CHAPTER 2.

THE RAO-RUBIN CHARACTERIZATION.

) Intfodﬁction

The work of.Rao (1963) and Rao and Rubin (1964) has been mentioned
already, Rao and Rubin used damage -model theory to characterize the
Poisson distribution as the original distribution given binomial-type
damége. They also used the same type of damage to chara;terize the
truncated Péisson as an ofiginal distribution. The same characterization
of the truncafed Pdisson appeared later in Kégan Einnik aﬁd Rao (K.L.R.)
(1973). However, ‘there seems to be some confusion in the two places as
far as the definition and the role of the rgsulting r.v. is concerned.
On the other ﬁand,’some workers have fouﬁd it difficult to follow the
original proof given by Rao and Rubin (1964)? and also the subsequent
proof of an ‘elementary nature given by Shanbhag (1974). In order to give
a complete and clear picture of the literature in this thesis, we give
a full version of Shanbhag's elementary proof. We thén pﬁint'out the
differences of meaning and notation in the charactérizatipn 6f the truncated
Poissonf ‘We also refer to the difficulties in characteriiing the survival
distribution using the R-R condition. Finally, we refer to the bivariate

and multivariate extensions of the R-R theoremn.

The Rao-Rubin Theorem. An Elementary Proof.

Theorem 2.l.l‘(Rao~Rubin (1964)1,
Let X be a non-negative, integer-valued r.v. with distribution

P(X=n) = P , and Y be another r.v. such that for every n with P >0

P(Y=r|X=n) = [ﬁ] paq P = 0,1,...,1, (2.1.1)

where p is some number lying in (0,1) and q 1-p. Then
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P(Y=r) = P(Y=r|X=Y) = P(Y=pr|X>Y) (2.1.2)
iff
- p(xem) = M o=
P =P(X=n) =e " ~— n = 0,1,... (2.1.3)
e n!

for some A>0.

Proof
We follow Shanbhag (1974).

Let G(t) denote the p.g.f. of X. Then (2.1.2) is equivalent to

P(Y=pr) = P(Y:r]X:Y), r = 0,1,... and hence to
) 4

)

&

n -
P [r] D q"‘ T p = 0,100, . : (2.1.4)

n
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Note that (2.1.4) is equivalent to
G(g+t) = ¢ 6(t) |t| < (2.1.5)

; -1
where C = {G(p)} ~. If now {% } is a distribution satisfying (2.1.4), or

0 ° . «
equivalently (2.1.5) and Z % t < for 0<t<k q + 1, then using

§=0
(2.1.4) we see that
- 1% r T r © n|] n-r
w>a3)_r=20 Bt = xzo t nzt P, U q

= ] P (t4@" 0<t<ltkg, keI (2.1.6)

n=0

(The change in the order of summation is justified because the sums are
non-negative).

Relation (2.1.6) implies that

I B (1+ (ktl))" < = (2.1.7)
n=0
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and hence from the monotonic increasing nature of the p.g.f. we have

[-]
I Pt <e for0<t<1l+(ktl)g .- (2.1.8)

n=0

Consequently by induction we get that if (2.1.5) is satisfied then

. )
) Pntn < e for all te [0,0). (2.1.9)

n=0

In that case G is defined for all t € (-»,») and so, (2.1.5) reduces to

G(q+t) = C 6(t), -» < t < =, (2.1.10)

Since (2.1.10) holds for every t we have

¢ G(t+(k-1)q) = c*a(t+(k-2)q)

G(t+kq) = GftHk-1)q+q)

= ... = c'G(t).
In other words /
Glt+kq) = CG(t) —» <t < 4o | (2.1.11)
which implieskthat |
G(t) > 0 for all t € (-w,»), (2.1.12)

(Obviously this is true for t>0. For t<0 we can always find an integer k

such that t+kq > 0. For that k, G(t+kq) > O, hence from (2.1.11) G(t) > 0.)

oo

Further,the fact that Z % Y is absolutely convergent for all t g (-w,»)
i=o ,

implies that G(t) is differentiable any number of times at all t.
Let us now denote by G'(t) and G"(t) the first and second derivatives

of G(t).- Restrict, first, for convenience to t>0. From (2.1.11) we get

G'(t) _ G'(t+kq)
6(t) -~ “G(t+kq)

and since this is true for every k, it will also be true for' k going to
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infinity, i.e.

DR % (t+kq)j_1
1 S
G'(t) = gim j=1
G(t) ®
koo i
L P (ttkq)
j=0 !
For the same reason,

g v . s -2
et | G'ekg) _ . | L3 G R (tka)
G(t) G(t+kq) Ko = !

