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CHAPTER 4.

SHANBHAG'S EXTENSION OF THE R-R CHARACTERIZATION.

THE BIVARIATE AND MULTIVARIATE CASES.

In this chapter we study the Bivariate and Multivariate aspect of
Shanbﬁag's extension, as well as the respective truncated forms. Using these

results, simpler proofs for some of the theorems of Chapter 2 are obtained

-and the bivariate and multivariate extensions of the characterizations

established in Chapter 3 are derived. Making some changes in the conditions

of the extension we arrive at some characterizations of “truncated statistical

distributions.

7

Shanbhag's Extension.. The Bivariate Case.

Theorem 4.1.1 (Shanbhag 1976)

Let {{a_ . b - :n,n =0,1,...| be a sequence of real vectors
0 50, , 0 LN, 12 .

with .
>
an’1 ., 0, bnl ,n2> 0 for every o ,n, 20
and ‘ ‘ ' :
b0 0 >0, bo 1 >0, b1 ’nz> 0 for some n, 2 0.
Define Jc to be the convolution of [a » Jb given by
P nl ’nz . n N n .,
1272 1°72
o n, ,
c = ) 1. a b 3 n ,n =0,1,... (4.1.1)
n, -0, e =0 r2=0 Tefy, By kr’1 2T, 7T, 1°.2 i Soie: Sun o

(Obviously we have ¢ >0 for-all n ,n,_ > 0.)
n .0, 1°72
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valued components, such that

P{x1 =n, ,X2=n2} =P n MysmT0ls...
e 1272
with Pn > 0 for som,e‘n1 > 0 and also for some n, > 0. :'Assume also,
172
that. whenever P > 0 we have
T T bn\ir SR, =7
_ e My _ ~ 137 By TH Y,
P(Yl Ty ¥, 7Ty 1% 5y 'Xz_nz) e c
0 s0,
n =0,l,.,;,q
n =0,1,...
Then, )
P(Y, =r, ,Y,=r,) = P(Y, =r .Y, =r, |X =Y, ,X,=Y,)
o P(Y1 Y, 7, IX1 =% >Yz)
iff
P
n ,n P n n
122 _ "o0,0 2
P = e1 92 . for some e1 ,62 >0
n, N 0,0
122
Loty n ,n2=041,...

1

X X, ,Y1 ,Y2) with non-negative, integer-

(4.1.2)

(45103)

«

(4.1.4)

(4.1.5)

Proof  (We will only outline the proof here, since this is a special case

of the multivariate extension, which will be stated and examined fully in

a later section.)

We first observe that (4.1.4) is equivalent to the following set of

" conditions. (This is a special case of the statement 1 in theorem 4.5.1

which appears later.)
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P(Y, =r, ,Y,=r,) = P(Y, 7r,,¥,=r, lx1 =Y X, =Y, ) (a)
05 (4.1.8)
P(Y, =r, ,Y2=r2|X1 =Y, ) = P(Y, =r, ,Y2=r~2|X1 Y ,X,=Y,) . (b)
Define now the sequences
P .
v o= Toh, for every fixed r, >0
n, B R . (4.1.7)
. r D, and n, =0
b P(X =Y ,X =Y ) ;
L I i T 12 m; 031, wva W (4.1.8)
2 "~
g P(X, =Y, ) .

Then, with the sequences vV, W as given Ey (4.1.7) and (4.1.8) we see

that (4.1.6b) is equivalernt to

v o= ] v W om=0,1,.... .
2 2

P N P : .
Ty o0y ry 0 Dy : B P =

S == - 8, r, 50, =0,15..0 : (4.1.9) .
r, »n, T

(because r, was fixed but arbitrary).
(I,j: is interesting to note, that if (4.1.9) is valid then, conditional on

X =¥1,the vector (Y1 ,Yz) and the variable X,-Y, are independent.l-

Define now the sequences

n ;0 .
Vn = n =20 (4.1.10)
1 n .0 .
and
. w n 3 .

: 2 P(X =Y. ,X. =Y ) .

W = { ¥ b 8 } 17N 0% T
n L n,n 2 [ —m— : (4.1.11)

t nz"o R bo 50
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Then,

o _ )
s =y v W m =0,1,...
1 n1=0 n1+m1 o, !

is equivalent to (4.1.6a). Consequently, from lemmz 3.1.l again we find

that (4.1.6a) holds iff

n ,o P

: L N e T 2 (4.1.12)
C. C 1 1 g
n_,0 0,0

Hence combining (4#.1.9) and (4.1.12) we finally find that the pair of
conditions (4.1.6) (and therefore the system (4.1.4)) holds iff (4.1.5)
is ‘true.

Remark If the vector (X1’X2’Y1’Yz) is such that

P P -
n ,n -
0Ty 0,0 T
= > en‘ 8_2 for every n ,n, > 0
c c 1 V2 100
n, ,n, 0,0

then (Yi,Yz)‘and (Xi—Y;,Xé—Ya) are independent.

Proof  The proof is similar to the one given for the univariate case

(Section 3.1 Note 3)

4.2  Characterizations of Bivariate Distributions based on the Extension

The result of theorem 4.1.1 can be employed in order to characterize
bivariate statistical distributions. The corollaries that follow illustrate

the method.

Corollary 4.2.1 (Shanbhag).

