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CHAPTER 1.

NOTATION, TERMINOLOGY AND REVIEW OF THE LITERATURE.

General Introduction

Characterization problems are located on the borderlines of
scientific modelling probability theory and mathematical statistics.

This should not lead us to doubt the appropriateness of characterization
theorems in the framework of mathematical statistics and its developmeht.
Quite to the contrary, in many problems of mathematical statistics we try
to transfer the original problem to an equivalent but substantially simpler
one by using important properties that certain special distributions
possess. The question of how to make full use of the special nature of

the parent distribution leads to the study of the characteristic properties
of the distribution used in mathematical statistics, and hence to
characterization theorems.

As far as the argument that characterization theorems have nét offered
up to now solutions to réal life problems is concerned, one can argue that
there are a lot of mathematical ideas, which,when introduced,did not seem
to be of any practical use but later became necessary in solving appiied
problems. However, the main contribution of the characterization problems
to statistics was that, since mathematical analysis was required in
solving them, they attracted the attention of numerous mathematicians
and thus provided the links between mathematics and statistics necessary
to justify some statistical arguments and to give proper scientific
solutions to practical problems.

Many characterizations of probability distributions have been derived

based on various properties, such as independence, order statistics,
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admissibility and optimality of certain estimation, linearity of
regression, etc.

Many of these results can be found in Kagan, Linni# and Rao (1973)
as well as in Laha and Lucaecs (1964), Kotz (1974) and Lucacs (1956, 1960,
1960-61, '1965). The introductionvof the damage model by Rao in (1963)
opened the way for a number of characterizationsof probability
distributions, mostly discrete.

Rao himself, with Rubin (1964), gave a characterization of the
Poisson distribution based on the damage model,

In this thesis, we use an extension of the R-R characterization
suggested by Shanbhag (1976) to characterize a number of discrete
distributions.

Another general form of characterization is subsequenfly introduced;
this enables us to obtain characterizations for finite discrete
distributions. Extensions to Bivariate and Multivariate cases of the
above result are derived; along with their truncated versions.

Later on in the thesis we apply the damage model theory to certain
mixtures of distributions, and make use of the results in order to
establish a number of interesting characterizations. of distributions

and families of distributions.

Notation and Terminology

Throughout this thesis the following notation will be used.
Capital X, Y and Z will denote random variables (r.v.'s) (these will
usually be discrete r.v.'s); P stands for the probabilities P(X=n),

n=0,1,2,... This notation is extended to the Multivariate case as Pn’



where n=(n,...,n ) and P_ = P(X=n) =.P(X =n_,...,X =n ). ' In other
=5 1 s E e "‘ 1 1 ) 8 ]
words Pn denotes the joint probability of X1 3080 ,X' 5
The notation Y|X will be used to denote the conditional r.v. Y| (X=n).
F(x) will represent the distribution function (d.f.) of the r.v. X.
For the probability generating function (p.g.f.) of the r.v. X we
will use either Gx(‘c) or G(t). ‘Gx('tf)‘ corresponds to the p.g.f. of the

random ‘vector )_§‘="(X1 seeesX ).

The r-th moment of the r.v. X will be denoted by wo = (x), while
“[:] (x) = “{:] will denote thé r-th factorial moment of X. As to- the
generating functions, Mx(t) will represent the moment generating function

(m.g.£.) and«M,[x«,](t) the factorial moment generating function (f.m.g.f.).

The distribution

uF(x)’ = Ipl(é,e)drz(e) 5
)

: where' 6 is ”ch’e parametef of Fl, will be called "mixed distribution
(altemat’ivevl»y\ “compouhd ‘distribution"), |

‘The pptation F = F1 e Fz for thé resultant distribution will be
adopted. ‘We’ Qill wrjite F = F, 8 F, when we want to specify the parameter
of the disfribui‘ib’l:l F, over which the‘mixing is taking place.

We will sasr that’ the r.v. X follows a generalized distribution if

its p.g.f. is of the form
Gg:) S (G?(t)?

where G (t) and G, (t) are both valid p.g.f.'s.
The Laplace Stieltjes transform of the function F(t), 0 < t < « will’

be denoted as
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. o ’
L.S. {F(t),s} = f et ar(y).
o
The notation {,an} % {bl"} will be used to denote the convolution of the
sequences {an} and {bn}.
The following notations will be adopted for the Gamma and Beta

funcfior;s ‘respectively

. ]
r(a) J X eTax a>0

(-

1 N ‘
J rx‘fl (I—x)b—ldx a,b > 0.
0

"

' 'B(a,b)

The ;inconiplete Beta function will be defined as

. 1 a -1 b -1
Ip(a’,b) = m rx (1-%) dx

o
and we;wili '.ritake’ use of the following propérty (é.‘g.n sée pruluri and

Blot (1970)).

k-1- :
: z f [I“"’:-l} ,p! qx = Ip (I‘,k)k H 0 < p < ]_,_p-)-q =1.
x=0 N

A summary of the properties of the Incomplete Beta Function can be found
in Abramowitz-and Stegun (1965) and Erdéyli (1953).

