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' CHAPTER 3.

kSHANBHAG'S EXTENSION OF THE R-R CHARACTERIZATION

THE UNIVARIATE CASE

3.0 Introduction

3.1

In Chapter 2, we exémined various charéctefizations, based on the R-R
condition, However, the techniques used require lengthy proofs.'

Shanbhag1(1976) introduces an Extension of the R~R characterization;
this characterizes’a’clasé of.statistical distributions using the R-R
cqndition. It also provides a simple way of characterizing a number of

distributions as survival distributions or as original distributions. In

this chapter; we state Shanbhag's Extensidn, and we utilize it to drrive at

" some characterizations. We also use it to provide simpler proofs for some
'of the results given in Chapter 2 and also for variants of some others. An

“extension of his result is derived enabling us to get characterizations of

the truncated forms of the distributions which were characterized previously.
Finally, a somewhat different form of the extension is introduced, and
characterization based on truncated forms of survival distributions are

derived.

Shanbhag's Extension

Lemma 3.1.1 (Shanbhag 1976).

Let'{(V;,ﬂl) n=0,1,...} be a sequence of vectors with non-negative

real components such that

V; # 0 for some n=2 1

and » E Vﬁ # 0.
Then,
o2 ;
v,o= ) AP m=0,1,s., (3.1.1)
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iff

I wp =1 (3.1.2a)

n=0

and

vV o= Vobn n=1,2,... (3.1.2b)

for some b > 0,

.The proof of the lemma is given by Shanbhag; it is based on a
technique used in renewal theory. Aésuming that (3.1.1) holds he proves
that V. =0 iff V., =0 for all n> m. Then using that, he establishes
that v # 0 for every n 2 0. Defining B = sup'{Vi m> 1} where

V& = Vin m=1,2,.., he shows that b is in fact equal to V*, and hence
L - m ;

Vm—l

(3:.1.2b) is wvalid.

Applying lemma (3.1.1) Shanbhag arrives at the following.

Theorem 3.1.1 (Shanbhag's extension of the R-R characterization)

Let,{(an,bn): n=0,1,..} be a sequence of real vectors with
a > 0 for every n >0

and

b, >0, b1 >0, anOfo:on>2 .
Denote by {c_ } the convolution of {a,} and {b }. Let (X,Y) be a random
vector of non-negative integer-valued components such that

P{xsn} =B n >0 with p <1 (3.1.5)
and whenever P > 0 we have

P(Y=p|X=n) = ——F=1, r=0,1,..,n. ; (3.1.6)

- Then

P(Y=r) = P(Y=r|X=Y) r=0,1,... (3.1.7)
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iff ' 2

P P

n 1]

P E;' 6 n=1l,2,... for some § > O. (3.1.8)
n

Proof

Consider the sequences V., W as follows

P, .
g Vo= n >0 ; (3.1.9)
n
, " .
W= b {;goP“ E:} . B ’(3.1.10)

Then the above defined sequences satisfy the requirements of lemma 3.1.1.
Obviously V;, W;‘have non-negative real components Vn #0 for some:
n=1 (c > 0 and if P, were zero for all n > 1 then P, would be 1, a

o i .
contradiction). Also, since b > 0 and ) P 21 # O we have that W #0

n=0 n .

It is clear that

hgv]

v .= V;b“ is equivalent to él = gg-e“
n ()

On the other hand, it can be checked that P(Y=r) = P(Y=r|X=Y) is equivalent
to the formula (3.1.1) of the lemma 3.1.1. 'So, (3.1.7) is valid iff ‘
(3.1.8) is true,
Note 1. It isvworth noting here that'for the above theorem, the relation,
(3.1.2a) is redgndant.
Note 2. The above theorem remains valid if the R.H.S. or the L.H.S. of
(3.1.7) is replaced bva(Y=r]X>Y).
Note 3. It is interesting to observe that if the vector (X,Y) is such

that (3.1.8) is valid, then the r.v.'s Y and Y-X are independent.

This is so, because, -

i

P(Y=r,X=n) _ P(Y=p,X-Y=n-r)

P(X=n) = P ‘;

n

P(Y=r|X=n) =
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and using (3.1.6) we have

g L b, ’
EQIiractence) af ~—~ or (from (3.1.8))
P (&
n n
Po n - .
P(Y=r,X~Y=n-r) = —a 6b 6 i.e.,
CO T n-
N B P -
P(Y=r,X-Y=n) = —~a 8b o . ; (3.1.11
co T n

Hence the result follows.

