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CHAPTER 6.

CHARACTERIZATIONS OF BIVARIATE AND MULTIVARIATE

FINITE DISTRIBUTIONS

N

" 6.0  Introduction

In Chapter 5 we derived a general result characterizing a class of
finite distributions, as well as an extension in the truncated case.
In this Chapter we extend the results of Chapter 5 to the Bivariate and

Multivariate cases.

6.1 The Bivariate Extensicn of Theorem 5.1.1

Theorem 6.1.1

Let {X1 o X ’Yx ,Yz} be a random vector with noh—negative, integer-valued

components such that

n =0,1,...,N
n ,n 1 1 5

P{X1 =n ,X =n2} =P
1% 2

2
'112=O,1,...,.N2 ‘

N N Z0,1,...

with Pn > O”for Olny, < 2.1 5 i=l,2; ﬂvi fixed, 1 < 2 < N -m

1°72

o
Suppose that i[an " ;bn . ] n, .0, =0,l,...} is a sequence of real
1°%72 1272
vectors with

a > 'O if 0 < n, < m i=1,2
(6.1.1)

a =0 if m <n < Ni for some i=1,2.
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and

i=1,2.
Define by {Cn n } the following sequence
1°72

n n
1 2

X zar rbn—r n_-r
2 r-1=0r2=0 1°72 1 12 T2

a
1

n =0,1,. ..,N1

i=1,2.

Assume also that the sequences (6.1.1), (6.1.2), (6.1.3) are such that

whenever P >0
00y

TR
P(Y = Yo=p Ix = X tn ) = 172 1 T1%2 T2
R R R :

Then the condition

P(Y =r .Y, =r, ]x1 =Y, X, =Y, ) = PQY, = Y, =r, |X =Y 41 X =Y +i))

5 71,2,.00,8 for fixed g0 1< g <N -m; 31,2

(i.e. there are L, x%, equations)

is necessary and sufficient for Pn n o be such that

1272
c
f 0y o0y oo,
Po 0 I 61 62 for some 91 > 0, 82, >0
0,0
P - if n < m + & for izl,2
n, .7, ;
d if mo+tL <m < N for either izl opr i=2
n ., i i )
\

(6.1.2)

(6.1.3)

(6.1.4)

(6.1.5)

(6.1.6)
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where dn o are arbitrary constants independent of n"such that
1°72

Proof
Necessity is a straightforward extension to the bivariate case

of the if part of Theorem 5.1.1. To prove sufficiency we introdu;e and

prove two lemmata. Then using these we establish the main result of the

theorem.

Firstly we note that (6.1.5) can be written as

P(Y =r ,Y,=r, |X =Y X =Y,) = .. . = P(Y, =r, ,Y,=r, |X =Y +2 ,X 5Y,) =

1
1]

P(Y, =r ,Y,=r, |X =Y X =Y, 41) = ... = P(Y,=r,,Y,=r, [X =Y +2 , X, =Y, +1)

e
X
« ea e

P(Y1 =r, ,Y2 =r, X1 =Y1 ,X2=Y2 +22 )= ... = P(Y1 =r, ,Y2 =r, X1 =Y1 +£1 ,X2=Y2+9,2).

(6.1.7)

With the help of (6.1.4), each of the probabilities in (6.1.7) can be

expressed in the following manner:
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Pr T )
1272
a b
c. ., r ,r, 0,0
1272 (1)

P(Y =r ,Y =r |X =Y ,X =Y. ) =
1 122 T2l T 9% T ‘
P(X1 '?1 X =, ) 2

P

“r +l,r
1 2

c % r bl 0
r1+l,r2 1272 e

(2)
1>(>x1 =Y, +1,X, =Y, )

P(Y, =r, ,Y, =r, |X =Y +1,X =Y )
(6.1.8

cse s

r +2 .1 .
1 7172 3
a b .

Cr 4t ,r, 172 4 0

P(Y. =p, LY. =r. |X =Y.+, ,X_ =Y.)
171272 T T T 0% T N _ 1
P(X =Y, +2 X =Y,)

1

~~
o
A

(for the first set of probabilities (6.1.7))
and

P

r, ,r +1
1272
ar r bOl
r ,r +1 1°72 ?
1’72

C

6N

i

P(Y =r ,Y =r_ |X =Y>,X =Y _+1)
1 7172 21T T12Te T2 P(X1=Y1,X2=Y3+l),

3 * (6.1.9:

cseees
e e e
.

: . Pr+,?,,r+l
17172 .
) ‘ — a b

c T ,P 2 ,1 .
1272 1
T +21 2Ty +1

P(Y =r, ,Y2 =r, X1 =Y1 +2,1 ,X2 =Y2+l)

n

~~
=
St

P(X1 =Y1 +21 ,X2 =Y2+l)

(for the second set of probabilities in (6.1.7))

and so on. Finally,
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P(Y, =r, ,Y, =r, ]x1 =Y, X, =Y, 48, )

P(Yl =r, LY, =, |X =Y, X =Y 4L, )

In other words, instead of (6.1.8),

general,

P(Y1 =r, Y, =r, X =Y, +i X =Y, +i, )

Lemma 6.1.1

If (6.1.5) is true, then

Pnn P0 n n
1372 ] 1

= ]
c, S . 1
1Py g

Proof of Lemma 6.1.1

b

T, ,r-2+!t,2
[e] ar r bo 2
T ,rz+:?,z 1772 272

P(X1 =Y1 ’Xz =Yz +2,2 )

P
r +£1 Ty +£z
a b

c r T 2,2
172
T, +£1 ,1'-2+JL2

P(X =Y 48 X, =Y, +2,) | J

(6.1.9), (6.1.10) wWe can write in

P a g

r +i ,r +i

1 71%2 2 a b

c . . r o, i ,i
172 1

LR SIS I S

P(X1 =Y1 +J'.1 ,X’t =Yz+lz )

