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CHAPTER 5.

CHARACTERIZATIONS OF FINITE DISCRETE DISTRIBUTIONS.

Introduction

In Chapters 3 and 4 we used theorem 3.;.1 and\its variants and
extensions to obtain characterizations for a number of Univariate and
Multivariate Distributions, based on the R-R condition. In this Chapter
we introduce another Possible form of relation betyeen the distributions
of Y and Y]X. Making use of this relationship we obtain a general
characterization for a class of "modified" distributions with finite range.
This class includes distributions, the first m probabilities of which, are
given by a certain law and the rest N-m (N being the range of the values
of the r.v. X) are arbitrary constants. (The Binomial distribution is a
member of that family if one considers m=N). An extension to this result
is also given which makes possible characterizations of truncated forms of
the distribution of X. Finally characterizations based on truncated forms

of the conditional distribution of Y|X are obtained.

The Univariate Case

Theorem 5.1.1

Let{(an,bn) n=0,1,...} be a sequence of real vectors such that
a > 0, n=0,1,...,m, and a = 0, n=mt+l,...,N
b, > 0, n=0,1,..., 4, (5.1.1)
L fixed, 1< 2 <N-m, 0<m<N, N>O0.

n
and let {'Z ab _, n=0,l,...,N} be denoted by {cn: n=0,1,...,N}.
, : “o

¢
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Let {X,Y} be a random vector of non-negative integer-valued components

k such that X has the’ distribution

P{X=n} = P n=0,1,...,N with P, >0 for 0K n<2, 2> 1.

Suppose that whenever P; >0

a .
P(Y=r|X=n) = ——'—ci r=0,1,...,n. S (5.2
: :
Then,
P(Y=r|X=Y) = P(Yzr|X=Y+1) = ... = P(Y=r|X=Y+f) (5.1.3)

r=0;l,...,N, (2 equations),

for a fixed 2 (1 < ¢ < N-m),
iff
cD '3
Pb = 6 for some 6 > 0 if n=0,1,...,m+2
P = 0 (5.1.4)

d  if me <n<W,
where dn are arbitrary constants with the condition
L+m

N
! P+ ] 4 = 1.

n=0 n={+m

Proof We conmsider First the "only if" part of the proof. Obviously (5.1.4)

is true for n=0. Let us consider the relation
P(Y=r|X=Y) = P(Y=r|X=Y+l) r=0,1,...,N . (5.1.5)

From (5.1.2)

ab
r 0
P 2
P(Y=p[X=Y) = ——0v  and , (5.1.8)

P(X=Y)
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ab
r 1
Pt.”' c:r+1
P(Y=p|X=Y+1) = TOTTTRN) (5.1.7)
Also (5.1.5), (5.1.6) and (5.1.7) give
P & bo - P(X=Y) Pr+1 o
r ¢ P(X=Y+l) ¢ r1
r z+‘1 .
Since a 0 r=0,1,...,m
Bar % pixeve) E
1 : b1 P(X=Y) c,
i.e. E
+1 : i
c’ = 8 —C—'— r=0,1,...,m, . (5.1:8)
i r+1 T
where .
b E
6 0 P(X=Y+l)
b, . P(X=Y) t

1

(5.1.8) can be written in the form of the following system of equations.

P P
e
4 %
® P P
-c_z. = @ Ei.
- 2 1 (5.1.9)
Pz +1 Pr )
=0 — r<m.
cr +1 cr
Consequently
~ P P : .
= FT S e0,1,.um, , ' (5.1.10)
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which means that (5.1.4) is valid for n=l,...,mtl. We will prove that it

is also valid for n=mt2. In

P(Y=r|X=Y+1) = P(Y=r|X=¥+2) (5.1.11)
we have
‘ ax bz
r+2 C . . '
P(Y=r|X=Y+2) NEnD S (5.1.12)
Also (5.1.7), (5.1.11), (5.1.12) give,
Pr+2 r+1
S = 9! T r=0,1,...,m (5.1.13)
r+2 r+1
with
o1 - U RP(r=v42)
b, P(X=Y+1) °
So, (5.1.13) can be expressed as
P_z. = o' ..P_l..
c2 cl
.I}_ = e' .I_).E.
e, <, (5.1.14)
P
AL T i3 r=0,1,...,m.
C C
r+2 r+1

