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CHAPTER 7.

THE EFFECT OF MIXING TO THE DAMAGE MODEL.

7.0 Introduction

.Up to now, we have been examining characterizationsof statistical-
distributions based on Vafioﬁs properties of the random variables X, Y,
Y|X where X > Y. As it has already been said, Rao (1963) interpreted
this mathematical model as damage model.

In4this chapter we will examine changes ﬁhich take place in the
model when either X or Y[X has a mixed distribution. Thus, we derive
the p.g.f's of the "resulting" r.v. Y, and the resulting random variable
when no damége has occurred (the r.v. Y|X=Y) in various cases. We also
examine some properties of the model in this extended form.

. .
7.1  Damage Model with Original Distribution Poisscn and Survival Distribution

Mixed Binomial.
Let us suppose that the conditional distribution of YIX is Binomial
b{r,n,p), 0 < p < 1, with p following some particular distribution with

distribution function F(p).

Suppose also that the distribution of X is Poisson with parameter A.

Then, for the p.g.f. of Y we will have
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G (t) = ] P(¥=p)t’ I I Bstem)f

r=0 r=0 n=r

o n
I B j blr,n,p) dF(p)}‘f
- )

o n 1

77 ,{ f P b(r,n,p) dF(p)} t
n=0 r=0 .

1]

1 -] n
Z P {' b(r',n,p)t'} dF(p)
n=0 =0

(since we can change the order of integration and summation for It] <10

R ,
= J I B (pt+q) dF(p) .
n=0
[

So finally,

3
GY(t) = f Gx(pt+q) dF(p)
0

where G (t) denotes the p.g.f. of the r.v. X.

If the original distribution is Poisson with parameter A,

1
G (t) = I SAP(t-1) dr(p) = M (A(t-1)) 0<p<1

0

(7.1.1)

(7.1.2)

For the p.g.f. of Y|X=Y (the "undamaged situation" in terms of the damaged

model) we have
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J G (pt) dr{p)

...

X

0
J G_.(p) dF(p)
(1]

1
f Gx(Pt) dF(p)

2o o (7:1.3)

GX(.,P) dr(p)

end for Pn Poisson

(t)

¥ |x=y

Various forms

X ~ Poisson (A)).

e Alpt —1) dF(p)

e}\( p-1) dF(p)

H° L

-

‘eApt dr(p)

Mp()dc)
MP(A) (7.1.4)

ga

o,

dr(p) .
0<p<1.

Co | O, @

of F(p) 1lead to the following models (assuming always that

3
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7.1.1 (Y]|X) ~ Binomial ~ Beta (Negative Hypergeometric)

Suppose that the parameter p of the Binomial is Beta distributed

with p.d.f.
- 1 -1 B-1
£ = -
I(P) B(Ulas) P (l p) az O’ B‘> 0
0<p<1. (7.1.5)
Then
1 1 PO a-1 B-1
M = o . L.
p(6) 5(a.p) J e p (1-p) dp (7.1.6)
[+]
- = 1f;{a;a+6;6} . (7.1.7)
which is the m.g.f. of the Beta distribution.
Then,
G (t) = | F {asa+p;a(t-1)} . (7.1.8)
Also, from (7.1.4) we get
1 F {osaB50¢)
(7.1.9)

Gv]xzy(t) B R Iy .

7.1.2 (Y|X) ~ Binomial ~ Right Truncated Beta

If F(p) is Beta truncated to the right at the point x, 0 < x < 1, with

p.d.f.
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a-1 B-1:
£ (p) = -ZP (1-p)
X 21-‘1 (a,l—s;a+l;x)

then

o

X
M(8) = — fe"e p* ™ (1-p)P " dp.
x L F (a,1-B3a+l;x) o
Setting P/x = % O<m<1l,
i.e. p= wx, we get,
e 2] L o-1 B-1
Mp (t) = 3 = J e™ ¥ (nx)® (1-mx)" " d(wx)

X 2]?‘1 (a,1-B3a+1 ;%)

1
»_;' o ™6 a-1.. B-1
2F,(a,1-850+13x) Je ™ (2mm)T T de
. :

But it is well-known

, . ‘ ‘
T_(G—I)‘%%:J J ot (1-w)'™ (l-ux)-s e’ du

0

= ¢ [a,B3v5x,y]
So, since for our case o~u, Y*atl, y>x6, f+1-B, we have

al(a)r(1) ®l[u,J_.—B;q+l;x,x9] .
I'(atl) oy (@,1-Bsatl;x) 2

M (0) =
P

(7.1.10)