150,150 04,8

1,20,15000,8

n, SOFe] PNy oMy +21

n2=0,l,. ool

Obviously (6.1.12) is true for n, =0. 5

)

(6.1.1¢

e s 0 o e e s

(&)

(6.1.11)

(6.1.12)

On the other hand, because of (6.1.7) all the probabilities given by
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‘the system (6.1.8) are equal. This implies that the First set of

equations of (6.1.7) is equivalent to the following system

P 1 P
r, tl,r, roer, . .
= 0, (1)
°r +1,r °s ,p o
1 772 1°73
Pr +2,r Pr +1l,r
1. 2 1 LI (2)
S +2 °r +1 .
Ty TesT, n T, |
Py 40 .p P te -1,r
17172 17 2
S == 8, o (2.
T+ .1, r, +4 -1,n, M J
with
o P(X, =Y, +3,X,=Y,) B o
15 PO =L, H-LX=Y,) b 2

Jleeist

It can be observed however that

O % 8,7 = 1,9,1= )
P, o, P, o
(For example (6.1.13) (1) forn =2 becomes =0, 3 s
8,1, * 2,7,
P, . P, ’
and (6.1.13) (2) for r, =1 becomes 72z . _ § Ty
c 1 32 C_- *
3 ’r2 2 ,rz
Hence 6, | = 8, 5+ The remaining equalities can be proved similarly.
3 S .
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(6.1.13) (1) gives

P P
1,r o,r
2 2
for r =0, = 8
1 [¢] 1 c
1 ,rz v0 ,rz
P P
2 T, 1 sT,
for r =1, = 8
1 C, 1. cC
) 2 :rz 1 $r2 =
P P
P T Rl,n 2,2
1 2 1°%2
and for r =r , = 8 r < .
1 +1 1 1 m
ntisT, Ty Ty
P
Lonseguently,
: P
r, 1-1,1’2 0,7, r +1
= 3 61 r1=0,1,...,m1. © o (6.1.18)
. v, +l,r, 0,r,

(6.1.14) implies that (6.1.12) is valid for n =0,1,...,m +1. In the same

way we find from (6.1.13) (2) that -

P

r, +2 o7, Prl +1 2T, 7, +2 PO ST,

—_— = — =0 s v =0,1,...,m. (6.1.15)
Cr 42 R ! %o ! t

r, 2,1, r tl,r, o7,

(using (6.1.14)).

For r =m (6.1.15) implies that (6.1.12) is also valid for n =m +2.

Continuing in the same way, we will finally get from (6.1.13) (9,1)

using the results of the previous relations that

P P

: 0
r1+£1,,r2 _ »T, er1”’1. - =0 .
c - c 8 1 1— ,--.,1-;

r + 0
1 2’1 2Ty )Ty
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This for r,.=m becomes

p P
0
m +21 2T, 3T, m +2,1
= 6 r =0,1,...,m .
< N co 1 2 sty Y
My oy 0T oTy

This completes the proof of Lemma 6.1.1.
Lemma :6.1.2

If (6.1.5) is true then

Pn1 o0, Po o1, n, o =_0 S ENGA0 ST +z1 . .
S = S 61 for some el >0.
n_ N 0.,n n =0,1,...,m +&
1°72 2 2 2 "2 (6.1.16)
Proof of Lemma 6.1.2
By means of (6.1.8) the second set of equations of (6.1.7) gives
Pr +1l,r +1 Pr ..+l
A2 o gy A2 (1)
c 1,1c¢
T, +l,rz+l > r ,r2+l
Pr +2,r +1 5 Pr +1l,r +1
T N S (2)
cz-l +2,r, 41 1,2 crlv 1,1, +1 .. (6.1.17)
Pr +2 v +1 Pr +2 -1,r +1 *
1 71°72 = o 1 2 (L)
c 1,2 ¢ _ 1
7 +5L1 ,r2+l 1T +J?,1 l,r2+l J

I3

With the same kind of argument as before, it can be shown that



Considering also (6.1.13) (1) for r,=1 and (6.1.17) (1) for r,=0 we can

-
see ‘that 61 = 91.

P

].,:l:’2 +1

P
0,::*2 +1

119~

So, (6.1.17) gives,

2

c
O,r2 +1

P

l,r\2 +1

for r =0,
! cl T, +1
P2,r2 +1
for rl =1, P
2 2T, +1

. .

P
r +1 T, +1

c
.
l,r'2 +1

and for T, =1,

The above equations give

P
T +1 o7, +1

c
r, +1 sT, +1

P
0 ST, +1

19

r +1

(&
+
7 i 2T, +1

C

0,;12+l

91

r-1=0,l,...,m

r, =0

seveslye

1.

(6.1.18)

Using the same technique, we can obtain relationships similar to (6.1.18)

.with 7 +1 replaced by r, CPiR000 Ty +2,1 =1

Finally, the (% ) equation of (6.1.17) gives

r+l,

This for r, =m becomes

B P
T, +£1 ,r2+l ) O’I'z +1
c (s
r, +21 T, h1 O,x*2 +1
s +2 +1 +2
m 12y o7y ™
U — 3 91

G
m +JZ.1 o7, +1

1

2 ‘rl=o,.,.,m .

1

(6.1.19)
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Hence we come to the conclusion that

Pn1 T, +l 1:'O,r'2+1 n, 7,20, .. ,m,

= 0
c € 1 (6.1.20)
n, ,r2+l O,r2+l o, =’O,...,m1 +R,1 -

(6.1.20) shows that Lemma 6.1.1 is also valid for n,=m,+l. Using the same

approach, the last set of equations of (6.1.7) will give (using (6.1.10))

P P
nl,r2+22 O,r2+,?,2 o,
P = c 61 r}=0,...,n5.
+
n, v, 22 O,r*erJL2
N )
This for r, =m, becomes
P P
n, ,m, +J?.2 _ O,rn2 +J!.z en1
c c :
n1’"5+22 0,mz+2,2
Hence
P P _
n o,n, _ O,n2 n, n, 0,00 oMy +J?.1
c .c 1 -
n, 0, O,n2 n2~0,...,n5+£2.

