1
I 11 I [ﬁ] D dr(p)}t' ¢ Ie { f p“dP(p)}t“
=0
[

1

p dF(p )}t‘ .

Hence

0 1 .
Ie [2} jp’ dF(p) = CP J‘prdF(p),
=r

0

Ie [“] =cp . (8.4.7)

Taking the p.g.f.'s for both sides of (8.4.7) we find that
G(z+l) = C 6(=z) 0<z<1. {8.4.8)

Now, following exactly the same method that we used in Chapter 2 to
prove the R-R theorem (see Theovem 2.1.1 relation (2.1.5)), we arrive

at the conclusion that

2 &(t)

At -1)
e

i.e. X ~ Poisson (1), , ¢
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Note 1 Clearly, if Y|X ~ Binomial, i.e. if F(p) is degenerate, then

(8.4.2) reduces to

- G(pt)
G(q+pt); T alp)

and hence, Theorem 8.4.1 reduces to the R-R characterization examined
in Theorem 2.1.1.
Note 2 We arrive to the same characterization if we replace (8.4.2)

with (7.2.1).