Shanbhag's Extension in Relation to a Theorem by Patil and Seshadri

Patil and Seshadri (1964) (also in K.L.R. p.424) prove the following

theorem.

Theérem 3.2.1 (Patil and Seshadri (1964).)  Let Y and Z=X-Y be independent

discrete v.v's and let P(Y=r|X=n) = s(r,n).

Then, if s(r,n) satisfies the relation

s(n,n)s(0,n-r) " hin)
s(r,n)S(nir,n—r) -7 h(x)h(n-r) (3.2.1)

where h(x) is a non—negativé function, then the distributions of Y and

Z = ¥X-Y are given by

P(Y=r) = P(Y=0)h(r)e' O (3.2.2)
P(Z=z) = P(Z=0)k(z)e " - (3.2.3)

with . _ h(z)s(0,2) A
k(z) = —"—S-(—E:—z-)—— 5 (3.2.4)

Patil and Ratnaparkhi(1975) observe that

‘P(X=n) = P(X=0)f(n)e " ©(3.2.5)
where ‘ > . _h(n) :
£(n) = m 5 ‘ (3.2.46)

This latter result follows readily from the above mentioned theorem of
Patil and Seshadri. r

Looking at this theorem as far as the distribution of Xeis'concerned,
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one can see that in terms of the terminology we have. used in Shanbhag's

Extension, the result confirms that if Y and X-Y are independent and

s(r,n) is of a form similar to (3.1.6) then,

P. .
Eﬂ- = 2 ¢" p= 1,2,... for some 8>0.
cn co

However, Patil and Seshadri's theorem is more restricted than the

(3.2.7)

’bniy if" part of Shanbhag's Extension since it requires independenge of

Y and X-Y, whereas Shanbhag's assumes that Y and X-Y are independent only

over the set X-Y = 0. In addition, by taking into consideration Note 3

of section 3.1 we can see that relation (3,1.8) is necessary and sufficient

for Y and X-Y to be' independent. Patil and Seshadri's theorem provides

only the "sufficient" part of that result.

Some Characterizations Based on the Extension

As it is poinféd out by Shanbhag (1976), theorem 2.1.1 (R-R character-

izétion of the Poisson distribution) and a. variant of theorem 2.3;1

(Srivastava and Srivastava) can be obtained in a simpler way.

In fact,if we define,

n n!

o}
1
2%

g7 n

b = ££:Bl— n=0,1,...,

(3.3.1)

then the binomial distribution can be written in the form (3.1.8) (since for

a, and b as defined in (3.3.1), c = ;ll—, n=0,1,...). This means that

according to the theorem (3.1.1) the R-R condition (3.1.7) holds iff

which gives P ' as Poisson ().

The following is the variant of Srivastava and Srivastava's

theorem 2.3.1.
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Corollary 3.3.1 (Shanbhag 1976)

If (X,Y) is a random vector of non-negative integer-valued components

such that (3.1.6) is satisfied and P is Poisson () then (8.1.7) holds

iff ;
P(Y=r|X=n) = [2] p (1-p)*7"
0€Sr<n, n=0 (3.3.2)
for some p € (0,1).
Proof

Since the requirements of theorem (3.1.1) are met we have that

(3.1.7) holds iff

P, Py I
—c—“—=—e",i.e. iff ¢ =P—"en
n c0 . 1]
which implies that
n
- B = A
% T % ur (=75
But
n
= 1 an -
=0
So
n n o n ©o n
= e B - B
Z ab . = ¢ nT » 1.e.2 X ab __ = g X ol
r=0 n=0 r=0 n=0
which gives
® n
= “u
co - z z ar n-r .
n=0 r=0
i.e.,
n oo m
= eTH M
= e gy I I ap, .,
m=0Q k=0
n n -] m
= oM
z ar n-r =G n! z z akbm"k.
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Hence

a b
li‘ r n-r -u un
©o ©o = e —
=0 z a Z b n!
k=0 L m=k ERsk

and by making use of Raikov's theorem (1937) we come to the conclusion

that (3.1.7) holds iff

L a
n -H, 111
= e 1 -
© ni_
la
n
m=Q
n
b u
n - - 2
T e 2 ——
G2 .

with u1+u2 ERRT

Furthermore, since we have assumed that P(Y=rlX=n) is such that

(3.3.3)

(3.3.4)

(3.1.6) is satisfied,then taking a and b from (3.3.3) and (3.3.4) we |

have that

P(Y:rIX:n) = [;] P! qn ~r .