This completes the proof of Lemma (6.1.2).

Proof of the Main Theorem 5.1.1

If we look back at (6.1.7) we can see that we have not yet used the

fact that

- = - = = = - l == =
P(Yl r Y, =, % Y X, =Y ) P(Y1 r Y, =r, {X =Y X, Y2+l)

oG P(Y, =r, ,Y2=r2]X1=Y1 X, =Y, 40, ). (6.1.21)-

1

From

P(Y1 S oY, =r, [ X =Y, X, =Y, )

P(Y1 =r, ,Y2 =r, X1 =Y1 ,X2 =Y2 +1) »
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we get
Pr1 o7, +1 Prl 5T,
= 0 (6.1.22)
= +1 cr r 2
T T, 1°72
P(X =Y ,X =Y +1) b ° «
here 6, = ST ST ) 1,0 i.e. 6, is a constant independent
w 2 P(X =¥ ,X =Y.) b 2
: 1 1°%27 72 0,1
of n 3T,

(6.1.22) gives the following equations for the different values of r, and r, =0.

~

P P
. 0,0
for r, =0, 0.1 2 8,5
2 o ,1 o 50
Po 2 Po 1
for r =1, 2 = —2 6,
2 [¢) c 2
0,2 0,1
O,r +1 PO T
- s H
and for r,cr,, 2 = 2 9 r <m.
c c g9 72 2
O,r +1 O,r
2 2
Hence
PO r +1 P r +1 )
>"2 _ o, 2 r =0,1,...,m . (6.1.23)
S = 3 62 2 ’ 2
O;r2+l 0,0
This implies that
Po’nz Po 0 o,
= — g for n_=0,1,...,m +1. (6.1.24)
c c 2 2 2
O,n2 0,0

Also, from

CR(Y, er LY, e, lx1 =Y, X, =Y, 42) = P(Y, =r LY, =r, X 5V, L%, =Y,)
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(which is the second equation of (6.1.21)) we find that

P P o
T, T, +2 _ T Y, +1 6 r, =040 My ,
€] c 2 -

r, T, 12 T, s, 1 r,=0,...,m, . (6.1.25)

(It can be checked as before, that the constant in (6.1.25) is the same as
that for (6.1.22)).

(6.1.25) gives for r; =0 and for the different values of n,.

P
1:‘o 2 _ 0.1
for » =0, = s
2 (s} C 2
0,2 0,1 -
Po 3 Po 2
for r_ =1, — = 2 g,
2 e c 2
0,3 0 -2

and for r, =T, = 62, r, < m, . .

Consequently
PO,r +2 P r +1 P v +2
2 2 05t g3 = 050 42
o 2Ty 12 %, 2 o ;0 2

r2=0,l,. <esMy .

(We have taken into account (6.1.23).)
So, (6.1.24) is also true for n, =m,+2. From the last of the equations

(6.1.21) (using all the previous ones) we find that

P .
0 o7, +£2 P0 r, +2,2 .
= > 8 r =0,...,m
0,r +2 0,0 ’
2 72

C
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Consequently (6.1.21) implies that

P D

O,n2 By o, _ )

p =3 6, n,=0,1,...,m +8, (6.1.26)
O,n2 6,0

Combining (6.1.26) with the result of Lemma 6.1.2 we conclude that

> n ,n, g Po ,0 9n1 enz n, =0,... oM, +1,1 . —
c B 1 _
n ,n, 0,0 n,=0,...,m +0, (6.1.27)

(6.1.27) gives the "sufficient" part of the theorem. Hence Theorem 6.1.1

is established.

Characterizations of Some Known Bivariate Distributions.

Theorem 6.1.1 provides the appropriate theory for the following

characterizations.

" Corollary 6.2.1 (Characterization of the Double Binomial)

Let (X1 X, ,Y1 ,Y2) satisfy the conditions for Theorem 6.1.1. Suppose
also that the conditional distribution of Y1 ,Y2 on X1 ,X2 is double

Hypergeometric, i.e. suppose that

: m (Nl LM | [N M,
r ||n -2 |2 ||n ~r
IR Y
P(Y1 ry oY, 7, [X 50y X, "nz) [N1] [Nz]
n n_
! %) (6.2.1)
RN, mo,m ’N1 ,Nz > 0. T =0,1,. ey
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Then, the condition (6.1.5) for J?,, =Nj m 3 j=1,2 is necessary and sufficient

for Pn a To be double Binomial with probabilties

1°72
3 _ & Pnl Ny N, pnz N,-n, Gy
n ., n "1 %4 n, | “2 %L ,
Proof Let a and b be the sequences
T ,n n N
1°72 122
m | fm N1 -m Nz--m2
% oon T il bn = ; (6.2.3)
172 P 1 oM o By e
0 =0,1,...,N i=1,2
Then,
n n
1 2 N |IN,
e = 1 I a I (6.2.4)
Ty ofy r, =0 1r,=0 1oty B TR LR, S 1] (%2 ter
Clearly a as given by (6.2.3), (6.2.4) meet all the

n ,n bnn
sty 3 Yy

c
n_,n
1 1

2? 2

~conditions set by Theorem 6.1.1, Hence (6.2.1) can be expressed in the
form (6.1.4). So, according to the conclusion of Theorem 6.1.1, the
condition (6.1.5) with f,j =Nj m j=1,2 holds iff (6.1.6) is true.