If (X1’X2’Y;’Yz) is a random vector of non-negative integer-valued

components such that

T
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. e T r n -r n r n -r,
1 ™ Th 2 Py Ty
P(Y, =y ’Yz T )Xl =y s% =m, ) = {rl }px 9 {r }Pz 9,

r =O,l,...,q

n =0,1,... (4.2.1)
o< D, <1, q =l-p‘
i=1,2.
(i.e. double Binomial)
with P n ° P(X1 =n ,X, =n2) denoting a discrete probability distribution
1°72
satisfying the conditions stated in (4.1.2) of theorem 4.1.1, then the
condition (4.1.4) holds iff
.
S L Vi
P = e 2 1 2. 5 ,n-=0,, ‘
= : P
n s, n! nl 1%z (4.2.2)
for some 11 ,A2 >0 .
Proof -
Consider the following sequences
n 0,
BBk (4.2.3)
a = n ,n =0,1,... b.,2.3
n .0, 4 n nzl 1 2
and
' %'
bn & = T OnT n, ,n2=0,l,... (4.2.4)
12 1° 2"° :
Then the convolution of a and b will be
n, 40 n .0
1372 1772
e SE n ,n =0,1,... (4.2;5)
n ,n, n In! 1 ”2 i P

Buta;l n s by ;n‘, -
172 [ S 1272

c . as given by (4.2.3), (4.2.4) and (4.2.5) can
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clearly be used to-expressf(4.2.l) in the form (4.1.3). Hence, applying

theorem 4.1.1 the result follows.

Note 1  The previous corollary is an improved version of theorem 2.4.1.

This is so because condition (4.1.4) is simpler than (2.4.2).

Corollary 4.2.2  (Characterization of the Double Binomial)

K Let
A= o e L
P =oeTAH A ' (4.2.6)
n o0, ' n!

A LA, >0, nl,n2=0,l,...

Suppose: that P(Y =r, ,Y,=r, ]X =n, ,X, =n, ) is of the form (4:1.3). Then,
~the condition (4.1.4) is satisfied iff P(Y =r, oY, =T, IX =n, ,X,=n,) is of
the form (4 o8 l), i.e. double binomial. : ’
Proof
The "if" part of the proof is straightforward and is_cdhtaine@yin
. Corollary 4.2.1.
For the "only if" part of the proof we have from Theorem 4.1.1 that

the condition (4.1.4) holds iff

: n; Dy - . 2
o, Dy ' :
R :1——,—:’1—— 6, o, - (4.2.7)
122 o 172

Using Teicher's (1954) extension of Raikov .Theorem we see that (4.2.7)

is equivalent to o :
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A%A%

a = a 1 T2
T So,0 ir !

Ty 9T, ) ?i Ty
n, o,

2

W oW,
bn n - bo o n In!
172 LA Tl T

where=0 < Al,lz <‘m and 0 < UyoaHy < .
Hence it is immediate that the condition
(4.2.9)  are-satisfied.

Employing as a, s C

1272

(4.2.8)

(4.2.9)

(4.1.4) holds iff (4.2.8) and

in (4.2.1) the expressions given

by (4.2.8), (4.2.9) and (4.2.7) respectively, we arrive at the asserted

result,

Note 1  Corollary 4.2.2 is a variant of

(1970) (Theorem 2.4.2). The difference i

a result obtained by Srivastava

s that in Theovem 2.%.2 AsU Were

variables while in (4.2.2) they are fixed. Once again, the additional

condition (4.1.3) is necessary for our proof. It is also obvious that

condition (4.1.4) is simpler than (2.4.4)

employed in Theorem 2.4.2,

Corollagz 4.2.3 (Characterigation of the Double Negative Binomial)

X, 5Y

Consider (X1 0 S AN

Suppose that.

Y,) as previously.

-m Py _"EJ Y
r n -r r n_-r
1M Th 2 | M2 T
P(Y1 r 21Ty IXI o ’Xz D, N S Eoo e
m =Py Ty TPy :
n n, r(&fZ.lO)

r'!=0,l,.;.,r1i, LY >0, ; >0

i.e. double Negative Hypergeometric.

i=1,2,
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Then the condition (4.1.4) holds iff
-N ]| N n, -N N n,
1 1 2 2 2
P(X =n ,X,%n ) .= n, p, (-q) n, p, (-q,) (#.2.11)
with N! =m +p, 1:11’,2’

i.e. Double Negative Binomial with parameters (p1 sm +0, 5 D, ,m2+p2).

Proof '

This follows easily by applying the result of Theorem 4.1.1 with

‘the sequences a s b defined as
. n ’p n 3
1272 1%
rmlk-l-n1 -1) rm2 +n, -1)
a =
n, N . n
172 . 1) 2 )
[o,+n -1) [p,+n, -1
1y 2"
bn n = :
1272 n n,
¢ -t 2

n n .
9" 9’

(4.2.12)
cBy By
L 9

Note - The wremark in Note 2 of Corollary 3.3.2 (univariate case) applies

again here.

The Truncated Bivariate Extension

‘Theorem 4.3.1 Define (X ,Y ,X Yz) as in theorem 4.1.1.

1°2712%72°?