A
with p= 3= and pe (0,1).
This gives the "only if" part of the corollary. The "if" part has

been considered in our earlier remarks.

Corollary 3.3.2 (Characterization of the Negative Binomial)

Let (X,Y) be a random vector on non-negative integer-valued
components such that
P =0,1,...,n

P(Y=r|X=n) = ‘ ,
{_m_p] m>0, p>0

(3.3.5)

(3.3.6)
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i.e. Neg. Hypergeometfic (n,m,p).

Then ‘the R-R condition (3.1.7) holds iff

_ -N N n } _‘ i . '
f; = [ n] p (-q) N=m+p (3.3.7)

i.e. Negative Binomial with parameters p, m+p.

Proof
‘Define -
Fn- ) - 3
an = [m 2 l] qn bn = [p+2 l}‘qn . (3.3.8,
~ Then,
E: & m : m+p+n-1] o
- - = . et - n- 2
o= Lan., s LT[ oo = [

Then, obviously, (3.3.6) is of the form (3.1.6) with a , b as in (3.3.8).

Hence, according to theorem (3.1.1), the R-R condition holds iff

c a o
P = P -2 0 for some 6>0
n Oco; ‘ 53 .
which finally gives
. |-Np N -
?n = ( n] p (-q) N = ptm.

Note 1
Cordilar& (5.3.2) iéyah improved version of a result appearing in Patil
and Ratnéparkhi(1975).’

VThey make the same charactefization’using an extension of Patilrand
Seshadri's theorém, but under the additiqnal{ass%mptiqn that the r-th
- order derivative G;')(t) rz1,2,.. of the p.g.f. 6f X, exists at the

point 1. This assumption is not required in our proof. * "
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Note 2

It must be noted here, that if P isyNegative Binomial and
P(Y=r|X=n) is of the form axbn~r/cn, then the Negative Hypergeometric
is not the only distribution that YIX should follow in order that the
R-R condition holds.

This is'so, because there exist two independent non-negative random

" variables which are not‘Negafive Binomial, but whose sum is Negative

Binomial. Specifically the p.g.f. of the Negative Binomial distfibﬁtion

can be written as

. N :
G(t) = Lﬂ%ﬁﬁ = exp N{log(l-q)*log(l—qt)}

1

2.2 2 3 :
exp N {qt + 3§—~ + .00 Q —-%— - %— - ...}

o i

éxp N Z ﬂ_ig_lll

. oo : =1
But exp {gél-(fi—l)}
is the p.g.f. of the r.v. iX, X ~ Poisson [N %LJ. This implies that the
Negative Binomial may be obtained‘'as the coﬁvolution of two réﬁdom
variablés, one of which is i times Poisson with parameter N %1;.

However, it is interesting to observe that if we also require {bn}
to be the s-fold convolution of {an}, then the difficulty mentioned

previously is overcome and we get a characterization for the Negative

Hypergeometric as follows.

Corollagz 3.3.3 (Characterization of the Negative ﬂyperggometrié.)
Let (X,Y) be a random vector as iﬁ Corollary 3.8.2. Suppose that

the conditional distribution of Y|X is of the fofmfa:bh—r/%n with the

sequence {bn} being the s-fold convolution of {ah} (s fixed). Suppose

also that the distribution of X is Negative Binomial. Then the R-R
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condition(3.1.7)holds iff P(Y=r|X=n) is Negative Hypergeometric as in

(3.3.8).

Proof Thisfollows by using the same steps as in Corollary 3.3.1.

Remark

Corollary 3.3.1 is a variant of theorem 2.3.1. The difference belng,
that whlle in theorem 2.3.1 the result is restricted to the case where
the parameter A of the Poisson distribution is a variable,in 3.3.1 is
vaiid for A fixed.

Of course that was made possible by imposing the additional condition

that P(Y=r|X=n) is of the form arbnfr/én.