(7.1.11)
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which finally gives

) [a,1-B3a+l,x,Ax(t-1)] N

G, (t) = S CAT TSI . (7.1.12)
For YIX=Y we have, (from (7.1.4), (7.1.10))
rekpt f(p)dp
_ o
Gy,x:y(t) = T——-
re £(p)dp
0
X
J s ™ (l—p)B_l' dp
0
Fe)\ppu—l (l-p)B—l dp
0
and for P/x =1 0 <7 < 1 this becomes
! Amxt a-1 B-1
J "™ (rx)* M (1-wx) " M (wx)
)
G‘—,Ixﬂ{(t) . » o
"™ (1) (1~mx)P T d(ax)
0
T oamet -1 -1
je ¢ p% Qerx)P T dw
o
T am g 81 '
e ™ n% (1-1x)P M an
J .
Using (7.1.11) with u»m, o®o Y-oa+l, B>1-B8, x*X, y*Axt, we get
@1[a,l—3;a+l;x,)\x’c]
(7.1.13)

G |X=Y(t) = 2, To,1-B30+1;x,2x]
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Note 1

It can be verified that if we consider the case 7.1.2 for x=1 the
P.g.f. (7.1.12) of Y becomes the same as in (7.1.8) of the case 7.1.1
as -one would expect. ' .

Actually we have by definition

Fremy L Bhy 10 (1)1

%, (a,1-8304131,0(t-1)) = §

-a (a+l)(n“n) m!n!
=7 @ OE-D)® (040 1By hig
h (u+l)m n! = (u+m+l)(m) m!

W ODE-DP

= 2: (a+l)(n) n!’ 21’1 (o+n,1-830+n+1;1)
=g W DD rlans)r(p)
Tk atl) n! T(DT (at+B+n)
- 3 T(o+n+l) {((e-0H 1"
= e | (a+1%n) T(o+n+1+B-1) !
. n
= F(B)' X ?“) ] {}\(t-l)}nv
= L (a+12n)(a+n+128_1) n!
= T(g) ] W Dy | r(g) AP
(u+l)n*3_l) n! (a+l)(s_1) Iy (‘”B)(n) n!
: (aii?s);l) 1y lo0830(e-1)) : (7.1.18)

Taking into account (7.1.1%), (7.1.12) at x=1 can be written as
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¢, (o, 1-B3a+131,)(£-1))
GY(t)(x=1) - 2E;(u,l—6;a+l;l)

T(r(o+B)  T(B) L F {asot8sa(t-1)}
T(a+1)T(B) (a+l}B_v

T(a+B) I(a+l) '
" T(a+D) T(atp) 1fales0t8:A(t-1)}

1P;(a,a+8;l(t—1)).

Similarly we can show that (7.1.13) for x=1 is identical to (7.1.9).

7.1.3 (Y|X) ~ Binomial ~ Right Truncated Exponential

The p.d.f. of the exponential truncated to the right at the point 1

is
. 1 ‘e-p/u ]
f(P) = "*‘P—-T O<p<1 (7.1.15)
e H :
1 e 0<y .
Hence we have,
' e
Mp(e) = f &Y £(p) dp
0
1 1
- /u - j pB o »/y dp
l-e u o

Ly pedVu . 1]
(0~ )(L e /W)
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Hence

' g, (t) = - (7.1.16)
[xt—%—x} [1 - e UJ ‘ :
On the other hand,
Mp(A‘t) y
: Gle=Y(t) oY) :

i . B (7.1.17)
Gylxav(t) = :

7.1.% (¥]X) ~ Binomial ~ Right Truncated‘Gamma.

The p.d.f. of the Gamma distribution, truncated to the right at the

point 1 is

P

, a1 B
flp) = 2B N

5 O<p<1l. (7.1.18)
15;]a;u+l; - i '

Thus, following (7.1.2), the p.g.f. of Y becomes

dkad

T A
AN ' p[}\(t-—l)"—]
g, (t) = [e’“’“ Ve(pap = S JP‘“ & g

= 7 e P
o 15;ia;a+l;—§i > .