Suppose that k1 and k2 are some non-negative integers ‘for which

P(X, >k ,X,>k,) =1, P(X >k ) >0 and P(X,>k,) >0 ; (4.3.1)



T

thénv
Y = = > = = = = =
P(Y, =, .Y, =7, |V, > koY, 2k,) = P(Y = LY, rzlx1 Y, X, 5Y,)

(4.3.2)

= P(Y,=r,,Y, =r, [x1 N, X >V LY, 2k ).
T, 7k Lk +l,...5 11,2,
iff
P P
n oo, k1 ’kz n, —k1 n, —kz :
g 0 6, . ; (4.3.3)
C Ck x 1 2
By ey 1°72
for n =k Lk +1,k +2,...; i=1,2,
and some 6, ,8. > 0.
.1 2
Proof ' .

/The proof follows by combining the techniques used for the truncated
extension of the univariate case (proof of Theorem 3.5.1) and the

bivariate extension (Theorem 4.,1.,1).

The following corollaries of Thecrem 4.3.1 can now be established.

Corollary 4.3.1 (Characterization of the Truncated Double Poisson)
Suppose that (X& Y X, ,Y, ) are defined as in (4.3.1). .Assume that

the conditional distribution of Y1’Yz given X and Xi, is double Binomial

as in (4.2.1).  Then, condition (4.3.2) holds iff

n
A w?
]
n ! nzl ;
pn n = — = n =K ,% +lgeas v d51,20

1272 Z )\x'l Z uxa

: L - ox T A ’ P (4.3.4)
gl—ki i xz—k2 x&!

i.e. iff Pn 0 is Double Poisson truncated at the‘pointsl&-l and k,-1.
12 : . d
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i.e, iff P
. n

Corollary 4.3.2 (Characterization of the Truncated Double Negative
Binomial)
Suppose‘th'at the conditional distribution of Y, ,Y, given X and X,

is double Negative Hypergeometric as in (4.2.10). Then, (4.3.2) is true

.

iff
-N N -N N n- .
et n 2 2 )
n p, (-q) n, p, (-g,)
P = L .
‘1, 50 o N N % = N) N K
. 2 )—: o P11 (_q1 ) z S p22‘ (_qz)
= % xz"kz * i

i , C(4.3.5)
n"=ki ok 1, ' ,

N, =m +o,

is Double Negative Binomial truncated at k -~ 1 and k2- 1.
Yy 0By : . ) ’ . .

_The prdbfs of the above corollaries are similar to the ones given in

the univariate case (Corollaries 3.5.1 and 3.5.2) and are direct applications

of Theorem 4.3.1, where as sequences an n? bn n we consider those
1272 1272

defined in (4.2.3), (4.2.4) (for Corollary 4.3.1) and in (4.2.12) (for

Corollary 4.3.2).

A Remark on the Truncated Bivariate Extension

A situation similar to the one examined in Section 3.6 concerning

} arises again in the truncated Bivariate Extension.
172 :

the sequence {a
It can be checked as before that the theorem 4.3.1 remains valid, if

the sequence {anz ,nz} is deflned for n ?kl ,k1 +1,... and n, =k2 ,k2+l,. dc

with k -and k, positive integers. (Conditions for bn n remain the same.)

12

vy
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This fact enables us to arrive at some characterizations based on the
‘assumption that therconditional distribution of Y1’Yz given X and Xé-

is truncated at. the points.kl—l, k,-1. The variant of Theorem 4.3.1 can be
stated in the following way.

Theorem 4.4.1

Suppose that (XI;X

z’Y1’Y2)’ k, sk, are defined as in Theorem 4.3.1

and that (4.3.1) is satisfied.

Let {anl’nz} n =k ok +1,...; i=1,2 and {bnlsnz} n =0,1,,..; i=1,2

be two sequences of real numbers such that

a >0 foralln =k i=1,2. (4.4.1)
nl ,Il2 B i i

and,bn L oas defined in Theorem 4.1.1.
1°72

Also assume that whenever Pn n >0 n > h i=1,2, we have
1°72

a b
r - -7
Ty oTy By 7T o1y 2

P(Y1 = LY, =r, X =0, X, =n, ) = =
: n ,n (4.4.2)
1°72
r, =% ,h +1l,...

i=1,2.

Then (4.3.2) holds iff (4.3.3) is true.

Theorem 4.4.1 provides characterizations of the distriﬁﬁtions which
are products of two independent r.Q's each of thch is the convolution of
a Double’Poisson with a truncated Double Poisson (the distribution of
Y;,Yzlxa,Xé being truncated Double Binomial); and a Double Negative
Binomial‘with a truncated Double Negative Binomial (the condifional

distribution being truncated Double Negative Hypergeometric). These

characterizations are given in the following corollaries.
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Corollary .4.1

Suppose -that

n LT e n,| r, p,7T,
R 84 Pl q‘l T pz qz
LP(Y =r LY., |X n LX =n ) = A 2L
‘ =r ,Y.= =n X, =T = — -
171 e 2 e e 1}1:1 1'x1n1X1, riz X, 0,7%
by g - , P, 4
X =k1 x2=k2 !
) ' (4.4.3)
r =k 89 +1,...3 i=1,2.
i.e. truncated Double Binomial.
Then condition (4.3.2) holds iff
nfn)lr n-r n n, -r
1 2 r, D
e H1TH, z iy ul 1}{2 2 quz z}
i L B 1 oz r,| 2 72
P = 17N 2
n ,n, =
© )\11 © A'l'l2
nin! } — 22
172 L o n ! o ot
n =k 1TompTk, gt
: (4.4.14)

n =k K tlyeees i=1,2.
}1 oAy ol sUy, > O
is the convolution of a Double Poisson (y, ,uz) with a

i.e. iff Pn o
: LS

Truncated Double Poisson ()\1 ,Az)

Corcllary 4.4.2

Suppose that

P(‘Y1 =1y »Y, =T, IX1 =n, ,“X2 =n, ) = = : - Ty -
Zl my p1 z m 0,
% :k1 XD TF X, = L 0%,

(4.4.5)

i
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i.e. truncated Double Negative Hypergeometric.