3.4  An Interesting Limiting Case.

s

Let us consider the situation where the conditional distribution of

Y|X is of the form

(. n-r
{(lfe)[m] + e 2—} {(l e) N—m} + e ﬁé:RAT——}
(e) r n-r (n~r)
(Y=pr|X=n) = n f (1-p)° !
) {(l e)( } te ?T }{(l s)[ } te fﬁ:nghh}
1m0 S (3.4.1)
0<ege <1,
Then it can be shown that the R-R condition (3.1.7) holds iff
| ’ 21l m) (1-p)" ™" (N-m) D)
pte . ‘(l_€§ [ ] Te ol +€(l‘8)t§° {[r] SN [n—r] r!} 8
a2 N gr B m) (1-p)™ 77 i) B
(1-)>(146)" +¢ e +n=zo rzo {(r] oyt * ,{n-r], %—} s

for some 6 > 0.
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Proof - Consider the sequences

£ = a-e [j] te l;-!' (3.4.3)
b:E) = (1-¢) [N;Hi + € Séigl—- (3.4.4)

Then the convolution of a:E) and b:€) is

N 1 g [m @-p"" . [N-m) B
s et freoo P SIS HE e

Since the sequences aLE), biE) can be used to express (3.4.,1) in the form

of (3.1.6), from theorem (3.1.1) we have that the R-R condition is valid
iff (3.1.8) is satisfied, which gives as solution a probability function of -
the form (3.4.2) for éome 8 >,O.

for € = 1 (3.4.1) gets close to the Binomial distribution and
(3.4.2) to the Poisson. This conclusion suppofts the'findings‘in the
limiting case.

In the situation however where e = O, and so, (3.4.1) gets close to
the hypergeometric and (3.4.2) to the binomial, the result is not’vaiid
any longer.

This is so, because for ¢ =~ 0 the sequence a:‘e) given in (3.4.3)
becomes a = (gﬂ which obviously is not positive for every r as it is
required in theorem (3.1.1).

In other words, if the distribution of Y'X is hypergeémetric, the R-R
condition is not sufficient for X to be binomial. (Necessity has been
prbved by Patil and RatnaparHﬁ (1975)). 'Th%s answers in the negative a
relevant question which was put by Patil and Ratnaparkhi. (A counter-

I3

exémple showing this is given on page 104.)
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In Chapter 5 it will be proved that there exists a variant oi the
R-R condition which is necessary and sufficient for X to be Binomial,

when YIX is Hyﬁergeometric.

The conclusion here is that a result that holds for a particular

situation, is not valid any more when we consider its limiting case.

The Truncated Case of the Extension

Theorem 3.5.1

Let (X,Y) be a random Vector,of non-negative, integer-valued components

and let k be a non-negative integer such that
P(X> k) =1 and P(X>k) >0,

Then, provided that we can find -a sequence of real vectors

{(ah,bn) n=0,1,2,...} such that

a >0 for every n >0

(3.5.1)
b, >0, b >;o\, b >0 n>2
and
5 a b _
P(Y=r|X=n) = ——=-%  r=0,1,...,n (3.5.2)

n
whenever P > 0, where'{cn} denotes the convolution of {aﬂ} and {bn}, we

will have

P(Y=r]Y>k) = P(Y=r|X=Y) opzk,k+l,... (3.5.3)

F Px -k '
EE- = E;- g" for some 68 > 0 nzk,k+l,... (3.5.4)

Proof = Define the sequence Vﬁ and Wn as follows

J

3 X
v, = = n=k,k+1, ... | S (3.5.5)
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oA
) e o '
W = =k 1 b n=0,1,... (3.5.6)
e S e
P(Y>k) -

Obviously V_ # O for some m 2 1 and W # 0. We find that

] ) ©
7 Voema =V, is equivalent to Vormeita = Voo
n=0 ; : n=0 °

which in tu,fn, by makinkg use of (3.5.5) and (3.5.6) is equivalent to

: - a

) P o PE—-b P

I S e LR R T 5 LU (3.5.7)
n=0 Cas+ra i=k P(Y=2k) Cm )

On the other hand,

—r->——1;(§=1’11) = P(Y=r|X=Y) | -

is (by means of 3.5.2) equivalent to

"Z" P a,b, -, P a by
a=r 7 G - % i.e. to
P(Y>K) 7o il
l-k‘ ci
EP,,“bn ‘fPii;_"P
n=g Cntr iex % - T 2k KHL s ' (3.5.8).
P(Y>k) ‘ G

Since (3.5.7) and (3.5.8) are identical,

_ . g P(Y=r) =y
) Vo o= Vm is equivalent to FOYS 1 P(Y=r|X=Y)

and so, taking into consideration Lemma 3.1.1,we come to the conclusion &

that (3.5.3) holds iff (3.5.4) holds. - +
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Here again, it,cénybe seen that if (3.5.2), (3.5.4) are valid then
the r.v's Y truncated at k-1 and X-Y are independent. As a result of
o«
that, it follows that the relation Z W’nbn = 1 of the lemma is again

n=0
redundant.