- o r(a) ivgey sy )
- F [a;cﬁl;_éI TGy 1f {a’aﬂ’)‘(t & B) )

11



~-156-

Hence, finally,

I;[c;a+l;x(t—l)—é]

g, (t) = * : . (7.1.19)
1E;[a;a+l;~é)
[We have made use of the definition of the Confluent Hypergeometric
function -
r(c) 1 ia a-1 c ~o -1
1F1(a;C;X) = m fe u (1-u) du
°
1 : ;
which is applied in our case with u=p, x = A(t-l)—é and ¢ = a+l}.
The p.g.f. of the r.v. Y|X=Y is
1 1 p[xt l]
f ekptf(p)dp J pa—le B dp
_ o ) _ 0
GY|X=Y(t) T - T _1 p[A-é)
e f(p)dp f pa e dp
0 ' 0
i.e.
GY!XSY(’C) = . (7.1.20)

(The distribution with p.g.f. (7.1.9) has been studied by Kemp (1968b).)

¢(t) in the Case

7.1.5. An Interesting Relation Between GY(t),and GY]x=

where (Y|X=Y) ~ Binomial = Right Truncated Gamma.

A relation between the p.g.f's of Y and Y]X=Y can be obtained by

G

observing that Gy(t+l) can be written (from 7.1.19) as
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G (t+l) =
1 1
) lfl a;a+1;lt—§ IP; a;a+l;—§+A
- 1 1 5
1?;[a;a+l;—§] 1E&[a,a+l,~é+k]
1
IE; a;a+l;-§+x
= Gle=Y(t) 1 , (see (7.1.20)) . (7.1.21)
1r‘l(a;aﬂ, E} :
But from (7.1.20) we also have,
1
At a;u+l;—§! )
= Gylx=y(°) . (7.1.22)

1
1P;[u,u+l,—§+k]

-

Combining (7.1.21) and (7.1.22) gives

(t)
(0)

Gy |x=v
(7.1.23)

Gy (t+1)

GYIX=Y

i.e. by adopting the idea of the factorial moment generating function, .

Mgy(t) = ¢ GY1X:Y(t) » (7.1.24)

(0) = constant.

rr
with C = GY!X=Y

7.1.6 Some Examples in the Case where the Distribution of Y[X is Binomial

Mixed with a Discrete Distribution.

(1) Let us suppose that P(Y=r|X=n) = {2]quf" where p can take two

values: p with probability & and p, with probability (1-a). (0 <a<1)
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Then we have

pae pze
Mp(e) = ae + (1-a) e " . (7.1.25)

Hence, from (7.1.2) and (7.1.4)

Ap, (t-1) - Ap, (t-1)
., G (t) = ae ° + (1-a) e (7.1.26)
and
Ap, t Ap, t
1 2

_ae +:(1l-a)e
GYIX-Y(t) = D, D . (7.1.27)

ae + (1-a)e

.

P{p = EJ = {i]ak (1-0)* ™ 0<ac<l. (7.1.28)
L .
Then
M) = [E]ak (1-0)" e/
k=0
iie.
M (0) = (l-atae” ™) .
Consequently,
n
G (t) = [l-a+ae>‘ln(t-l)] (7.1.29)
and
M at \n
—a+
¥ %y (laaex,n,,) (7.1.30)
(l-atae™ ")
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General Relations Between GY(t) and Gle=Y(t) when X is Poisson and

Y|X is Mixed Binomial.

In part 7.1.5 of the previous section we found a relation between

6, (t) and GY]an(t) that exists when X is Poisson and Y|X is Binomial

Right truncated Gamma. It can however be seen that in the case where the
distribution of X is Poisson and Y|X is Mixed Binomial, GY(t) can always

be expressed in terms of G

Ylx=Y(t) in a way that remains unchanged whatever

the mixing distribution is. This is established in the following theorem.

Theorem 7.2.1

If X is Poisson and Y|X is Mixed Binomial, then

G (t-1) k .
6, (t) = Fm (7.2.1)
Y |x=0
and
Gy(t+l)
S GY]X=Y(t) = GYE2§ (7.2.2)
- Proof
This is straightforward, if we consider the general forms that
GY(t), GY[X-Y(t) have in the case under study; these are given in

Section 7.1 ((7.1.25, (7.1.4)).

Remark

Rao's result (1963) is a special case of theorem 7.2.1 for F

degenerate.
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Damage Model with Original Distribution Mixed Poisson and Survival

Distribution Binomial.

Let us now turn to the situation in which the distribution of X
is Poisson with parameter A, where A is a variable taking values in én
interval (0,x), with 0 < x < «. Let F()A) be the d.f. of A

Suppose also that YIX follows the Binomial probability law with
par%meters n,p. Denote by G#(t) the p.g.f. of the resulting r.v., and
by G?;Xsy(t) the p.g.f. of the resulting r.v. in the case where no
damage has occurred. ' Then following the same steps as in Section 7.1

we find that for any P

Gg(t) = J Gy (pt+q)dF(X)
and

J G (pt)dP(A)

o
A e —
J Gx(p)dF(A)
. ; .

and in particular for P Poisson,

G (v = re*"““” dF() = M Ip(t-D}, 0 <A <x

0 < x < o,

and.