) P (t+kq)
i=0
Z jzﬂ (“c+kq)i—2
= fim  Ji=1
i koo o ;
) P (t+kq)
- i=o0 )
I3B (tke)'™
GG }’iﬂ =l = 0, from (2.1.13)
I B (t+kg)
i=0

Let us now define a discrete random variable w such that

P, (t+kq)

P(w=j) = N
I B (t+ke)

r=0

(2.1.13)

(2.1.14)

(2.1.15)
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Then
W _ Var w - _ 1 2, 2
Var [t+kq] T (ttk@)? T (ttkq)? {E(w S A }
7 P (t+kq) T 3P (tikq)
_ 1 =1 ! 1= !
(‘t+kq)2 o . o .
1 P (t+kq) } P (t+kq)
r=0 r r=0 d
@ o 2
Y i’ (t+k)' T §P (t+kq)' ™
_ g i s i
I B (t+kq) I B (tkq) } '
=0 r=0

However, from (2.1.13) and (2.1.14)
jar (=] - S0 _few) |4 ferw)
ttkq) ~ G(t) G(t) dat |e(¥) J .
Since the L.H.S. is‘always non-negative we have

d [er(t)
at {G(t) } S

, ) y
Consequently the function A(t) = g?%%l is'a monotonic non-decreasing
function.
On the other hand
_G'(t) | G'(t+kq) _ .
A(t) = ). T kg - A(t+kq), k integer

i.e. A(t) is periodic as well.

]
So, we come to the conclusion that g?£§l must be a constant independent

of t for -» < t < =,
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Denoting this constant by A we have

G'(t) _
o - e
i.e. , ‘
a(t) = MEL (2.1.16)

This is the p.g.f. of the Poisson distribution.

The R-R theorem. The Truncated Case.

Rao and Rubin (1964) extend their result to the case where the original
distribution is fruncated at a point k-1 (k>0).

The same result appears later in Kagan, Linnik and Rao (1973). It
seems,h&wever, that the two versions are differvent although both are
referring to the same kind of situation. Rao and Rubin state their case
as follows. ’

Let X be a discrete r.v. taking the values k, ktl, and let the damage

distribution be binomial, i.e. s(r,n) = (2] p!q?-f.

Denote the resulting random variabtle truncated at k-1 by Y. Then

P(Y=r) = P(Y=r|X=Y) = P(Y=r|X>Y) (2.2.1)

if and only if X is a Poisson truncated at k-1. In Kagan, Linnik and Rao
(p.MQS,remark)~there’is nothing to indicate that the r.v. Y is truncated
at k-1. They have erroneously claimed that,under the assumption that
s(r,n) is binomial, (2.2.1) is true iff Xis Poisson truncated at k-1.

The problém seems‘to start from the notation that R.and R use. Since
Y usually denotes the resulting r.v. (taking the values 0,1,...), it
would probably be better, if we write the R-R condition (2.2.1) in the
following form

7

P(Y=r|¥>k) = P(Y=p|X=Y¥) 1r =k, ktl,.... . (2.2.2)
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In this case we have

X Pn s(r,n)

nsr

P(Y=r|Y>k) = — : (2.2.3)
z X P s(r,n)
r=k n=r "

. ‘ , . P(Y=r)
It is obvious that the L.H.S. (2.2.2) can also be written as PSSO

where

P(Y=r).

to~18

CP(Ysp) = ) P s(r,n) and P(Y>k) =

We shall now establish the correct version of the characterization of the

truncated Poisson using partially the proof of theorem 2.1.1.

Theorem 2.2.1 Let X be a random variable taking values,.k, ktl,... with

distribution {P } and Y be another r.v. such that for every n with

P >0
n

P(Y=rlX=n) e [:ﬂ pfq?—r r = 0,1,...,0. (2.2.4)
Then

P(Y=r|Y>k) = P(Y=r|X=¥Y) 1 = k,ktl,... (2.2.5)

iff X is Poisson truncated at k~1.

Proof Thekp.g.f. of Y]Y?k is

Z E X P [I;] pl‘ qn-‘rtr G(
=k a=x " Glgtpt) - Q(t)
e = T 6D - QD (2.2.6)
n r n-r
r=zl: n=Xr Pn [I’]

where

%o ® k-1 L

Q) = ) P (2] (pt) q " (2.2.7)

n=k r=0 :

i.e. a polynomial in t of degree k-1.
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Hence, (2.2.5) is equivalent to

Glgtpt) - Q(t) = a G(pt) i (2.2.8)

_ 6(1)-0(1)

G(p) constant.

where " a
Setting z for pt and taking the k-th derivative
™ (qtz) = a &® (2). ' (2.2.9)