Then, condition (4.3.2) holds iff

: o i n, p n, |-
= -p _ _ 1 9 m -p n P
3 [ml][ -1]“’” R A | M C R AR
Pn J r, =k, PR v, =k, R LA V
1% 7 © T ‘ k
T 1T (~g )t v ~m T
rl =0 rl q1 rz= : (‘qa)

(4.4.6)
’ ni‘=kl ,k‘ +1,...
i=1,2,

(Observe that in (4.4.6) )75 is the joint distribution of two ‘independent

1°02
random variables’ Xx (i=1,2) such that Xi is distributed as. the convolution

of a Negative Binomial (pi A ) truncated af k-1, with a Negative Binomial
(Pi 3P ) i=1,2,
Note 1 It is worth pointing 6u1;,,her~e that everything fthat__was;said in‘the

note .. of Corollary 3.6.1, problem 3.6.1; and the note of '-Corolla,my\ ©3.6.2

is 'valid -in the: bivariate case also. =~

Note 2  Corollaries 4.4.1 and 4.4.2 can also be derived from the following
theofem which «l“i‘s'thefbivariate extension of Theorem 3.6.2, and hence is in

fact a generalization of Theorem 4.1.1 and a variant of Theorem 4.4.1.
Theorem 4'42

Let Jla s b :hn o,n =0,1,... be a seqﬁence of vectors of
L el Byl 12

non-negative real numbers such that'

«anl ., >0 for n > ko, m, > Kys K ok,

non-negative integers, and zbnl o, 2 0 for all n, ,n, >0, bo o >’¢(}),,



-79-

bo,l >0, bl, ) > 0 for some n, 2 0.
Let fc be the convolution of fa and |b . (Observe
0y o0, L oy .7,

P

that cnl ., >0, n, ;> kl, n, > kz).

Let also (X1 ,X2 ,Y1 ’Yz) be a random vector of non-negative integer-
valued r.v's such that conditions (4.3.1) are met. Suppose that whenever

P >0
nl,n2

2, rbn T 0~
122 "1 1% T2

n

P(Y'l =?“1 ’Yz Ty !XI =, ’Xz =n'2 ) g
’ 2 Y (4.4.7)

r :;0,1,...,11!
n =ki ,kl 1,00

i=1,2.

Then, condition (4.3.2) is true iff (4.3.3) holds.
Proof  The proof of this theorem is the immediate extension to the
bivariate case of the proof of Theorem 3.6.2, which was stated in the
previo'us' chapter.

2

4.5 The Multivariate Extension

Theorem 4.5.1
Let {[an,bn}: B=(n1 ,nz,...,n’) n =0,1,2,...3i71,2,...,8; s=l,2,.,.}

~ e~

be a sequence of real vectors such that

a >0, bn> 0 for every n >0 - i=1,2,...,8 (4.5.1)

with

e ’ . :
. bg e O’. bo 50 500,051 > 8 L g (4.5.2)
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and
some b >0 ) '
oo,"'ﬁoil’n. -
some b >0
0,0,..051,0 0
o c . . (4.5.3)
some b1 - >0 ’
ST, N, 500D ]
Define {cn} to be the convolution of {an} and {bn} given by
n
%y ° E ab . o (4.5.4)
n~ {'—~ ~ o~ e 5
i
where a,=a, oD and Z denoting
v : £=0
n n .on o
A TR
r, =0 T, =0 r, =0
Consider a random vector (X ,Y) where X = (X1 seeesX ), Y = (Y1 seeesY )
with non-negative integer-valued components such that
P(X=n) = P_ ) (4.5.5)
i.e. P(X1=n1,...,X' =ns) = Pn R
: 1 s
with
> : IR ' 5.
Pn R 0. for some n for every i=1, sS (4.5.6)
1 2 [ =
and whenever P > 0 we have
arbn-r
P(Y=r|x=n) - _~ 7% r,=0,1,...,n  izl,...,s. (%.5.7)
c
n

Also define x!’= €% 53- 04X ), Y- (%, ,..-3%, ) 372,3,...,5 4and let

X125 ¥ gencte that (%, =Y, k=1,...,3-1 and X > ¥, ).
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Then

P(X:E‘) = P(¥=E")~(=¥) = P(:{—-{‘IX(!) >-Y(J))

(4.5.8)
§52,3,.4.48
({le; 4.5.8 consists of s equations)
iff
Pn P0
S & ; o for some 6, ,...,0 > O, (4.5.9)
—_— = e 6 1 s
c c. i=1 1
n
Also if (4.5.9) is true then :
Y and X-Y are independént. ; (4.5.10)

Proof This is given in the following four statements.