From the second equation in the system (5.1.9) and the first in (5.1.J%) we

find that 8' = 6. So, (5.1.14) becomes

Pr +2 x4+l ¢P1
= =0 e r=0,1,...,m,
t+_2 1

and taking into consideration (5.1.10) (r=0) we have
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ma o gma o . (5.1.15)
Care %o
Continuing in the same way, from
P(Y=r|X=Y+2-1) = P(Y=r|X=Y+L)
(havirg taken note of all other equalities in (5.1.3)) we derive that
P P
22 o gttt 2 0,1, (5.1.16)
c c :
T+ (1}
As a result of (5.1.16), (5.1.4) is established.
Next let us consider the "if" part of the proof. For O < j < &
we have from (5.1.2) and (5.1.%)
%l%
]
clyayasy - P(Y¥Er,X=r+3) _ G 77
P(Yr|x=¥+]) = P(x-Y=3)  ~ B(X-¥=3)
b a -P
= i r 1] x +j -
'?Ti:?zﬁj- E;- ] r=0,1,...,m
(since r+j < mtl).
Hence
a o
P(¥=r|X=Y+3) = 3O r=0,1,...,m. (5.1.17)
Furthermore, the L.H.S. of (5.1.17) is a probability distribution. So,
moa o ’
R e—— 1
reo  $(350)
i.e
m -
$(39) = [ ad = ae). (5.1.18)
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(5.1.17) and (5.1.18) give

P(Y=p|X=Y+j) = 2=0,1,.0.,m o

Since the R.H.S. of (5.1.19) does not depend on j, we see that

(5.1.1

P(Y=r|X-Y=j) are independent of j for j=0,1,...,% and hence these are all

equal for a given r (r=0,1,...,N). So (5.1.3) is established.

5?4 Characterizations of Some Univariate Distributions based on Theorem 5.1.1

As a result of theorem £.1.1, the following corollaries can be stated,

yielding. characterizations for a "modified" Binomial and Hypergeometric dist.

Corollary 5.2.1 (Characterization of a "modified" Binomial Distribution)

Consider the random vector (X,Y) as in theorem 5.1.1. Suppose that

m| {N-m
P(Y=r|X=n) = z E_r r<n, mu,N>0
B m<N

i.e. Hypergeometric (N,m,n). Then

P(Y=r|X=Y) = P(Y=r|X=Y+l) = ... = P(Y=r|X=Y+%)
% fixed, 1 < & < N-m.

iff

P, = C(N] PPq¢ "  0<p<1l gq=1vp

n n

where C - is a comstant; N > 0, n=0,1,...,%+m.
Proof

Define

(5.2.1.

(5.2.2)

(5.2.3;

(5.2.u4)



-102-

Then,

These sequences can be used to express (5.2.1) in the form aibn_r/é
N N n

and also satisfy the requirements of theorem 5.1.1. Hence, (5.2.2) is
equivalent to (5.1.4), which gives, for n=0,1,...,m+%
P = P [ﬂ} 8" i.e. P =c(§] (_l_i%_)ﬁ. :c[ﬁ] "q " where p =i$_e
and C = P0(1+8)ﬁ.
Corollary 5.2.2 (Characterization of éhe Hypergeometric Distribution)
Suppose that (X,Y) are as in 5.2.1, P is Binomial as in (5.2.3), with
2=N-m, P(Y=r[X:n) is of the form (5.1.2). Then condition (5.2.2), for 2=N;m,

holds iff P(Y=r|X=n) is Hypergeometric as in (5.2.1).

Proof The "if" part is contained in corollary 5.2.1. For the "only if"

part we have from theorem 5.1.1 that (5.2.2), for 2=N-m, holds iff"

P N anN—n n
- .n -n n - N P \
¢ = F c, 0 = ¢, - ] = c [n] [qu (5.2.5)
o q .
Hence
N N N Ln LN
Lo s LGB a3
n=0. o 0n=0 8 qﬂ 0 q9
so,

N -N
e = J ¢ [1+P——] (5.2.6)
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Substituting (5.2.6) in (5.2.5) we get

cn _ N n . e _ N n (l )N~n h

- Sl I E_qe 1 +Lq9 = lal T - (5.2.7)
e, |
n=0

where 0 < 7 < 1 for a suitable 8 > 0.
So, the distribution c;//ﬁ is of the Binomial form. On the other
cn
n=0
hand it is well known (see e.g. Ramachandran (1961) also in (1967)) that

the Binomial distribution is uniquely decomposable into two Binomials

with the same probability of success. That implies

a
m x m-
—— = [r] T (1-m) =0,1,...,m (5.2.8)
Z‘a : .
i=o0 ! ‘
and
bn . N-m n " \N-m-n A 3
— = nl ™ (1-w) n=0,1,...,N-m . (5.2.9)
b
i=o !

The result follows if in P(Y=r|X=n) =ab /c we letc , a , b be as
r n-r n n n n

in (5.2.7), (5.2.8) and (5.2.9) respectively.