. . N x .
Observing that after a suitable normalization e )(z) is a p.g.f. and
taking into consideration theorem 2.1.1, we get

G(k) Az

(z) =b e

and therefore

6(z) = a e+ £(z) : » (2.2.10)

where £(z) is a polynomial of degree k-1 in z and a, b are constants.
It can now be checked (by equating the first k-1 derivatives of G(z)

at z=0 to zero) that

. D k-1 j k-1 _.]
a(z) = A {exZ - —Q:?—)—}— {1—@:“A ) L,} (2.2.11)
j=0  3° j=o0 3°

which is the p.g.f. of the Poisson distribution, truncated at k-1. This

establishes the "only if'" part. The "if" part is trivial.

Charactérization of the Survival Distribution
The;rem 2.3.1 (Srivastava and Srivastava (1970)).

If the r.v. X follows a Poisson distribution with parameter A and if
s(r,n) is the survival distribution then, the R-R condition (2.2.1) holds
iff

r

s(r,n) - [n] pr qn—r -

As it can be checked,their proof is based on the assumption that A is' a
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variable and not a fixed number as in the R-R theorem. Later (Ch.3) we
give a variant of that result, which is based on the assumption that A
is fixed.

It is natural now to ask the following question. What happens if
the original distribution is truncated Poisson? Can we make any inference
about the survival distribution using the R-R condition in the form
(2.2.2)?

It seems that there has not been yet a satisfactory answér to this
probiem. Srivastava and Singh (1975) using the same argument as
Srivastava and Srivast;va (1970) come to the conclusion that,under the
assumpt;on that the original is Poisson (A) truncated at k-1, the R-R

condition (2.2.2) is equivalent to the functional eqﬁation

m-k e . m-k
[ oslemils(ld) o oslkk) 1T Sy am ook, (203.1)

N (n=D)T i1 kU (ot A

They, then conjecture that the only solution to that functional equation

is a "modified"  Binomial probability model defined as follows

(E} P (1-p)"" k<r<n 0<p<1

s(r,n) = (2.3.2)
arbitrary 0<r<k '

with the restriction of course that
n

Y} s(r,n) = 1.

r=0

The fact that (2.3.2) is a solution to equation (2.3.1) can be
verified easily. But their conjecture that (2.3.2) is the only solution
is false. Because, if their statement were correct, it would imply that

with P Poisson (A) truncated at k-1, the R-R condition (2.2.2) holds only
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if s(r,n) is given by (2.3.2). The following counter-example shows that
this is not the case. v

Let us consider

[n] paq ifl1€r<n-l

s(r,n) = { (2-a) p if ren (2.2.3)

(1-p)* + (a-1) p.  if r=0

\

where 0 <p <1l and1l<ac<2,
(Note that since a #1 the binomial distribution is excluded from the
family (2.3.3)).

It‘ is immediate that s(r,n), as given by (2.3.3),is a valid probability
distribution. Also it satisfies the R-R condition (2.2.2) or equivalently

(2.3.1). This is so, because for s(r,n) given by (2.3.3), (2.3.2)

becomes
S(k,k) m-2k m—‘g’:k-l (m—k-—r)! pkﬂ- qm—Zk-r
k! (m~k)! oo k! (m-2k-r)! (kir)!
1 m-2k -1
PHC= {s(m—k,m~k) + Z s(k+r,m—k)}
* i ) 5 r=0
i.e.
x 0 TN k) ke 2% mx TEET ) ke 2k
m-] N r m-2k-r  _ _ o —~ r m-2k-r
(2-a)p + !ZD [k+r} P q = (2-a)p + 12:0 [k+r']

which is an identity.
Since s(n,n) # pn it is clear that (2.3.3) is not the same as (2.3.2)

and hence the conjecture in question is false.
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The ‘Bivariate Extension

Theorem 2.4.1 (Talwalker 1970)

Let (X1 ’Xz) be a non-degenerate, random vector such that X1 A X2

I Ny

take non-negative integral values. Let {:1] p,tq 1 and
1

Pzzqznz "2 be the independent probabilities that the observations

n, n, onX , X are reduced to ., T, respectively during the destructive

process. In other words

b r | -r, "2 r, &
= = = = = n2 r (2’4'1)
P(Yl r ’Yz rzlxl T, ’Xz nz) [rl p11 q1nl ! Ty P22 % 2 :
T O,...,n1
; r, = O,»...,nz
Then :

P(Y, =r, ,Y,=r,) = P(Y, =r ,Y,=r, ]x1 > Y L% >Y,)
= P(Y,=r,,Y,=r, |X =Y ,X,=Y)) = P(X =Y X2V, |% =Y, ,X, > ¥,)

= P(Y, =r, ,Y2=r2lX1 >Y X, =Y, ), (2.4.2)

T, »7, = 0,1,2,...

iff (X1 ’Xz) has\a double Poisson distribution.