I P ar(a)
Mx{pt—l}
- MA{p—l} SRR

G;;!x:Y(t) =

(1)
J R ey
J v

(7.3.1)

(7.3.2)

(7.3.3)

(7.3.4)
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Comparing (7;3.3) with (7.1.2) and (7.3.4) with (7.1.4), one can make
the following observations.

For those F(1), for which 0 < A < x with 0 < x < 1 one can arrive
at G?(t) just by interchanging A and p in the correspo§ding expressions
of G (t). As for Gé,x=y(t), this can be derived from GY]x=Y(t) by
replacing At with pt-1 and A by p-1. This is so, because in the case
whefe X is mixed, we integrate with respect to A (the parameter of the
distribution of X). So, while for G¥(t) we just have an interchange of

the parameters A and p, for G (t),e—x is not cancelled from the

Y |x=Y
nominator and the denominator of (7.1.4). The consequence -is that the
integration now gives pt-1 instead of At in the nominator, and p-1

instead of A in the denominator. By making use of this result one can ..

_obtain G¥(t) and G§1x=y(t) for the following distributions.

7.3.1 X ~ Poisson ~ Beta

Suppose that A is defined in (0,1) and follows Beta distribution,
as in (7.1.5).

Then, from (7.1.5) and (7.1.9) we get

GE(t) = L F {esa+B5p(t-1)} : (7_.3.5)

and .
L F {osadBspt-1}

% =
GYIX_Y(t) 1———1—*7—},1 TR - (7.3.8)



-162-

7.3.2 X ~ Poisson ~ Right Truncated Beta.

Let 2 € (0,x) with 0 < x < 1, and let A be distributed according
to Beta distribution truncated to the right at x as in (7.1.10).
Then, from (7.1.2) and (7.1.13) we get

o {a,1-B30+1l ;x,px(t-1)}

3 =
GE(t) o, 1Bt (7.3.7)

and

Q;{a,l—B;a+l;x,x(pt—l)}

t = .
GY|X=Y(t) o, {a,1-B30+15x,x(p-1)} (7.3 8)’
7.3.3 X ~ Poisson ~ Exponential Truncated to the Right.
Let 0 < A < 1, and let £f(A) be given by (7.1.15) (for u=6).
Then, (7.1.16) and (7.1.17) give
GE(t) (7.3:9)
and
1 pt—é—l
[p—--l] e =1
# (r) = L O :
Y|x=v : (7.3.10)
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7.3.4 X ~ Poisson ~ Gamma Truncated at 1.

Now assume that A takes values in (0,1) and that it is distributed

as Gamma Truncated at 1 (see (7.1.18)).

Then, from (7.1.19) and (7.1.20)

1
1f‘l{a;a+l;p(t—l)—§}

G (t) =
Y 1
1f;{a,u+l,—é}
and
F'{u-a+1-pt-1 1}
% = 'S
ey () = 1 TR

1
1£;{a,a+l,p-é—l}

(7.3.11)

. (7.3.12)

We next examine two other interesting cases using (7.3.3) and (7.3.4).

7.3.5 X ~ Geometric (Poisson - Exponential)

For the p.g.f. of X it is known that

00 k—-—
1 Xt -1) 6}
* = =
Gx(t) TS I e ‘e da
[\]
_A
1 B
{for £(1) = 5 e 0 <2< «J.
Hence, ’ 1
eMt). = —8_
x 1--2 ¢
140 -

Using (7.3.3) and (7.3.4) we can obtain

1 (¥ e '%
gi(t) = é‘f U o gy =

0

O<A<w, 850

(7.3.13)

—t
1 _ 1+6p

= - 7 al]
l+#6p-6pt | O K e
1+op
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and
_ %
& (t) = — 28 (7.3.15)
GY]x=Y . _6p R
146 ‘

From (7.3.13), (7.3.14) and (7.3.15) it is obvious that G¥(t) and Gglxzy(t)

are-also geometric distributions, with a change in the parameter.