Note 1  Patil and Ratnaparkhi (1975) have shown that if the conditional
distribution of Y|X is Hypergeometric as in (5.2.1) and the distribution
of X‘is Binomial as in (5.2.3) then the R-R condition P(¥=r) = P(Y=r|X=Y)
holds. It can be observed that their result is a side vesult of the "only
if" part of Corollary 5,2.1.

In the same paper Patil and Ratnaparkﬂimention that they are

investigating the problem of proving that when Y|X ~ Hypergeometric and

N
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the R-R condition holds, then X is Binomial.
The ‘counter-example which follows sh.ows that such a result does not

hold. Let us cohsider

1}IN-1
r}{n-r

P(Y=r|X=n) = . p=0,l. (5.2.10)

i.e. Hypergeometric (N,1,n),

and @ probability-distribution P(X=n) = P_~such that

Nz

Py for ﬁ:o,l
p L LR _ ' (5.2.11)
a _ N-1 '

—_——— for n=N -

oN® +N-1

(Clearly P , n=0,1,N ... is well defined by (5.2.11).)

In the above situation the R-R condition

P(Y=r) = P(Y=r|X=Y) r=0,1 (5.2.12)

is ‘equivalent to

P(Y=0) P(Y=0|x=Y) (5.2.13)

(5.2.10) and (5.2.13) give

- [N—l] B
I p L2 . (5.2.14)

s 2 N (5.2.15)
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and

N-1
o N
n N-n
I e - T L
n=0 n - n=0 " N
n
2
- N [l+lq.l}lJ s M.flii). = WI{'I (5.2.16)
2N +N-1 2N 4N~1 ) i

Since the R.H.S. of (5.2.15) and (5.2.16) are identical it is clear
that P » n=0,1,N . as defined in (5.2.11) satisfy the R-R condition.
Hence, there exists a orobability distribution other than the

Binomial which satisfies the R-R condition.

Note Corollary 5.2.1 implies that in the case mentioned the minimum

condition require for P to be Binomial is

P(Y=r|X=Y) = P(Y=p|X=v+l) = ... = P(Y=r|X=Y+N-m)

5.3 The Extension of Theorem 5.1.1 to the Truncated Case
Theorem 5.3.1
Let (X,Y) be a random vector of non-negative, integer-valued

components such that
"P{X=n} = P =k ktl,... N, with P >0 for k.< n&k+s

where k is non-negative integer, and & is fixed, 1 < & < N-m. Suppose that

{(an,bn) n=0,1,...} is a sequence or real vectors with

a >0 n=0,1,,..,m, a =0,n>mn
} (5.3.1)

b >0 n=0,1,...,¢
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and let {Ch} be defined by {cn = Il a b _» n=0,l,...,N}.
If, whenever P > 0 n=k,k+l,...,N

b
r n-r

P(Y=r|X=n) = = r=0,1,...50 .

Then |
P(Y=r|X=Y) = P(Y=r|X=Y+1,Y> k) = ... = P(Y=r|X=Y+2,Y > k)
for a fixed £: 1 € £ < N-m, r=k,k+l,...,N
iff
cn n ~k ’ )
Pk . ] for some 6 > 0 if n=k,k+l,...,m+s
k
Pn = . .
d , a constant if mHe < n <N,

Proof  (An outline only is given, since the proof follows on similar

lines to the proof of theorem 5.1.1)

"Only if" part of the proof.

From
P(Y=r|X=Y) = P(Y=p|X=Y+1,Y > k)
we find
P

Loz EOFTE eor pek k1, ... ,m

C C

T +1 k
Also from )

P(Y=r|X=Y+1,Y > k) = P(Y=r|X=Y+2,Y > k)

and using (5.3.5) we have

s

(5.3.2)

(5.8.3)

(5.3.4)

(5.3.5)
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Pm+2 Pk m+ 2 ~k !
) — = = 5 (5.3.6)
cm+2 Ck
Finally from
P(Y=r|X=Y+£-1,Y > k) = P(Y=r|X=Y+2,Y > k)

and taking into consideration the previous £-1 equations we get

Pn Pk n -k v
G o 6 n=k,k+l,...,m+L. "(5.3.7)
n k ’

The "if" part of the proof can be obtained using an argument identical
to the one used for the "if" part of Theorem 5.1.1.

The following corollary is a direct consequence of Theorem 5.3.1.

Corollary 5.3.1 (Characterization of the Truncated Binomial)
Consider the random vector (X,Y) as in Theorem 5.3.1. Suppose that
the conditional distribution of Y on X is Hypergeometric as in (5.2.1).