Moreover in this particular case (6.1.6) becomes

Clearly P* = (1+g )Ni k1+e )N'z
eary o’o"' 1 Py .

Hence, P comes out to be double Binomial, as in (6.2.2), with
1272
&

146,

6, 56, such that P, = i=1,2,
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Corollary 6.2.2 (Characterization of the Double Hypergeometric)
Consider (X1 X, Y, ,Yz) as in Corollary (6.2.1).

Suppose that Pn n is a double Binomial as given by (6.2.2). Let
1272 :

the conditional distribution of Y ,Y, on X ,X be of the form (6.1.4).
Then, the condition (6.1.5) for % =N’ - j=1,2 is necessary and
suffj.cient for P(Y1 =r, ,Y, =r, le =n, X, =n2) to be double Hypergeometric
as in (6.2.1). B
To show the validity of Corollary (6.2.2) one needs the followipg
Lemma. -

Lemma 6.2.1 Let G (1:1 ’tz)’ G, ('lt1 ’tz) be the p.g.f.'s of two independent

bivariate r.v.'s and let G(‘c1 ,‘tz) denote their convolution, i.e,
G(tl ,tz) = Gl(tl ,tz)sz(tl ,tz) . 3 (6.2.5)

Suppose also that G(“l:1 ’tz) is the p.g.f. of the bivariate distribution
which is' the product of two independent Binomials with pavrameters-

(p, »m), (p,,n), respectively, i.e.
- m B n . :
G(vl:1 ,tz) = (p1t1+q1) (pz‘tz-_l-qz) 5 (6.2.6)

Then, G ('l:1 ,tz), G, (t1 ,tz) are also p.g.f.'s of bivariate distributions
of independent binomial variables, with the same set of probabilities
(p, sp,)» i.e.
n ™y
G (t ,t,) = (pt,+q )" (p,t,+q,)

m2 n2
Gz(tl,tz) = (pl‘t1+ql) (p3t2+q2)

+m_ = +n. =n.
m +m,=m, D +n, =n
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Proof of .the lemma

From (6.2.5) and (6.2.6)
G (t,st,) G, (t,,t,) = (pt,+q )" (p,t,+q,) (6.2.7)

which for t1=l becomes,

6 (1,t,) 6,(1,t,) = (p,t,*q, )" (6.2.8)

Dividing (6.2.7) by (6.2.8), we get

G1 (*c1 ,tz) Gz(tl ,tz)

(p,t, +q )™, (6.2.9)
¢ (I,t,) G (1.%,) 1 YT
H % (5 0% and % (5 o) a 1id £.'s in t .
owever Gl(l’tz) Gz(l’tz) ?e va p.g.f. in t .

Hence, since the lemma is true in the univariate case, (6.2.9) is

equivalent to the folloWing two relations

¢ (tl ,tz) m G, ('c1 ,tz) m
gy - (hry) and gLty - (Pahty) (6.2.10)

+m_ =m.
ml 2

Similarly, by considering (6.2.7) for t,=1 we can prove that

G (t, ,t,) n G (t ,t ) B ;
A U 2 2 12727 s
g (¢t .1) (P, %, 19,0 gD (p,t,+q,) . (6.2.11)

However, one can observe that the R.H.S. of the first of the two relations
of (6.2.10) is independent of t,. Hence, since the relation is valid for

t2=l we have
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G (t, ,1) m
17 _ 1
g (L, (pt +q ) 7,

which gives

ml
G (1) = (pt+q) . -

Consequently, the first parts of relations (6.2.11) and (6.2.12) give

m
1

’ n
_ 1
G;(tl st,) = (pt +q ) (p,t,+q,) .
In the same way, we find that
my Dy
Gz (tl ’tz ) = (p1 1:1 +q1 ) (pztz +qz)
where m +m2 =m, n +n2 =n.

(6.2.13) and (6.2.14) complete the proof of the lemma.

Proof of Corollary 6.2.2

Going back to the proof of Corollary 6.2.2., one can see that

"necessity" is a side result of Corollary 6.1.1. For "sufficiency" we

(6.2.12)

(6.2.13)

(6.2.14)

make use of the fact that ,' as in Theorem 6.1.1, ‘the condition (6.1.5) fop

%, =N -m is equivalent to (6.1.6); in this instance

o - Nl ¢N1 N (sz Ty
= T, ™,
n 1 % n| ™ %
Ty ol ™ 2

where ¢ is a constant.

Hence, applying the result of lemma 6.2.1, we can determine uniquely

sequences a ) s which are of the same form as (6.2.15) with

L)
0, »7, Iy s0,

the same set of probabilities as (6.2.15) and which have as their

convolution the sequence c . Since P(Y1 »Y, [X1 ’Xz) is'of the form

1°72

(6.1.4), the desired result can be derived by a straight substitution.

(6.2.15)
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The Extension of Theorem 6.1.1 to the Truncated Case

The following theorem, provides a combined extension to the bivariate

®

case of Theorem 5.3.1 and to what was said in Note 1 of Theorem 5.4.1.