Statement 1
The system of equations (4.5.8) is equivalent to the following set

of conditions

P(Y=r|X=Y) = P(Y=r) (a)
STt i ' SR (4.5.11)
2~ L=
P(Y=r|X=Y) = P(y=r|x'" 7 = ¥ (b)
2=2,...,8.
(4.5.11)consists again of s equations)
where by sz) = Y(z) we mean Xk=Yk k=l,..,% . = (4.5.12)
R . (0) _ (0)
(Note that if we use the notation X =Y to denote
p(r=p|x "’ =¥'?) = p(¥=r) : (4.5.13)
we can combine the equations of system (4.5.11) to one, namely
P(Y=p|x=Y) = P(y=r[x* Dy : (4.5.1%)

£21,2,...,s. )
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Proof of Statement 1

We will first show that (4.5.8) gives (4.5.11). Obviously (4.5.8)

gives (4.5.11a).

P(Y=r|X Y

1

P(Y=r|x=Y) P(X,

= P(Y=r|%=Y) P(X,

and so (4.5.11b)
Suppose now

i.e. suppose that

P
We will show that
i.e. that

P(

For the L.H.S. of

(k-1) _

P(Y=r|X Y

Hence (by making

P(y=g|x'"

which results in

On the other hand for £=s we have (using 4.5.8)

(s -1) _ G -1)

:Ys Ix(s —1):Y(s -1)

s 1) :Y(s -1)

) + P(X > ¥ | ) P(y=r|x"’

s ~1) _ (

oy -1)) + P(}‘,-:EI)S:!) P(Xs> Y, lX(s 1) (s -1)

Y

SaEs
s

R(Y:E’IXU -1) . (s 1)

is valid for %=s.

that it is valid for £=k+l,k=2,...,s-1.

(k) - (k)

(f=p|x =Y ) = P(¥=p|X=Y)  k=2,...,5-1.

it is also valid for 2=k.

lX(k--‘l)= (k—l))

Y=pr Y = P(Y=p|X=Y) k=2,...,s-1.

(4.5.16) we have
(k"‘l)=Y

(k-1 L(k-1
Yoyt BTy,

(k-l)) (k)_Y(k) (k—l))

= P(Y=r| X ) P(X =Y, |X
(x) '

+ P(r=p|x > ) PX > v, [X

use of (4.5.8) and (4.5.15))

-1) _(k-1)

¥R = pgsr]gey) POy =y, X7

Y

(k-1) _

(k'l))

(k=-1) )

+ B(g=x|xey) P> ¥, XV =

(4.5.16).

(s}

)
>Y )

).

(4.5.1¢

(4.5.1¢
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Converse  (4.5.1la) is the first equation of (4.5.8).

On the other hand (4.5.11b) for &=s gives
P(y=rx=y) = p(y=p|x* 7=y )

= P(y=r|x=Y) B(x =Y [x* 7=y ) 4 p(y=p|x*)s ¥ P(X > v [x" eyt

so,
P(¥=£’l¥=¥) [l—P(X‘ '—‘Y‘ l ;(3—1)=Y(l -1) 3 = P(¥=E'IX(.)> Y(s)) P(X'> Y. |X(s-1):Y(9_
i,e.
_ _ _ _ (s) (s) :
P(Y=r|X=Y) = P(Y=r|Xx "’> ¥'*’) ; (4.5.17

which is (4.5.8) with j=s.-
Suppose now that (%4.5.11Db) gives (4.5.8) for j=k, k=3,...,8,
i.e, that '

(k)> (k))

P(Y=r|X=Y) = P(Y=r|X Y k=3,...,8-1, (4.5.18

We will show that it also gives (4.5.8) for j=k-1. But using (4.5.11b)

for %=k-1 we obtain

P(¥=§[§=¥) - P(X;flx(k.—z) :Y(k-z))

_ o tk-1) _ (k-1) _ (k-2) _ _(k-2)
= P(g_g[x =Y (X _ =YX =Y )
+P(Y=r|X(k-1)> Y(k-l)) P(Xk_1> Yk_l X(k—z) __:Y(k-Z)).

So,. taking into consideration (4.5.18)

(k=-2) )

ST _ . (k-2) _
P(Y=r|¥=Y) [1-P(X _ =Y, _ |X =Y 1
_ Ak (k-1) (k-2) _ (k~2)
= P(Y=r|X > Y ) P(x,_ > Y, X =Y )

which is (4.5.8) for j=k-1.

That completes the proof of Statement 1.
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We now define the sequences

P
Vn = TpaTyoceesl, o0 for every r, >0
8 C .
SRR D L r, fixed and n > 0
& tb 0 orn P(X=Y)
W= 0305---s0,0, POXEY

() -1y

bQ P(X Y

Statement 2
Equation (4.5.11b) for £=S is equivalent to
®
n =0 s s s s

with V. and W. as in (4.5.19).
n n ‘

Proof of Statement 2

i=1,..