The ascending and descending factorials will be denoted by

e
H

3y a(atl)...{a+n-1) ’

and (o)

o
1]

a(a-1)...(a-n+l) 3



respectively with
ca = a = l,
= Ay (@)= Ay (atm) -

a .= (—l)n(-a)(n) and a
. n )

{n) (n+m)

For the generalized Hypergeometric function we will use the

notation

7o) (a ), ~
Iy . i . Goeeela X
pf;(a&,az,...,ab;ta,b&,...,bq;z) = Z» 4 Jex) P(x) Z

= 1
=0 BB, (6., =

The following integral representation of the Hypergéometric function

(the Generalized Hypergeometric for p=2, q=1) will be used

had A
B 1 i
,2~F1 (,a,b3caz) '" B(b,C_b) » I *
(1]

(1-x)° 7

(1-zx) " dx.
(for b,c~b > 0).

Idkéddifion, we make use of the infegrai repreéentation of the
ConfluehtkHyﬁérgeometric function (the genefalizéd Hypergeometric with
p=q=1)

c~b-1 zx
) e dx.

.
; P N S Plq-

-1r;(b,9,z) = B(5.0°D) J x o (1-x
: 0

*(byerb 3.0).

Another form of the Hypergeometric function we use, is the
Conflpent Hypergeometric function of two variables (a Bivariate
generalizatipq of the Confluent Hyperggometric Functidn).

This is defined as



. i . ] . a(mn)b(fﬂ) o
3, [a,bsesx,y] = I L c—amr XV

m>0 30 C(men)
with integral representation

Fom T b e np - - r(e) 1 aa c-a-1 -5 uy
| @1[a,b,c,x,y]‘ : Treay J u o (1-w) (l-ux) e ~ du.

o

Note 1
Definitions and properties of the various forms of the Hypergeometric
functions méntioned, can be found in Appel and Kampé de Feriet (1926),

Slater (1966) and Erdélyi (1953).

Note 2

There afe‘mény distributions whose p.g.f.'s can be expressed in
 terms .of Hypergeohetric functions. A list of these distributions is
given by Dééey (1972), while conditions for which the generalized Hyper-

geometric series becomes a valid p.g.f. have been studied by Kemp (1968).

The thesis is composed of nineiéhapters. Eaéh chapter is divided
into sections. The formulae, theorems, lemmata and corollaries are '
numbéréd‘tréﬁlewiSe; the fibét number refers to the chapter, the second
refers to_thg‘section of the chapter aﬁd the third indicates the successive
vitem within the section. Numbers in parentheses are used for formulae,
e.g. (4.3.2) refers to the second formula of the third section in
Chapter 4. Theorem 3.5.1, means the first theorem of Section 5 in
Chapter 3. Notes and remarks‘afe single numbered since they iﬂvariably
‘follow a‘thedrem or a cd;ollary. Whenever we refer to a note or a remark
we specify the theorem or corollary to which the note or remark is related.
We will say, for example, Note l,’theorem 3.1.1. When we wish to use

theorems or corollaries that already exist in the literature, these will



appear with the name of the author following the number of the theorem.
Hence, when we write Theorem 3.1.1 (Shanbhag 1976), we will be quoting

a theorem introduced’by Shanbhag in 1976. All other theorems, corollaries
and lemmata, which ére’mentioned just by their number, appear for the

first time in this thesis in the form in which they are presented.

Probability Distribution

The probability distributions which will be used in this study are

the following.

1.2.1 Univariate Probability Distributions.

The Poisson Distribution (Pn(k))

P = P(X=mn) = e} %T, n=0,1,2,...,A > O. (1.2.1)
The Binomial Distribution B(n,N,p)
P(X=n) = [g] g 120,1,2,...,N20,1,2,. .. (1.2.2)

O0<p<1l ptg=1

where
P;'= 0 for n > N.

The Hypergeométric Distribution H(N,m,n)

m{4{N-m
P(X=p) = I‘N” : r,m,n,N > 0 ¢ (1.2.3)

n r<n, m<N.



The Beta'Distribufion B(a,B)

1 -1 B-1 .
f(x)’ = mx; (1-x) 0<x<1l,a>0,8>0 (1.2.4)
where B(a,B) is the Beta function defined in the previous séction.

The Expdnential Distribution

£(x) = % e?, 0<x<®, 08>0 ' (1.2.5)
The Geometric Distribution
‘P(X=n) = p qf_l n=1,2,..., 0 <p <1, pq = 1. © (1.2.6)
The Gamma Distribution
X
f(x) = S LB 4 0, o >0, B8 >0, (1.2.7)

8%r(a)

For a=l the Gamma distribution becomes exponential with parameter 8.