7.3.6 X ~ Negative Binomial (Poisson ~ Gamma)

Here we have

‘G;;‘(t) a—l—-— J e R
B (a)

1

[

_ Al1-8(+-1)]
= al e 8 27 an
g r(a)

O ——y
8

1
B (a)[1-B(t-1)]%

N j e MLBEL) 10 ey 11 a1~ (+-1)] }

(1]
a
- alt-1)1y " -l 1
= {l B(t l)} - {l+6-6t} 2
i.e. 4 ___l_ o ]
GH(t) = ——ikﬂ%;E . ‘ (7.3.16)

)
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Similarly from (7.3.3)

: 1 [ act-1) a1 —é da
GHt) = a—J et 2% e

8T(a)

1 o
l+]26
1 - BBt |’
1+pB
and from (7.3.4)
J el{pﬁ—l) Aa—{ e a
. 0
G;|X=Y(t) ) © AMp-1) , a-1 -4

I e™? ‘A e k dx

which eventually becomes

B+l

[o
Gi:]x_Y(t) = {1 —'iE] [1———‘5?—

It can be observed again that G} (t) and

binomials with the same shape parameter a, but different p and with B

and p confounded.

This is a particular case of the following more general property

which is possessed by this particular form of the damage model.

Theorem 7.3.1

If the distribution of X is mixed Poisson and that of YIX is

Binomial, then Y and Y|X=Y are also mixed Poisson.

-

4(t) are also negative

(7.3.17)

(7.3.18)
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Proof Let
V X ~ Poisson (A) ~ F(X)
Then from (7.3.3) it follows that
Y ~ Poisson (Ap) -~ F(A).
Also from (7.3.4) the distribution of YlX=Y_can be viewed as
Poisson (Ap) ~ F*(X), where

Ao
/ M'(P-1) aF(A")
FE()) = ° (7.3.19)

6" _e)\'(P'l) dF()\')

7.3.7 An Example with a Discrete Mixing Distribution

Suppose that X ~ Poisson with parameter A, and A takes the values

k,k+l,...3k=1,2,... with probabilities-

A-1
2N [ } o (;—u)""k,, ATk, ktl,. .0, k=1,2,. . (7.3.20)

0<aoa<1,

i.e. Pascal with parameters o and k.

Then,
M (o) = gk Mo [ﬁ:ﬂa“ (1-a) ™
_ v A-l] 0.k 0, A—k
= {a e’} {(1-0) e}
)sz [k-—l @

= fae®F 7 [*‘i] {(1-a) ®)**

=k k-
8 1k )
= {a ™ {1-(1-0) 7 = {-——°‘9——F} ) (7.3.21)
1-(1-a) e
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Hence

p(t ~1) k
(1) = M (p(t-1)) = {~———°‘——e——————} . (7.3.22)
% A 1-(1-a) A

Relation (7.3.22) shows that the p.g.f. of the resulting random variable
is Pascal (o,k), generalized with Poisson (p).

Note.- The result obtained in the previous section can be viewed as a
particular application of a more general result, which can be stated as

fcllows.

Theorem 7.3.2

Suppose that the original r;v. X follows a Poisson distribution with
parameter A, with X itself having a distribution with p.g.f. of the form
{g(t)}%, Suppose also that the conditional distribution of Y|X is Binomial (p)-
Then, the resulting r.v. Y will have the distribution of A, generalized

with a Poisson distribution with parameter p, i.e.
$~1) \qk
Gi(t) = {g(&@ Ty,

Proof

The result follows immediately from (7.3.3) and the well-known fact

that M, (t) = Gk(eh).

7.4 A General Relation Between Gg(t) and G?lx=v(t) when X is Mixed Poisson

and Y|X is Binomial.

In Section 7.2 we found a relation which enabled us to obtain the
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p.g.f. of Y in terms of YIX=Y and vice versa, whenever X was Poisson

and Y|X was mixed Binomial.

In fact, we can give similar relations for the case where X is mixed

Poisson and Y|X is Binomial.

Theorem 7.4.1

If X is Mixed Poisson and Y|X is Binomial, then

3 SJ
6|l +

Gi(t) = (7.4.1)
and
% =
Gle:Y(t) (7.4.2)
Proof .

The proof follows immediately from (7.3.3) and (7.3.4).

In the special cases, examined in Sections 7.3.5 and 7.3.6, where
the distribution of X is Geometric and Negative Binomial, respectively,

the following theorem can be established.

Theorem 7.4.2
If we denote by G*(t,0) the p.g.f. of the distribution of X, when

X is Negative Binomial, then

Gg(t,e) = G%(t,pd) (7.4.3)
%, . - 7 _eL_ .
CF |xay (£20) = G* [t’ l+p(l-6)] (7.4.4)
% = i3 ....._..e .
Gk(t,0) = GY[x;Y [t, 1—epJ (7.4.5)

Proof '

This is straightforward.