Theorem 6.3.1

‘Let {X1 oX Y, ,Yz} be a random vector with non-negative integer-valued

components such that
P{X =n ,X =0 } = P n =k Lk +1,....N
1 17272 n ,n, 1% i (6.3.1)
k >0, i=1,2 '

aad
‘P(Xl > k1 ,X2 = k2) =1, Pnl ., > 0 for kié n, < Ri + ki 5 (6.3.2)
g fixed, 1<% <N -m .
i i i i
1°72 1°72

Suppose that {(an e ;bn n ) n =O,SL,...,Ni B i=l,2} is a sequence of real,

non-negative vectors with

Cag -
a ,n> 0 1if n, ki ’k:+l"°"m:’
1 2
a =0 if m <n< N
n, .0, i i i
k <m <N i=1,2 (6.3.3)
and
by o> O if n=0,1,...,%
1 2
i=1,2. (6.3.4)

Let {cn n } be a sequence defined as follows

[¢]
"
o~
o
o
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(Obviously c > 0 at least forn >k , n >k .)
n, 0, 1 1

Suppose also, that whenever . > 0 we have

1°72

a b
r ,r, n-r ,n-r
- ~ _ - _ 1272 1 712 T2
P(Y1 =ny ,Yz—r2 X1 =n, ,Xz—nz) = » (6.3.5)

r1=0,l,...,n1, r2=0,l,...,n s I

p e 0y 7KK LN my kL, LN

Then
cnl o1, n —kl n, —k2 )
P —_—= 8 0 for some 6 > 0 i=1,2
k .k ¢ 1 2 i
1°72 k1 ,k2
Pnl ’n: if n =ki ,k‘ +l,...,mi 8 (6.3.6)
d ifm+2 <n S N for some i, i=1,2.
n, L0, i i 1

where dn o are arbitrary constants such that

iff

P(Y1 =r, Y, =r, [X =Y, X, =Y?,) e P(Y1 =r, ,Y, =r, |X =Y, +i 2%, =Y, +i, ,Y1> k, ,Y2> kz)

i=1,2,000,8  371,2 (6.3.7)

for any fixed L 1< 2’ < N, -m o3 3=1,2.

Proof

A proof can be obtained by combining the techniques used in Theorem
6.1.1 (bivariate extension of Theorem 5.1.1) and in Theorem 5.3.1

(Truncated Univariate Case).
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Various forms of the sequence {(a‘l b, ) n=0,1,...} yield the

following corollaries.

Corollary 6.3.1 (Characterization of the Truncated Double Binomial)
Suppose that the conditional distribution of Y1 ,Y2 on X1 ,X2 is
double Hypergeometric as in (6.2.1). Then the condition (6.3.7) for

have the truncated double Binomial form

R,l =N“ - holds iff Pn ,
: 1272
n r, n-n n, r, n,-r,
r Pl q:l. r P2 qﬁ a
P " 1 2
n ,n n - n _
1°72 1 n, X n-x % n, X, m,-X
Lo x| P 4 x| P2 %
X = 3 1 x2 =k2 2
(6.3.8)
n = PTER ,N1
n,= z,...,N2 .
Proof

If we define the sequences {a }, b } as in (6.2.3) we can
n .0, n ,n,°.

see that all the requirements of Theorem 6.3.1 are met. Hence, ‘the

result follows .

Corollafz 6.3.2 (Characterization of the distribution which is the
product of two independent r.v's each of which is the convolution of a
Binomial with a truncated Binomial.)

Suppose that the distfibution of Y, .Y, le 2%, is truncated double

Hypergeometric, 1i.e.
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N ™ M [ [Ny
1M To 1P 7T, ‘
P(Y1 =ry oY, T, [X Ty X, =n2) = on m | N -m 2 m | [N -m (6.3.9)
) 1ll1 1 ) 212 2
x = Xl n1 —xl x2 =k 2 n2 —X2

rl-k1 ,kl+l,...,m1 . I'z"kz’kzﬂ""’mz’ n1=k1 ,3<1+3.,...,N1 . :12--k2 ,k2+1,...,N2.

Then, condition (6.3.7) for % =N -m 'i=1,2 holds iff

n n
pn1 N1 -0, z1 m N1 -m Pn2 Nz--n2 ):2 m, Nz—m2
1 Y = R N W 2 L r 2 r, ||n,-T,
P - 17 2
n ,n Lo =
1°72 IP1 (k1 oM, k1 +1) ) Ipz (k2 ST, k2+l) . (6.3.10)
Proof
This is a direct consequence of Theorem 6.3.1 with the sequences
a , b defined as follows
D -0, 0y o0,
( O if n < k =~ for some i, i=1,2
Y| B mTh Myl Ty MT
LA r| M %
1 2
‘a = {
nl ’n2 m m
1 m X m -X 2 m X m-x
1 1 1 2 2 2 2
! x| ™ % Z LPY .
¥ =k U2 %k 72 (6.3.11)
\

n1=k1 ,k1+l,...,n1 3 n2=k2 ,kzﬂ,...,n%.

and bnl ,nzAas in (6.2.3_).

Note 1 An extension to the bivariate case of Theorem 5.4.1, based on a
sequence { anl ., '} defined for n =k1 ,k1 +1y000 3 n, =k2 ,k2 +1,..., can also be

derived, thus providing another way of arriving at Corollary56.3.2.
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The Multivariate Extension

(In this section we use the same notation as in Chapter 4.)

Theorem 6.4.1
Consider a random vector (X,Y) where X = (X 5%, 5...,X ) and

Y = (Y ,Y ...,Ys)having non-negative integer-~valued components such that

P = 7, B2 @aeean) (6.4.1)
- 2 .
n, :O,:L,...,Ni s NO> 0, i=1,2,...,8,

| g

(i.e. P(X =n ,...,X=n) =P ), with P_ > O for some
1 1 [ 8 n

N S0 4.0
1°7%2° >

n<s o, nzgﬁz,...,nsélls > &4 fixed, 1< A < N -m i21,2,...,8.