The Negafive,Binomial

-N
n

P(X=n) = {

} p ()"  n=0,1,....N>0,0<p<1,pq=1
(1.2.8)

The Negative Binomial can also be derived as the mixture on A of the

Poisson distribution with parameter A, where A has the Gamma distribution

with parameters p/l-p and N. ' ¢



- The Negative Hypergeometric N.H. (n,m,p)

—m‘/ L ~p .
P(X=r) = (l_“n’]_z)'r r=0,1,...,n (1.2.9)

n m>0,p >0,

The Negative Hypergeometric is also obtained as the mixture on p of the

Binomial B(r,n,p) if p has the Beta distribution with parameters m and p.

Gurland,Distribution (see Gurland (1958))

The p.g.f. of the Gurland distribution is given by
6(t) = |F{a+BA(t-1)}  a,B,1 >0 . (1.2.10)

This distribution was first examined by Gurland, (1958) who derived it as a

result of compounding the Binomial (r,n,p) with a Poisson (A) on the

parameter n and then compounding the‘resulting distribution by a Beta (a,B)

on the parameter p.

1.2.2 Truncated Univariate Distributions

The Truncated Poisson

The Poisson distribution, truncated at the point k-1; k=1,2,...

is defined as

xn
ot
BoOE B(XER) s e n=k,k#l,... 30 > 0, k=1,2,... (1.2.11)
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The Truncated Binémial

N n N-a .
p(den) = iB Pa n=k,k+1,...;N=k k+l....
e 3 N} n N-n . »
' Zk [n] P a 0<p<lyq=1-p. (1.2.12)
n= g
The Truncated Hypergeometric
m{ {N-m
P(X=r) = ;r LS r=k,k+l,...3 ¥ <n
v {m}|N-m :
s tefeer n=%k, m2k, N>k, (1.2.13)
Beta Truncated at t, 0 < t < 1
R e g1 ~ ;
£(x) = 0% (1-3x) 0 <x<t,a>0,B8>0. (1.2.14)
- 2F1 (o,1-Bsa+l3t) :
Right Truncated Exponential -
sl
1 |
f(x) = ——7 0<x<1l,8>0. (1.2.15)
1-e8
Right Truncated Gamma
EX
O F
£(x) = 2 - 0<x<1l,a>0,8>0. (1.2.16)
2y ;

lfl(a;a+l;—8
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The Truncated Negative Binomial

: =N} N~ n
[3) e
P(Xmn) = L D=k, k+l,...; Nak,k+l,... (1.2.17)
'Z [“N} PN(_q)n
a=x T ,
The &runcated Negative Hypergeometric
-m) { =p
- P(X=pr) = m?. et rzk,k+l,...
i o e ot -m -p
xgk [ r] [n_r] r<n. (1.2.18)

The Convolution.of a Poisson (X) with a Truncated Poisson (u)

This is also: a truncated distribution and is defined as follows

a
e-u X [:J }‘r un—r . . .
P(X=n) = r=x L n=k,k+l,... : (1.2.19)
00 . All
n! ] A >0, u>0.
n=k

Samaniego (1976) examines a particular case of the above model (k=1) and

studies some estimation problems.

The Convolution‘of a Binomial with a Truncated Binomial

The distribution which is the Convolution of a Binomial (N-m,p) and

a Truncated Binomial (m,p) has p.d.f.

n N-n % mf | N=m : ' ‘
Pa L loflor n,N=k,k+l,. .. (1.2.20)

P(X=n):- = T (kon-kiD)

’k=l,2,.ﬂ. . ;
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The Convolution of a Négative Binomial with a Truncated Negative Binomial

Consider a Negative Binomial (p,m) and a T.N.B. (psp). Then the

p.a;f. of their convolution is given by

[l oraer
.. r=k .

) [—:} (-vq)v';

r=0

1.2.3 Bivariate Distributions

n=k,k+l,...
m,p > 0

0 <q<1.

(1.2.21)

In this thesis we will make use of a particular class of Bivariate

distributions, which we will call double distributions.. These are

obtained when one considers the product of tWo independent and identically

-

distributed r.v.'s.

The truncated versions of those distributiorns can be derived by

considérihg each of the r.v.'s X i=1,2 +truncated at a point k -1,

1=1,2; k > 0.

In pafticulér we will use the folloﬁing.

The Double Poisson Distribution

n
1
s ; =i -A A
_ _ N 1 "2 N1
P(Xl—n1 ’Xz'nz) = e ;;——,-
The Double Binomial
N ’nlyﬂi-n
P(Xi=n1,X;=n2) Tl %

(1.2.22)

(1.2.23)
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The Double Poisson and Binomial havegbeenk’studied by Talwalker (1970)

and Shanbhag (1974).