To prove the extension, Talwalker uses a method similar to the one
given by. Rao and Ruhin in the univariate case. Shanbhag (1974) provides
again a simpler way of arriving at an improved version of that result .’

His method is similar to the one explained in Section 2.1.

Theorem 2.4.2 (Srivastava and Srivastava (1970)]

Consider (X1 ,Xz ’Yx ,Yz) as in Theorem 2.4.1. Suppose that (X1 ’Xz)
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follows the double Poisson distribution with parameters X and u, i.e.,

- L TR
oA Aty

n !n!

P(X =n ,X =n_) = .
R 1 Ty (2.4.3)

A,u > 0O, n .0, = 0,1,...

Then,

P(Y1=13,Y2=rk) H P(Y;::a,Y2=ré,undam.)= P(Y1=Ia,Yé=rh|dam.)

(2.4.4)

r ,D

L 3T = 0,1,...

iff the conditional probability of Y and Y2 given X and X2 is double

binomial, i.e. iff it is of the form (2.4.1).

Proof Similar to the one suggested by the authors in the Univariate case.
It must be stressed again that,as it is obvious in the course of their

proof, X and y are assumed variables.’

The Truncated Bivariate Extension

Theorem 2.5,1. -
Consider the random vectors (X&,X;) as previously. - Suppose that'kl and k2

are two non-negative integers for which
P(X1> kl,x2> k_z) =1, P(X> kl) >0, P(X> kz) > 0.

Also assume that

‘ nl o, S -
= = S B = 1 JTh - Tz D277
P(Y, =z, ,Y, =r, 'X1 n, 5%, =1, ) ) ™9 o) P" 4% 02
(2.5.1)
r, = 0,l1,...,n

i

=]
1]

Kook #l,..., 1= 1,2.

i.e. double Binomial.



-38-

Then

- - > = = - =
P(Y, =r, ,Yz-—rzlYl >k 5, 2k,) P(Y, =r, ,3{2.1n2|><1 =Y L%, =Y,) (2.5.2a)

P(Y, =z, ,¥,=r, |X =Y, ,X, >Y,,Y, >k, ) (2.5.28)

r, :kl ,]% +1,...3 1=1,2

iff P is truncated double Poisson.
Ty o7y
It can be checked that the same result is true if the R.H.S. of
(2.5.20) is replaced by
P(5{1 =r1',Y2 Ty IX1 > Y1 ’Xz > YzA’Yl . kl ’Yz> kz)
of if the R.H.S. of (2.5.28) is replaced by
P(YL=IisYz=IbIX1>’Yl9x§ =Y,,Y, 2k ).
Proof Proof of an improved version of this theorem will be given later

(Chapter 4).

The Multivariate Extension
Theorem 2.6.1 (Talwalker (1970)).

Let X = (%_,...ﬁg) be a non-degenerate random vector such that

n ] LS ¥ T 41

X, i=1,...,s takes non-negative integer-values. Let [r P, 9
1

i

where q, = l-p, i=1,...,s be the independent probabilities that the

observation n, on Xl is reduced to T, for i=1,2,...,s, during the

destructive process. Denote by = (Yl,...,Y;) the resulting random

vector where Y;,Yz,...,Y; take the values 0,1,... Then,

H]

P (Y=r) = P, (Y=g|damaged) = Q,(nglpartially damaged)

i

ﬁ (Y=r[undamaged), T =0,1,000 3 i=1,2,...,8
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iff X follows multiple Poisson distribution.

Proof = The proof is straightforward.
Theorem 2.6.2 (Characterization of the Truncated Multiple Poisson)

&mﬂ@r§=(&,“”&),z=(%,“”%)asﬁﬁm%mm2ﬁddS@m&

that k’ i=l,...,s are non-negative integers for which
N&%ﬁ%>%”n%>h)=h H%>h)>0 i=l,...,s.

Suppose that the destructive process has the same form as in Theorem 2.6.1,
i.e. multiple binomial.

Then

P(Y=r|Y, >k .Y, 2k, ,...,Y, >k ) = P(Y=r|undamaged)

= P(Y=r|damaged) = P(Y=r|partially damaged)

T, > ko i=1,2,...,8

iff PE = Py ,..Q,n’ is multiple Poisson truncated at kl,kz,...ﬂg.
As with theorem 2.5.1 an improved version of this theorem will be stated

and proved in Chapter 4.