Let {(an,bn): n=(@,. .00 )y n 20,1500 5 151,2,...,5) be a sequence of

real vectors with

a >0 ifni<n§ 121,2,..44,8

B
a = 0 if n < o < Ni for some iz1,2,...,S.
n . ‘ (6.4.2)
bn > 0 if‘ n < % 1i=1,2,...,8.
Define a sequence {cn} as follows
=
¢, = 1l ab__ (6.4.3)
3 r=0 - =71
= R oy %
where a = (a ) and Y meaning ) T

b3l eresl
~ 1? *7s

=0 =0 =0 r =
e ~ 1"1 rz s
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Let us also assume that whenever Pn > 0 we have

a bn_ :
P(Y=r|X=n) = = r, =0,1,...,n, (6.4.4)
o
i=1,...,s.
Then, the condition
P(Y=r|x=Y) = P(Y=p|x =¥ +R 3%, =V, #R, 500 05X =Y 4R ) : (6.4.5)

8
for R =0,1,...,% with Z R # 0 at any time and fixed L1 < % < N !
< o i=0 g .

is necessary and sufficient for Pn to be such that

n o . n
= = E—-xga el for some % >0 i=1,...,s
n 0 .
if n, < m o+ %
and b (6.4.6)
PlLl = d13 an arbitrary constant if m + %‘< n < m for
at least one i=1,2,...,s.
. N
[Of course these dn should satisfy Z Pn = lJ J :
n n=0 2

It can be observed that (6,4.5) represents a system of 21 X 22 XeooX £ 1

equations.

Proof

Sufficiency: From

POL=plXsD) = P(EzzlX =, 4R X, =Y, ,...% =Y ) (6.4.7)

R =L,...08
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we find (as in the bivariate case) that

p P
Iy 5T, 5. 0esl [ R o n

) t = 2 el £ 0,1 m +,
P = h or ny =0,1,....m +2, ,
D 5T, 50 sl O,r’z,.;.,r‘i

allr >0, (6.4.8)

and some 6, > 0.
Let us now consider

P(11=1;|x1 =Y SX, SV 4R LXK ST, LXK SY )

= P(g::glx1 Y +R X, =Y, 4R, XSV ... X =Y ) (6.4.9)

R =1,..058 5 RF1,.00,0

1 2"°

for the values of R2 > 0, (the case R2 =0 has already been used).

For

P P
. n ,r +1l,r ,...,r O,r +1,r ,...,r n
R =1 1 2 3 s _ .2 3 ] 1
2 T TG R 1
n, ,r2+l,r-8,...,x*s ) O,rzﬂ,ra,...,r‘s
n, =0,1,... s +£1
For R2=2,. 80 ,2,2 -1 we have similar expressions.
Finally for
P P
+2 0O 000 n
R =2 Ty oTy 75y 575 s Ty _ O’rz -le Ty T 0 1
2 T 2% ¢ I 1
n, ,1-2~HL2 STy 50 s sT O,r2+22 3Ty se e sl

n =0,... oM +21 r2=o,l,. o 5T,

Combining the expressionsfor all the different values of R, enables us

to show that (6.%.9) implies that
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P
O,n2 3Tg s+ T,

7223

C
n ,n

oMl 5Tp 54 e e T,

o)
B P P

)

n
1

n, =O,l,...,rr5+1€1
n2»=0,l,.. 5 ,mzﬂl.z
A =O,...,ml

1=3,...,8.

Now .using the fact that (6.4.7) is equivalent to (6.4.9) i.e. that

P(X:{‘[Z{:g) = P(¥=?!X1 =Y1 ’Xz :Yz +R2 ’Xa =Ys LR ’Xa =Ys )

we derive

PO,n I

T AR

P
O,O,r'3 sl

Sy 4 -
STy 3Ty 5e e sk,

C
O,O,r‘3 seeesl)

Substituting (6.4.12) in (6.4.10) gives

n ,n

1 oT.

APRRRIE A

2

P
O,O,ra e el

c
n ,n

5 20 el

2 2T

Now from

1>(3~z=:g|x1 2, X, 2V, X SY 4R, X, =Y

c
0,0,ra seeesT,

e sX =Y)

n,

0 2
2

for n, =0,1,... ,m2+2,2

and some 62 > 0.

2 n :0""’"1 +R,‘
i=1,2
T =O,...,m’

3=3,...,8.

= P(Y=r|X =Y, +R X, =Y, 4R, X =Y 4R X SV, ,..00X =)

R =0,1,...,8 3

R,70,1,...,8

BRI PR e

previously) we find that for Ry =t, t31,2,...,0,,

(6.4.10)

(6.4.11)

(6.4.12)

(6.4.13)

(6.4.14)

R +R27-‘ 0 (R3=O was considered
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P P

o, ,nz,r8+t,r'4,..k.,r. O,O,r3+t,r‘,...,r’ n.omn,
c ) = ( e1 62
0, 5N, 5T, +1:,1:'4 seresl 0,0,ra +t STy se ST,

Ty =0,1,.. “ oMy .

As a result of (6.4.15)

P PO 0 .
LT PR o) _ 5050y 5T, 5eensr, My (enz
€ 1 2
05Ty s 3T, 5 e, T) 0,0,na STy see sl

.

for n =O,l,...,mi +9,“ i=1,2,3; z =O,...,m’ s J=8,...,8.

Also because (6.4.14%) is equivalent to (6.4.7), i.e. because

‘ P(E’:f"f:‘:') s P(E':{»’xl =Y1 ’Xz-:Yz ’Xa =Y3 +R3 ’X4 =Y4 e ’X. =Y- )
we find similarly that

P ’ P
O,O,na,r4,...,r’ ) Ogo,o,r‘t,...,r! n

3
3 = 3 A for some 93 > 0.
0,0,na 3Ty 50 ety O,O,O,r‘,...,z’s

So, (6.4.16) and (6.4.17) give

P
D 5T, 50, 5T, 5e e, T, B O,O,O,r4,...,rs n mn, n
= 6 ¢} 6
(&) . (o] 1 2 3
T, 5D, 50 5T, 5 e T, 0,0,0,1*4,...,1*s

where n =O,l,...,n¥ +4 3 i=1,2,3, T, =O,...,n§; JElU, e e ,8.