.sS-1

[N

b

Substituting for Vn and Wn the expression (4.5.19) we find that

(4.5.20) is equivalent to

P b P(X=Y)
E r\l,“.’r“__l,nsﬂ*3 ' 05000501 E
Lo ¢ ; (s -1) __(s-1) -
. n =0 T B A b, P(X =Y )

~

On the other hand,

(s 1) _

P(rrfXey) = p(yerlx* V)

Y

is equivalent to

Y

P(X“ -1)=Y(s-1))

- ,ng) _ P(X:?:X(s_l’= (l—l))

|

[¢)

v

(a)

(#.5.1

(»)

(4.5.20)

(4.5.21)
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i.e. to
arb w a b
P ~ ~ Z p E‘O,...,O,n"l‘.
T CE' - A -
. - s s 1"1,...,1‘._1 ,n. r‘
P(X=Y) p(x* =y )
i.e. to
o Prl,...,r’ o0, T, bO,...,o on, P(i(:‘f)‘ e
= 4.5,22
n Zo °n r . b P(x* Tyt °r ( )
s oT1 3ttt 1% (] 5

Comparison of (4.5.21) and (4.5.22) completes the proof of Statement 2.

?
As a result of Statement 2 and by making use of lemma 3.1.1, we come

to the conclusion that (4.5.11b) is true for &4=s iff

P - P

TpseeesT, 0B L oseeesl, 0 n
c T ¢ ®,
T seeesT, o0 T seeesT, 50

for some 6 > 0 and every r, >0 i=1,...,8-1, n >0 (since .
r, ,i%1,2,...,5-1 were fixed but arbitrary).
Hence (%.5.11b) holds iff

P P

N geee,lt s T 500,00 ,0 n

1 s -1 s 1 s -1 8

. = ;] (4.5.23)
n n n n n 0 ¢

127772 -1 27 12777212

for some e_ > 0 and every ‘ni > 0, i51,2,...,s.

Note 1  In (4.5.23) 8, is independent of r i=l,...,s-1. This is so,

because as we saw in lemma 3.1.1 if (4.5.20) holds then EWn 8 =1 and

s

hence 6, is unique, i.e. independent of T .

Statement 3 ‘

¢

’ s (s 1 -1
Whenever (4.5.23) is valid, we have the conditional on x(v"v b ayts

the vector Y and the random variable X! —Ys are independent,
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Proof of Statement 3.

From (4.5.7) we have,

a_ b
r 0,...,0,n -r
-1 -1 ~
P(y=r|x* =" x an ) = - LIS,
L TPRRRS

So, (from®.5.23))

N

P(y=p,x* =y ™ X ¥ =0 p )
~ "’_ s 8 8 s
Pr r 0
ER ] -1 2 r, =
- 1 s =1 aes b en' r']
e , 5 rs b,...,o,n'-r‘ s J
Tyavensl s

~i.e. (by replacing n -r by n‘) to

= (s -1) _ (s -1) v =
P(Y=p,X ok ’Xa Y' -ns)
P
T ..., 50
S SR i (a e"»] b o (4.5.24)
cr ” o s Q,...,O,n' s
12" 1
But it is
P(Y=r X(s-—:l):Y(l -1) X -Y =n )
(s~1) _ (s 1) . ~e? % T
P(¥=13,X‘ =Y, =0 [X =Y ) = TR T
' ‘ P(X =Y )
or taking into account (4.5.24)
_ 3 seeesl s r . . I,
P(Y=r,X ~Y =n IX(? 1)=Y(a 1)) = R...._l.._._.___i._l.__ (a 8 s)(b P )
~ ~" 8 8 8 c o r s 0,...,0,!]"
X Ty seeest, s ~
(4.5.25)

. -1 (s -1 -1
where R is a constant R = P(X(a Y zy'e )).
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So by summing over n and r in succession on both sides of (4.5.25)

we get
PI' r 0 :
- - ERA A -1 ? r
p(y=p[x* Pyt )y -oop L e, gt (4.5.26'
~ ~ 1 ¢ r 8
Tprreoly e -
and also
= (s-1) __(s-1) _ s = )
P(X -¥, =n |X =Y ) = Ryby L8 (4.5.27,

where R , R are constants, R R = R.
1> 2 172

(4.5.25), (4.5.26) and (4.5.27) give

(s°1) _yCam1)

(5-1) _ (s-1) v

P(Y=r,X -¥ =n [X* 7 =2v® ) = pry=p|x* 7 oy ) P(X -Y =n |X
~ o~ F s s ~ -~ £ 43 3

Hence Statement 3 follows.

Now, define the sequences Vn and Wn where

2 2
P
PPN UL PR IR
Vn Shle : » 1 >0 fixed
2 Toyeeesl, 3N, 30 400040 -
: S 121,2,..., 2-1 (a)
and - every n, > 0. (4.5.28
and
. 0 o n n P(Z(:Z)
wn = Z E ‘bo 0,n, ,n n H,flu"’ ss (2-1) _(L-1)
2 n, .=0""'n=0 R R 7% T b P(X =Y )
2+1 s 0
(b)

for 99.+1""’es >0, 2=1,...,s8"1.

Statement 4

Assume that (4.5.14) holds for 2zk,k+l,...,s, 2 € k < s and is

equivalent to
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P P
n oo n oo gll N geesyll 0,...,0
y o LR NEPRELL sTh 4 » sl 199> ) n, n, ) )
= 6 ...8 (4.5.29;
C c 0 0 k s
LYPPRRIN. NS EPR ) L N

for some ak,...,e. > 0 and every n > 0 i=l,...,s.’