Corollary 3.5.1

Using the result of the previous theorem, a simplér way of proving
the éharacterization of the truncated Poisson distribution given in 2.2
can be derived as a special case. This can be achisved by considering
- the sequences {a } and {b } as in (3.3.1),
Since the binomigl distribution can be expressed in the form (3.2.2)

it follows from theorem 3.5.1 that (3.5.3) is true iff

} : c - =
B, = B 26T ek ke,... :
k '
which in our case gives,
_ k! n-k
B T Bar o
or finally
Ah
nt

n?k,k+l,,p.

.“SI%"

5

v-

a

i
i

Corollary 3.5.2 (Characterization of the Truncated Negative Binomial.)
ﬁefine X, Y and k as in theorem 3.5.1.
Supposekthat:the conditional distribution of YIX is Negative
Hypergeometric aé it is given in (3.3.3). Then the R-R condition for
the truncaféd case, namely (3.5.3),holds iff

-N N(__ )n :
P = nj P 174 n=k,k+1,...

y [—?] PN(_q)l ; N=m+p
i=k )

e (3.5.9)
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These are the probabilities for the truncated negative Binomial

distribution.

Proof If we define the sequence {an}, {bn} n=0,1,... as in (3.3.8),

then,as explainedalready,(3.5.3) will be satisfied iff (3.5.4) is satisfied,

which in fact gives (3.5.9) as solution.

A Rerﬁark on Shanbhag's Extension
As seen earlier, Shanbhag's extension of the R-R theorem, requires

the existence of a sequence {(an ,bn): n=0,1,...} of real vectors with

a, >0 for every n >0, b >0, b, >0 with b > 0 for n > 2, such that

the conditional‘, distribufcion‘of Y on X is of the form (3.5..6)‘. The same
conditions are requiréd in fhe trdnqa‘c’eq case.

It can khowever be seen that the truncated version of the extension
remains valid if the éequénce {ya;} is‘ defined for n = k where k is a
positive integer, in such a way ‘chatkan > O for all n 2 k, and the

conditions on bn remain the same. This is so, because even for a defined

r only for n=k,k+l,... the conditions set up by lemma 3.1.1 are siill met;

Vo and W continue to be defined as in (3.5.5) and (3.5.8) respectively.

In the latter case we define

n
c, = ) ab _. n=k,k+l,....
r=k
In fact we have again
L P, ,
Vg = Ol >0 m=k,k+l...,
m Ll .
. ' 5 g n
.since ¢ >0 foralln>k |c = ab + J ab >0/, and
n ) ) n k. o £ =kl r n-r

P(X > k) > 0 as required in theprém 3.5.1.

On the other hand

...0|.£D

= .
3 z P;
i=k

: PIY>1Y) 1
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(since P

] > 0, for some i, P(Y = k) > 0, b, > 0). Taking this into

consideration, the following version of theorem (3.5.1) can be established.
Theorem 3.6.1
Let X and Y be as in theorem (3.5.1). Let aléo'{ah}'n=k,k+l,...

be a sequence of real numbers such that
a >0 foralln=k

and'{bn} n=0,1,... be as defined by (3.5.1). Then, if whenever P >0

n=k,k+l...
: ab _ ,
P(Y=r|X=n) = %‘- rzk,k+1 ,..., (3.8.1)
! n e
we will find that (3.5.3) holds iff (3.5.4) holds. L

The following corollaries can now be proved.