Continuing in the same way we will finally get from the system s (using

the previous s-1) i.e. from the system

(6.4.15)

(6.4.18)

(6.4.17)

(6.4.18) ©
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P(Y=p|X =Y, ,... X =Y

2 5Y, X SY 4R ) = P(Y=r|X =Y, R i=1,...,8)

that
P ' P
N 5ee0,N I8 0,0,...,0,n 1, n
1 - . - 6
22t . et et (6.4.19)
[} (s} 1 s -1 :
STy seeesD o0 0,0,...,O.,n! i
N n, =O,l,...,q +% s i=l,...,S.
Also from

P(¥=€]§:¥) = P(g:_']:lxl :Yl i ’Xl -;-1 =Y: -1 ’Xs =Y. +Rs )

we have that

n
& ic®
D

PO,...,O,ns

5 n =0,1,...,m +2 .
cO,...,O,n‘ y -t

(6.4.19) and (6.4.20) prove that if (6.4.5) holds then

n 9 5 n -
-E— = o I 9i 1‘11 =0,l,...,mi +R1i > iz1,2,...48,
n i=1

This completes the "sufficient" part of the proof.

The "necessary" part of the proof is a direct extension to the

multivariate ease, of the necessary part of Theorem 5.1.1.

Characterization of Some Multivariate Distributions

A straightforward application of Theorem 6.4.1 yields the following

extensions in the multivariate case to the characterizations made in

(6.4.20) |
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Section 6.2 (bivariate case).

Corollary 6.5.1 (Characterizations of the Multiple Binomial Distribution)
Let (X,Y) be defined as in Theorvem 6.4.1, and suppose that Y|X is

Multiple Hypergeometric, i.e. that

n oY >0 ,
i (6.5.1)
J and T, < n

1=1,.44,8.

5%

N

=

Then, condition (6.4.5) for L =N -m g izl,...,8 holds iff Pn has the

multiple Binomial form
G

P o= I p' q' . - (6.5.2)

Corollary 6.5.2 (Characterization of the Multiple Hypergeometric
Distribution)
Suppose that ¥[§ is4of the form (6.4.4), where (X,Y) are defined as
in Theorem 6.4.1.
Also, assume that X is multiple Binomiél as in (6.5.2). Then ¥]§
is Multiple Hypergeometric iff the condition (6.4.5) with & =N -m o, i21,2,...,8

holds.

Proof
The proof is the immediate extension of the one given for the

Bivariate case (Corollary 6.2.2). In the course of the proof, a multi-

variate extension of Lemma 6.2.1 will be required. This extension can be

obtained very easily.
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_ Remark Let us now make the following changes in the conditions of Theorem

6.4.1. Firstly, suppose that Pn > 0 for B=(n1 RIS} ) such that

In < g, g fixed, 1< g <'Z(Ni '—m‘ ). Define an>0 for In, <Z:mi and an=0 otherwise.
Also define bn>0'fob In < 2%, Suppose that conditions (6.4.3) and (6.4.4) of |

Theorem 6.4.1 are valid. Then it can be shown, by an argument similar to the one

used in Theorem (6.4.1) that, for R:0 < IR < g%, prelation (6.4.5) holds

>0, i=1,2,...,s for n: Zn1<2n§ + L%,

Using this remark we can prove the following corollaries.

Corollary 6.5.3 " (Characterization of the Multinomial Distribution)

Suppose that XIZ( = n ~ Multivariate Hypergeometi*ic i.e.,

L nhmy | no n
P(Y=p|X=n) = 50C
~ vl ~ i bg) r r
) : 0 1 s {

(6.5.3)

LN PR 2 0 for all i, Znl <, )31:'i <r, n°=n'—2n1 A I‘()=1"—§Jrl .

Then X = (X ,. ..,X") follows a Multinomial distribution, i.e.

nonl ns O<Pi<l

PO Pl ...P.

(6.5.4)

tn <, tp <1, ny=n-1In, p =1-1Ip

P-(Z: I).S:Z) = P(¥.=£!X1 :.Y1 +R1 ’Xz =Yz +Rz a0 ’X; =-Y- +Rs )

where O < IR < n-r .
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Proof

Let us define the following sequences

5 s .

r! -

— T n 70 ImSromEr-oln
a - F 01 s 1=1 . i=1 (6.5.6)
) 0 otherwise.

and
b '—-——(B:—I-‘—)-!-——-— sZn<n—r n“n-r-‘Zn (6.5.7)
- T 'y ! 1 s o 1" O&/0

n n,in In l...n ! et =1

For the convolution of a and bn we have

(n-r)! .
(n, T, )i, -1, Yoo (n -r !

n!
n In!l...n
L] 1 s

: s s :
i - = - H = >
w:x’chrro }:ri,nn0 zni,ri O,ni 0.
i=1 i=1
Hence,
n! i
! i
= = n- 2 0. « 5
c, T T T Zni n-n ., o 0 (6.5.8)
~ [1] 1 s i=1

Clearly, the sequences ag,. bg’ cg, as given by (6.5.6), (6.5.7) and (6.5.8),

can be used to express (6.5.3) in the form arbn—-r/c Consequently, the
~ ~ =/"p *

main Theorem 6.4.1 as vevised by the ‘Remark is applicahle to this

Is

situation and jmplies that (6.5.5) holds iff



c
‘Lj’[} s Dl
P —— n 8
Q@ & i=1 1
i.e. (from (6.5.8)) iff
. n o
Pz e 6, ...0, .
, tn teeon
But )} P =1. In other words
o
-1 1 n!’ B 5
P — 7 ... 7 8 8 .i.8
o n ninl...n! o 1 s
~ ~ 0 n =0 01 L]
2] 1
[}
n_+n +...+n
8 [] 1 8 o -
n
v‘ Le I , 0% o°
_ i=go Z Z Ne 0 1 s
- n ‘'L pnfn f.0.n ! s n +...+n
6 ° n n oM s [ 5 J o
o 1
i=o

Hence,
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Finally (6.5.9) and (6.5.10) give

(6.5.9)

(6.5.10)
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n! n, o no 8, ‘
Pn ) n()!nl !...Il. ! Po pl ’..PS with pi T s * (6‘5'11-
~ 2‘ o
i
i=0

Corollary 6.5.4 (Characterization of the Multivariate Hypergeometric
Distribution)
Let us assume now that the random vector (§:Z) defined in the Remark of
Theorem 6.4%.1 is such that P(§=§) ~ Multinomial as in (6.5.4). Also assume

that we can find sequences a and bn such that

P(Y=p|x=p) =

where c, is the convolution of a and bn' Then the condition (6.5.5)

holds iff the conditional distribution of Y on X is Muitivariate Hyper-

geometric as in (6.5.3).