(k-1) __(k-1)

(Note that if (4.5.29) is valid then conditional on X Y » Y and

(Xk —Y.k X 11 Yesg o0+ 5% Y, ) are independent.) .. -

Then‘We have that

(a) (.5.14) for #=k-1,k,...,s is equivalent to :
Pnl,...,nk_l,...,n' 1:’nl,...,nk_z,o,...,o n_, n,
~ = - 6 - 8 ...6 (4.5.30)
Dy seeesDy el nl,...,nk_z,ﬂ,...,o ~

for some suitable 8, _ys++-58 >0 and for every n > 0 i=l,...38 2 <k <.

(k-2) _ (k-2)

(b) If (4.5.30) is true, then conditional on X Y s, Y and
(Xx—xr aiR SIS S AR X -Y, ) will be independent (2 < k < s).

Proof of Statement 4

Part (a) Considering (4.5.28) for £=k-1 the relation

-]
n _ =0 D™ % Ty
is equivalent to
o Pr r . ,n v 0 0 o o
12° " 2 k-2 k-1 k-1 """ : n
) c DERER) B, .. 50,0 ...non“...e’
no_4=0 Pyseensly ool T 50500050 nk=0 n =0 ? > g s k- s
P
P(X=Y) Dy seeesTy 4 50 senes0 ( ,
x = 4.,5,31
(k=2) _ (k-—2) [¢]
bQP(X =Y ) PR S PR

On the other hand (4.5.14) for %£=k-1, becomes

k-2) . k-2
( )__:Y( )

P(r=glx PR ERad
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which is equivalent to

ar- bo 0 -r =
r seees@sDy T seee,D T
- o0 N
z z Pr r n n °n Lo n _.-or n -r
= = sss ey o ? PR yes ey o ? _ PR -
no=r on o 1 k-2 k-1 s 1 k-2% k-1 k-1 s s
-2 -2
P(X(: ):Y(l ))
o
P b
r %r°o
T P(XEY) ,
T =
i.e. (by replacing n -1y by n 3 j=k-1,...,8) to
o L Pr teasl n - _+r ..yl +D bO...On PR ! P{X=Y)
z z 12°° "% k2% k-1 k-1°""%% s ? kg ? >"s ~ .
L e _ = b (s =2)_£s ~2) .
B0 5 F0 e Ry Ty 0 R S ' 4 =t ’
P
.
r
end by making use of (4.5.29) to
o © Pr R n - +r 0,...,0 n +tr nk+r
12" k-2 k-1t k-1 ? . Xk k. s s
e ] Gl 5B
n = n =0 °pn T a _+p o ) k s
s k-1 R A 1 T T
b N P
0 ,0eus®,n, seeesn PX2Y) P s esly 4 5050050 erk ex;
x : =
b k-2) _ (k-2 k
9 p(x TR =y ETR) Oy sereay 0 5nees0 :

(4.5.32)

Since (4.5.31) and (4.5.32) are identical we have, (using lemma 3.1.1) that

. k-2 0
P(yar|x 7 =y ™) = p(y=p|x=Y) (i.e. (4.5.14) for 4=k-1)
iff
P P
P seresly ol 505 es0 ) P senesTy 550500050 T
c 5 T ¢ !
T seeesTy ool 50 5eaes0 T seresTy _, 90 5eess0
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for some 0 > 0 an y A3 >0 i i=1,....k-
r some 8__ d for every 1 ,...,r, 0 (since 1, i=1,...,k-1

were fixed but arbitrary), in other words iff

P P

nl,...,nk_l,O,...,O nl,...,nk_z,o,...,o nk-l

c c X -1

D oseeesDy 50 50ees0 M seeesTy 550 50nes0 (4.5.33

2< k<gs

Hence, taking into account the assumption of Statement 4 and combining (4.5.29)
and (4.5.33) we come to the conclusion that (4.5.14) for £2=k-1,k,...,s is

equivalent to (4.5.30). That completes the proof of Part {a) of Statement 4.

Part b can be derived by the same method used to prove Statement 3.

The statement we have just proved shows that the system of equations
(4.5.14) is equivalent to (4.5.9). Thus, since (4.5.14) is equivalent to
(4.5.8), the first part of the theorem follows. On the othef hand, as a
direct consequence of Statement 4 Part (b), we have that if (4.5.9) is valid

. then Y and X-Y are independent; this is the second part of Theorem 4.5.1.

Hence the whole theorem is established.

Corollary 4.5.1 (Characterization of the Multiple Poisson distribution)

Suppése that

, S T O T T )
P(Y=r|X=n) = T R r =l (4.5.34]

121,2,...,8

i.e. multiple binomial.

Then, condition (4.5.8) holds, iff
n;

A i=1,2,...,8
- s ] H)
P = e e I —LT e .
g jul ni' 8
A=) A (4.5.35)
i=1
A >0

i.e. multiple Poisson.
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Corollary 4.5.2 (Characterization of the Multiple Binomial disfribution)

Suppose that Pn is multiple Poisson of the form (4.5.35) and that
the conditional probability of ¥|§ can be written in the form (4.5.7).
Then, condition (4.5.8) is true iff P(¥=§|§=n) is multiple Binomial, given

by (4.5.34).