Then
P(Y=r|X=Y) = P(Y=p|X=Y+l,Y > k) = ... = P(Y=p|X=Y+N-m,Y > k) (5.3.8)

iff P is truncated binomial of the form given by (3.6.2).

Characterizations when the Distribution of Y|X is Truncated.

By making some changes in the conditions on the'sequence'{an,b;} the
following theorem can be derived. This gives rise to characterizations of

finite distributions, based on truncated conditional distributions.

Theorem 5.4.1
Let (X,Y) be a r.v. as in Theorem 5.3.1. Suppose that {an} n=k,k+l,...

is a sequence of real numbers such that a > 0 for n=k,k+l,...,m,
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a =0, m<n <N and {bn} n=0,1,2,... is another sequence with b, >0
n=0,1,...,N-m and b =0 for N-m<n <N.

Define,

c . = Z a'bn_r n=k,k+1,...,N.

Then, if whenever P >0 n=zk,k+l,...,N

P(Y=p|X=n) = r=k,k+l,...,n.

Then, condition (5.3.3) .is equivalent to (5.3.4).
Proof The proof follows in the same manner as that for Theorem 5.3.1.

As an application of Theorem 5.4.1, we have the following corollary.

Corollary 5.u4.1 (Characterization of the Distribution which is the
Convdlution of a Binomial with a Truncated Binomial).
Let (X,Y) be as in Theorem 5.3.1. Suppose that the conditional

distribution YIX is Hypergeometric, truncated at k-1, i.e.

) lmIlN—m! '
P(Ysp|¥=n) = AELIT . ' : (5.4.1)

Then, condition (5.3.8) holds iff the distribution of X is the convolution

of a Binomial (N-m,p), with a Binomial (m,p) truncated at k-1, i.e.

n N-n & m| [N-m
P(X=n) = 1ok SRR ‘ (5.4.2)

Ip(k,m-k+l)
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Proof  Consider the following sequences,

m fo m-z .
s ¢ r=k,k+1,...
a =
[uj 7 o 0<y<1 (5.4.3)

$=1-w

(i.e. Binomial truncated at k-1.)

and

b = (N;m] T ¢ " n=0,1,... B (5.4.4)
Then c, n=k,k+l,...,N is given by
R e o
r=k
= 5 (5.4.5)
Ip(k,m-k+l)

Clearly a > 0 n=k,kt+l,...,m and bn > 0 n=0,1,...,N-m. It can be checked
easily that the truncated Hypergeometric Distfibution;(S.u.l) can be
decomposed into the form‘azbn—r r=k,k+l,... with the sequences a;, bn, e,
c .
n

defined as in (5.4.3), (5.4.4), (5.4.5). Hence, applying the result of

Theorem 5.4.1 we find that, condition (5.3.8) holds iff

: ,
P = P E: ) n=k,k+l,...,N (5.4.8)
k

and some 6 > 0.
Substituting c_, ék‘in (5.4.6) from (5.4.5) and straightforward manipulation
shows that P can only take the form given in (5.4.2).

Note 1  Corollaries 5.3.1, 5.4.1 can also be considered as special cases

of a theorem which is the extension of Theorem (3.6.2) to thé case under
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study in this chapter. This extension is a generalization of Theorem
5;3.l‘and‘is obtained by considering the sequence {an: n=0,1,...} to be
positive for k<n<nm instead of defining it to be positive for 0 € n < m.
It is also necessary to assume that
b
P(Y=r|X=n) = —'—51 r=0,1,...,n

nzk,k+1,%..N.

Note 2 Corollary 5.4.1 can be used to provide the answer to a problem
similar to Problem 3.6.1 examined in Chapter 3. This problem arises from
the paper by Patil and Seshadri. These authors showed that if Y and Z are
independent, and X = Y+Z, then Y[X is Hypergeometric iff Y, Z/have Binomial
distributions. The question can now be asked as to whethef that result
‘can bé extended to the truncated case. In other words, is the condition
that Y]X has a truncated ﬁypergeometric distribution necessary and
sufficient for Y to be Binomial and Z to be truncated Binomial? As
Corollary 5.4.1 shows the "necessary" part is true. But the "sufficient"
part is not. The reason is that if YIX is truncated Hypergeometric and
the condition (5.3.8) holds, then from Coréllary 5.4.1, X is the
convolution of a Binomial with’a truncated Binomial. But, using a method
similar to the one employed in the Note of Corollary 3.6.1, one can show
that the ponvolution of a Binomial and a truncated Binomial, is not
uniquely decomposable into a Binomial and a truncated Binomial. Since
independence of Y and Z implies (5.3.8) it is clear that the answer to

the problem is in the negative.