/

Corollary 3.6.1 (Charactéfization of the Distribution which is the
Convolution of a Poisson with a Truncated Poisson.)
Suppose that the conditional distribution of Y on X (wherelY;fX are

as in theorem 3.6.1) is truncated binomial, i.e. that

) n X n-r 5 ‘ 8 i
o »l P4 : :
P(Y=r|X=n) = rzk, ktl, .0 . (3.6.2)
: .zl n x n‘—r‘ :

o P4 A

Then the R-R condition (3.5.3) holds iff Pn arises from the convolution
of a Poisson distribution (with parameter ) with a truncated Poisson.
distribution (with parametef A and truncation at the point k-1), in other .

words iff

o Ee 5 ey
~u n r n=-r
gtk
n

¥ =k nzk,k+l,... | (3.6.3)
o= =
‘! } o5



-2— £=K, k1, ... A > 0 (3.6.4)

1
.

i
"
5]
s

b = e¥ ﬁ— nz0,1,...3 0 > 0 . (3.6.5)

Then, for a and b, as defined above, the corresponding ¢ is going to be

n 4 n -
) A M
a o r! (n-r)!
c = Z ab =
n r a-r ® n
r=k z L
k " a=k n!
i.e. i ,
- s n r n-r ’
e u Z I'}‘ A u ]
e = r=k°° — nzk,k+lyee. . (3.6.6)
' A :
n. Z -
‘aex DY
Consequently,
n r n-r 3
S HEL o
%-r :‘ ~ ek, ktl, o,
Cn E [n] Prqn-r
r=k .
with p = i%; ‘q = 1-p. Hence, with the sequences a, bn defined as

in (3.6.4) and (3.6.5) the truncated binomial can be written in the

form

ayby -y
C
n

From theorem (3.6.1) we know that the R-R condition, as given by

(3.5.3), holds iff

o - .
P .= P — ¢ k for some 6> O..
n k ck . ~

i.e. [by making use of (3.6.6)) iff ¢
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Hence (using (3.6.7) and (3;6.8)) we find that (3.5.3) is valid iff P

is of the form (3.6.3).

Note

- r=k n~k
P; = Pk o . 6
(]
>and since
‘ z z {J r n-r /n!
%__ - n=k r=k en-k ,
; * A= /ke
iff
I [r] a8y (ue)y
P = r=k
n! J i‘ [‘;] (x8) (u8)* " /n!
n=k r=k
But
) “ (8F (o) Fmr = § ¥ [g} (A8F (u0)" " /nt
n=k r=k r=k n=r . . . -
e w  (A0)
(26)° (uo 8 :
i R

(3.6.7)‘

- (3.6.8)

It is interesting to point out here, that the truncated Binomial is

not the only dlstrlbutlon of the form (3.6:1) for which the prev1ous result

is valld

In other words, if we assume that P

corresponds to the

distribution which is the convolution of a Poisson with a truncated Poisson

as it is given in (3.6.3) and P(Y=r|X=n) is of the form
then, the R-R condition (3.5.3) does not imply uniquely that the

distribution of YIX is truncated -Binomial.

a!bn ”r

n

r=k,k+l,...

N L
In fact from theorem 3.6.1 we
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know that the R-R condition is equivalent to

P :
e, = g =8 nrE n=k,k+l,... for some 8 > O

i x
which in thiskparticular case implies that

n
z [n] }\run-r/n! ’
3 r=k ) Lntk . : s .
AR — 9 n=k,k+l,... (3.6.9)
. A /kb ‘ X :

It can be checked easily that a , b ~can be of the form

\r
a = ak%,— r=k,k+l,..., A > O, a  constant : - (3.6.10)
.un o 3
b, = b, T e nfo,l,..., w> 0, t; constant. , (3.6.11)

~ However (3.6.10) .and (3.6.11) are not the only forms that én, bn

respectively can have in order that their convolution is of the same form

as (3.6.9).

Take for example the following sequences

T
e M z [rr‘nJ An\ut -m
m=k

a' = — rokk#l, e - (8.6.12)
vt ] A"/n!
n=k
- = ) {
by .= et b n=0,1,... (3.6.13)

i.e. take a; to be convolution of a Poisson with a truncated Poisson, and
b; to be Poisson. Then,
{a!}# {b!} ~ (Poisson % truncated Poisson) s Poisson
~ (Poisson % Poisson) # truncated Poisson

~ Poisson & Truncated Poisson.
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This means ‘that We can find another pair of sequences, whoée convolution
is of the form (3.6.9). Hence the decomposition of (3.6.9)‘is not uﬁique,
-and hence the truncated Binomial is not the only distribution of the form'
(3.6.1) satisfying our conditions.

The preVious note, will help ué to give an answer that arises out of
a research note published by Moran (1952) and related to a characteristic
property of the Poisson distribution. His result goés’as followé (in our
notation).