Corollary 4.5.3 (Characterization of the Multiple Negative Binomial

Distribution)

Suppose that

: . 4 =O,...,q |
P(Y=r|X=n) = o R : (4.5.31
. i=1 i
p, >0
iz1,2,...,8
i.e. multiple Negative Hypergeometric. .
Then, condition (4.5.8) holds iff
8 -N N
_ 1 1 T o ]
P = if‘.l n P, (-q,) N, =m +p, (4.5.3"

i.e. multiple Negative Binomial (p, »m +o, i=1,...,s).
We omit the proofs of these three corollaries since they are the immediate
extension of the corresponding bivariate ones, given in Section 4.2,

Corollary 4.5.1 is an improved version of a result given by Talwalker (1870).

Corcllary 4.5.4 (Characterization of the Negative Multinomial Distribution)

Suppose that

P(Y:rlX:n) : B(m+r1+...+r~’ R er(nl—lr’1 Mt un, -r, ) :I ?
et ‘ B(m,p) o :

(4.5.3€

;

) 20,l,0005m; 5, m> 0, p > 05 i=1,2,...,s

(Multivariate Inverse Hypergeometric with parameters m,p).
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Then, condition (%4.5.8) holds iff

n

T(mtp+n +...+n ) s p!

P(X=n) = 2 o g
Sl T'(mtp) () 1= B 4

8 . s
1, =0,1,...50<p <1, Xpi< 1,.i51,2,...,8, p, =l—}:pi
, =1 1=1

(Negative Multinomial with parameters mtp, Py see+sh, ¥,

.

Proof Let us consider the following sequences

I‘(m+r1+...+r‘) I‘(p+n1+...+n')
a, = ——, b =
r n E
~ T'(m) I ! = I'(p) It n ! .

i=1 i=1

T =O,l,...,ni PR Y =O,l,..r.

The convolution {cn} n=0,1,... of these sequences is

b I'(mtptn +...4n ) 2
e = 1 s Z
8
2 I(mtp) T n =0 B(m,p) i=1
i=1 S )
i.e.
r(m+p+n1+...+g )
e, . = 5 n 21,2000, 121,2,.0.45 .
~ T(mtp) I n

i=1

It can be checked that the conditional distribution (4.5.38) can be

B(m+r1+...+r' ,¢:>+(n1 -1, )+...+(n' -r, )) s n

E

(4.5.39)

(4.5.40)

(4.5.41)

expressed in the form ab . /cn with a , b , ¢ given by (4.5.40) and (4.5.41).

~ v~ o~ ~ ~

Hence from Theorem 4.5.1 we have that condifion (4.5.8) is equivalent to

g
3
Olto"d
How

°l

) for some 9i >0 i=1,2,...,8

]

=
-
#
w
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i.e. to

LA |
. l"(m+p+n1+...+ns) i=]=I1 ei
Pg : Pq T (mtp) : n!
Since Pn is a probability distribution
8 n
I % @ T(mtp+n, +...+n ) s
p 1 i=1 Z i """ Pm+p' -
E A ) ° am
s
where n = X n
i=1
i.e.
n
s
-1 12; °
A =

Note 1

and Ratnaparkhi but with the additional condition that

x

+4
] G(t, ,t,)

r 2
2t e 9t .

6(t, »t,) the p.g.f. of (X :%,).

A similar result in the bivariate case has been proved by Patil

exists, for r,t positive integers and

(4.5.42)

(4.5.43)
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The Multivariate Truncated Extension and its Variant

Theorem 4.6.1

Consider the random vector (g,g) and the sequence

{(ah,bn): g=(n1,...,n'), n, =0,1,... i21,2,..458 s=l?2...} as

in theorem 4.5.1.

" Suppose that h, i=l,...,s are s positive integers such that

P(X‘ >ki)>0 iZl,.40.48 ¢
(4.6.1)
P(X=k) = 1
where k = (k1 ,...,k') and by X > k we mean X > k for every izl,..0 580
Then,
o P(elY> 10 = P(rar|xev) = R(y=r|x V>0, v >0
s . (4.6.2)
3=2,3,...,8
iff
o T omog
- =z — TI'9 for some 6, ,...,6 >0
Cn Cj=1 .1 1 s -
b 5 (4.6.3)

n 7k ok tlse..s 1715250008,

Proof This follows straightforwardly.

Note 1 Theorem 4.6.1 can be used to characterize the truncated Multiple
Poisson, (with ¥|¥ ~ Multiple Binomial) and the truncated Multiple Negative
Binomial (with ¥}§ ~ Multiple Negative Hypergeometric) through the
condition (4.6.2).

Note 2  The Remark made in Section (4.4) about the sequences'{ah,b;} can

be extended to the Multivariate case, and thus provide the Multivariate

extensions of theorem 4.4.1 -and Corollaries 4.4.1 and 4.4.2, These
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corollaries can.also be obtained as a result of the multivariate extension

of theorem 4.4.2.

Note 3 Uéing the Multivariate Extension of theorem 4.4.2 a characterization
of the truncated Negative Multinomial can be obtained through the condition
(4.6.2) and under the assumption that the conditional distribution of ¥|¥

is Multivariate Inverse Hypergeometric as in (4.5.38). It can also be
observed that if the distribution of Y|X is truncated Multivariate Inverse
Hypergeometric, then the condition (4.6.2) characterizes the distribution

of X as being the convolution of a Negative Multinomial with a truncated

Negative Multinomial.