Proof

From Theorem 6.4.1 and its Remark we know that Pn is Multinomial iff

(because for P ,n =n.)
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Hence,

cos s (6.5.12)

N n N N n n jn
~ -~ no 1 'y n! po ] (3 91 ] 1 p' s
Z Z arbn—r = coeo z see Z nT...n? |56 ) S
n=0 r=0 < ~ =~ ~ " n=0 n=0"0"""""%" ooJ Po1J 0's *
So, N n
el
c = 9 a_ b
° ° Zopp T DT, (6.5713)
Substituting (6.5.13) in (6.5.12) gives
n a b n n n
g r n-r ' P ] 0 P ] 1 P s
I vV~— o — T |>¢ R (6.5.14)
pzg ¥ N-m nyin l...n ! fp) oJ D, ‘J P, 6,
la I o
-0 T ~ “n-r
r=0 % ~.pep BE
a - b
z n
Hence, the convolution of the distributions Y and T is multinomial.
r L n &

But is has been proved by Shanbhag and Basawa (1974) that if the
convolution of two s-dimensional non-negative independent r.v.'s is
multinomial, then each of the components is multinomial with the same set
of probabilities.as their convolution. Hence,

a n n
r! P ‘0’ Pa]’

- :
v lor! D, 8, pesJ

3

(6.5.15)

s}
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and
b
n-r 1']0 n
- - (n-—r)! Po coe P‘ ¢ (6.5.16)
- — - 1
N-m (no rb)!...(n' r;). P, 6, D, 6,
)
n-r
E:”‘ -~

Moreover because ;e have assumed that X[K has the form arbn—r/é we find
from (6.5.14), (6.5.15) and (6.5.16) that g.]g is Multiva;i;t;
Hypergeometric as in (6.5.3).

Note Extensions to Corollaries 6.5.3 and 6.5.4, providing charactefizations

for the Multiple Multinomial and the Multiple Multivariate Hypergeometric,

are easily obtainable.

The Extension of Theorem 6.4.1 to the Truncated Case.

The theorem that follows 1s a direct extension of the Theorem 6.3.1,

which we established previously for the Bivariate Case.

Theorem 6.6.1
Let {X,Y} X = (X1 Xy s000sX )y ¥ = (Y1 ,...,Y.) be a random vector with

non-negative, integer-valued coﬁponents such that

P(X=n) = P §=(n1,...u§)

n .
n =k Sk Hl,.e,N (6.6.1)-

h >0, i=l,...,s8

and

P(X>k) =1, P >»o for 'kiéni <Kty ., & fixed, 1 <4< N -m  (6.6.2)

~

Suppose . now, that'{(an;bn): n,=0,1,...} is a sequence of non-negative

B
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real vectors with

a, > 0 if o, =% ,% +l,...,@
i=l,...,s
a =0 if m <n <N (6.6.3)
n i i i .
and
bn >0 if n =O,l,...,%
i=l,...,s

Furthermore let cn be defined as follows
i

n r b -r

~ _I.“_‘Q ~ E»..

(Obviously <, > 0 at least for o>k, is1,2,00.,8.)

Finally assume that, whenever Pn >0,

t

¢y n-r =~
Plfrlyen) = == et
B4
1 n =k K LN (8.6.4)

i=1,2,...,s.

Then, the condition
P(g:;lg:g) = P(Z=£fxl SV AR el X =Y R Y >k seees¥ >k )
8
with } R # 0 at any time, R =0,1,.00,8 5 i=1,2,...,s. (6.6.5)
i=1 .

is necessary and sufficient for Pn to be such that

~ £
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PE P]’S s n -k
-— = — I 8 if all < + 8
Cn C.}S j=1 H e ni ml i

&rwmei>Oiﬂ””§;%fmw,%<%—ml

ro (6.6.6)
and Pn = dn’ ifm + & < n, < N, for at‘least
one i=1,2,...,s. [dn is an érbitrary constant
i ,~
such that z P = l.} J
n
n=k ~

(Here again, (6.6.5) represents a system of . X By Xawx g equations.)

We omit the proof, since it follows on from the pfoof of the’Bivariate
extension (Section 6.3).> '

As a result of Theorem 6.6.1, it can be seen that the relation (6.6.5)
with % =N -m, i=1,2,...,s characterizes the truncated Multiple Binomial
as distribution X, in the case where X[§ is Multiple Hypergeometric,

‘ ?urthermore, if the distribution of YIX is Truncated Multiple Hyper-
geometric, relation (6.6.5), for %, =N -m , is a characterizing property
for the distribution of X to be the distribution of the product of s
independent r.v.'s each of which is the convolution of a Binomial with a
Truncated Binomial.

Making changes in the conditions of Theorem 6.6.1 analogous to those
in the Remark of Theorem 6.4.1 we can prove that relation (6.6.5) for
R ERi< n-r characterizes the Truncated Multinomial (when Y|X is Multi-
variéte Hypergeometric). It also characterizes the convolution of a
Multinomial with a Truncated Multinomial (when Y|X ié Truncated Multivariate

Hypergeometric).