; kLet Y and Z be independent random Qariableé taking hon—negative

.integral values‘and let X = Y}Z; Suppose thatfthére’exists at léast one

Integer I so .tAat

P(Y=i) >0, P(z=i) > 0.

4

Then, Y and Z are individually distributed in Poisson probability laws iff
P(Y|X) is binomial. It is natural now'to ask whether a similar property
holds in the case where P(Y|X) is truncated binomial at the point k-1.
The quesfion can'be formed. as follows. ‘
Problem 3.6.1 :

Let Y and Z be independent random variaﬁles; with Z takiﬁé n§n-negative

values and Y taking values greater than or equal to k, k-2 O integer, and let

X = Y+Z. Suppose that
P(Y=i) > 0, P(z2=j) >0

‘/for at least one integer i, i > k and one integer j. Then, is thé condition
that‘Y is Poisson truncated at k-1 and Z Poisson necessary’and sufficient‘fér
P(YIX) to be binomial truncated at k-1? Evidently, the "sufficient" part‘is
a side result of corollary 3.6.1. As far as the "necessary" pa?t is

concerned, the answer is negative. This is so, because, in cor?llary 3.6.1
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we have show that if P(Y=r|X=n) is truncated binomial, then the R-R
condition implies that X is convolution of a Poisson with a truncated =
Poisson. But as it was shown in the note, if the R-R condition holds then
the truncated Poisson for Y and the Poisson for Z are not the only
distributioné for which X = Y+Z is Poisson convoluted with a truncated
Poisson. Since the R-R condition is a speciél case of Y and Z being

independent, the argument is established.

Corpllary 3.6.2 (Characterization of the Distribution which is the

Convolution of .a Negative Binomial hith a Truncated. Negative Binomial.)
Consider the r.v's X and’Ykas in theorem 3.6.1. Suppose that the

conditional distribution of Y on X is Negative Hypergéometrig, truncated

at k-1, i.e.

‘ (-m [ -
P(Y=r|X=n) = nr = rak,ktl, ...
| 5, (3 6
ok r} (o-r) r<n. - e e (3.5f14)

Then the R-R condition (3.5.3) holds iff P is the convolution of a Negative

Binomial (p,m).With a truncated Negative Binomial (p,p) at the point k-1,

i.e. iff N :
-m ol 7 §® . \P
3 () e o
PII Cm U S — n=k,k+l,... - (3.6.15)
-m T
) (-9)"
r=0 [ P}
Proof. Let
m+r-l} r
- r

5 30 < A PR (3.6.16)
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and
+n-1
b, = (" - ] 4 10=0,l... (3.6.17)
Then,
n B
~z mir-1| |p+n-r=1| =
e r n-r -
c = n=k,k+l,... (3.6.18)
Z [m+r—l] r
~ r=k r
Clearly
-m -p
- | o)
Tz R vk, k+l,...

i.e. the above defined sequences a , b can be used to express (3.6.14) in

the form required by theorem 3.6.1. -Accordingly the R-R condition (3.5.3)

will be satisfied iff

C n-k .
P = P EL 0 | for a suitable 6 > O
BB : :

or equivalently (using 3.6.18) iff

(3 3] o o

r=k

Pn Pk - - - .
GEE

L]
But because Z P =1,
n

I N R e e |
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[ R

(9 by o

Pn = r’:k
¥ [’m] (-oF ™ (1-9)?
r=k 'r . .
l.€., n -m = \ . o
: [ ) e e
Pn - r;k -~
. ;
PR

for g = 6 with 0 < & < 1.
Note i : »
Here again, as in the case of the truncated Binomial, if we assume
that P is the convolution of a Negative Binomial with a Truncated Negative -

Binomial as given by (3.6.15) and P(Y=r|X=n) is of the form

fE%E::- r=k,k+1l,... we will get that the R-R condition (3.5.3) ddes not
imply uniquely that the distribution of YIX is truncated Negative Hyper-
geometric. This’can be seen by making use of the fact that under the
circumstanbes mentioned, from theorem 3.6.1 we have that the R-R condition

™%, which for P_ as in (3.6.15) will

o s 3 ton o Py -
is valid iff e = e 3:' 0

eventually become (following the same steps as in the Note of Corollary
3.6.1). : '
| , i [n_r] (-q/8) N(l q/e) |
¢, = L ab _ = e e ©(3.6.19)

X , I (1) ooy
o B
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for some O < q/6 < 1 and a , b probability distributions.

It is evident by observing (3.6.16), (3.6.17) and (3.6.18) that the
truncated Negative Binomial as ﬁ. and the Negative Binomial as bn is a
solution of (3.6.19). However, this is not again the only solution.

For, consider the example
b 4 m -p .
L (Y [P e

at = L7X

RN o

i.e. convolution of a truncated Negative Binomial with a Negative Binomial

rk,ktl, vee <. (8.6.20)

and

n

‘b; = (-o] p® (-q)° n=0,1,... ' ; ’ (3.6.21)
i.e. a Negative Binomial.

Then,

'{cn'} = {a }N{b'} - (Negatlve Binomial % truncated Neg. Bin. ) % Neg. Bin.

~ Neg. Bin. =% truncated Neg. Bin. (3.86. 22)

‘Clearly {c'} is of the same form as c, in (3.6.19).

1
.But the distribution __El_i with a', b', ¢! given by (3.6.20), (3.6.21)
c! T n n

n 5
and (3.6.22) is not truncated Negative Hypergeometric. This means that
there exists at least one distribution Y|X other than the truncated

Negative Binomial for which Corollary 3.6.2 is true.

Remark 1 = Patil and Seshadri (1964) show that if Y, Z are independeht
then Y|X is Negative Hypergeometric, (where X = Y+Z), ifka and Z are
Negative Binomials. The prev1ous note showsthat for YIX truncated

Negative Hypergeometrlc, a correspondlng result with Y“truncated Negatlve
t
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Binomial and Z~Negative Binomial is true only so far as the "if" part
is céncerned.

It may also be noted, that for reasons given in Note 2 of Corollary
3.3.2 X~Negative Binomial does not imply that YIX is Negative Hyper-

geometric in Patil and Seshadri's set up.

Remark 2 - It is interesting to observe, that Corollaries 3.6.1, 3.6.2
can aiso be considered as special cases of the following theorem, which .

in fact is an extension of theorem 3.5.1 and a variant of theorem 3.6.1.

Theorem 3.6.2 ) e k .
Let'{(an,bn): n=0,1,...} be a sequence of vectors of non-negative real

numbers suéh that a >0 for n'> ¥ and b ,b >0, b, >k0, n=2,3,... :

Let {c } be the convolution of {a,} and {b } (observe that ¢, >0, n 2 k).

Let (X,Y) be a vector of non-negative integer-valued r.v.'s such that:

P(X=n) = P with P < 1.
K T k
Also, whenever P > 0
o ab_ _, . :
P(Y=p|X=n) = fisz-i r=0,1,...n (3.6.23)

n=kk+ly. ..

Then,
P(Ysr[Y>k) = P(Y=r|X=Y) w»=k,k+l,.... (3.6.24)
iff
P P, B
n k n-k
— Z — 8 n=k,k+l,... S
c, e, . . (3.6.25)
: for some 6. > 0,
Proof

We have been given that X-k is non-negative.integer-valued random

" variable. TFurther, it follows that conditional on Y-k > 0, the r.v. Y-k
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is non-negative integer-valued.

If'wé define

(k) _
¢, = 1 ab (3.6.26)
r=k
wé will have
n+k ' n
(k) - g . e .
G T Z azbn-l-k.—t - X az+kbn—x (3.6.27)
r=k r=0 5
It is —
Can |
e [y - 1 +k & .
P(X-k=n|Y-k >0) = FEST Pnu.“'-ch nz0,1,.., (3.6.28)
and
b ;
P(Y-k=r|X-k=n,Y-k >0) = L”:‘-;;‘—’ r=0,1,...,n (3.6.29)
‘o . I‘l4+vk n‘-‘O,l,.-- :
It also follows that (3.6.24) is equivalent to
P(Y-k=r|Y-k >0) = P(Y-k=r|X-k=Y-k), 1=0,1,... (3.6.30)

If we now apply the result of theorem S.l.l to random variables X-k and

Y-k and consider P s n70,1,... to be given by (3.6.28), the result follows.

Note
Corollaries 3.6.1 and 3.6.2 can be derived from theorem 3.6.2 by
considering the sequence & as a sequence with two parts & = 0 for

n=0,1,...,k-1 and as in (3.6.4) and (3.6.16), respectively, for n > k.