The Double Hypergeometric

2 2
Dz e

) P(X1‘=r1 ,X2=r2) = N1
n

1(--qa)

T, M L0 LN >0

4 <nﬁ’"} <N1

i=1,2.
n,
n ,Ni =0,1,...
0 < P, <1
i=1,2.

‘The Double Hypergeometric and Double Negafive Binomial have been:

examined by Ratnaparkhi (1975).

Note: Theibivariate extensions cf the distributions defined in

Section 1.2.2 can be obtained in the same way.

1.2.4 Multivariate Distributions

The Multinomial Distribution

PE =, P(X1 =n1 s ’Xl :nl ) no

n!

n. Leoom !
s

1

n, o, n
Py Py +°D,

0<‘P1 <1, an = n-n , Zp* =1-p,» 1 > 0.

i=1 1=1

(1.2.24)

(1.2.25)

(1.2.26)
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The Multivariate Hypergeometric Distributions

N ) [x N
0 1 3
n | |n, Loy n
> = » = = \ ] 2
‘P(‘Xl‘nl,...,X. n') 5T
n
g (1.2.27)
s s 5
N2z, In =nm, [N =NN.
~ i=1 i=1
The Negative Multinomial Distribution
» B
B r§m+n1+...+n.) BTN °)
P(x1=9;f"’ﬁa'4¥) = T R L s |
‘ (1.2,28)
3 8
n =0,1,...5 0 < p <1, Z p < 1, i=l,2,...,s;‘p°= 1- Z B
: i=1 i1=1
The Multivariate Inverse Hypergeometric Distribution
ol N vB(m+n1+...+n' ,p+(N1—n1 )+..+(»N’—n') }{ N
X =0y 50X E0 = B(m,p) i-1 |0
(1.2.29)

n =0,l,..;.,Ni ,m>0, p >0, 1=1,2,...,s8.

Note 1

The Class of Multiple distributions will also be used, in particular ‘
the Multiple Poisson, Binomial, Negative Binomial, Hypergeometfic and
Negafive Hypergeometric, along with their truncated versions. ‘They are
the straightforward extensions of the Double diétributions, i.e. the |

product of s independent and identically distributed r.v.'s.
£
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Note 2 -

Detailed study of the distributions which were mentioned in this
section, as well as a list of references, can be found in Johnson and
Kotz (1969),and Patil and Joshi (1968).

Also, a full account on the Poiéson distribution appears in Haight
(1967), while Kemp-and Kemp (1956) examine the Hypergeometric

distribution.
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Literature Review

The problem of characterizing discrete statistical distributions
using propertieé of fhe conditional distributiqn of one random variable
~given another has been considered by many mathematicians and statisticians
from a number of different angles.k |

Let.X and Y be two random variables taking non-negative integer-
values, such fhat X is greater than, or equal to Y. Let deenote the
difference X-Y. Then the various results which have beén obtained, using
the conditional distributions of Y on X,can be broadly divided into the

following major classes.

1.3.1 The Damage Model and its Applications

Rao (1963) in a pioneer paper gives the following physical inter-
pretation to the r.v.'s X, Y and Z, for the damage model.

Let X denoté an observation produced by some natural process (e.g.
number of eggs, number of accidents, etc.). This observation may be
-partially destfbyed, or may be only partially ascertained. in such
circumstances the original distribution (i.e. the distribution of X)
will be distorted. Rao then points out that if the model underlying the
partial destruction of original observations (or the survival distribution)
is known we'can derive the distribution appropriate to the observed values
knowing the original distribution.

The notation used for the damage model varies from author to author.
According to the notation introduced by Rao (1963), X represents the
original r.v. and Y the resulting ».v. " The distribution of X is c¢alled
the "original distribution" and the distribution of Y the '"resulting

distribution".  The r.v. Z = X-Y represents the damagé part! The
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distribution pf_Y[X is called the "survival distribution'.

‘Kagan, Linnik and Rao (1973) use the term '"ruin process'" instead
of survival distribution. Patil has switched the role of the letters;
he uses Z instead of X, X instead of Y and Y instead of Z.

_In the sequel, Rac's notation is adopted.

Rao sets up the problem in the followingkway. Let P be the
probability that the original observation is n, where n=0,1,... and let
the chance that there are r survivalskfrom the original n be s(r,n).

Then, the probability of observing r is
: ©
P(Y=r) = } Pns(r,n).
. n=r
He then examines in depth the following two particular cases.

Firstly, he assumes s(r,n) to be binomial; secondly he assumes that
either ail or Hione survive out of n with probability m_ and (l—wn).

The second case corresponds to the situation where the investigator does
not record observations which are partially damaged.

In the case where the original distribution is Poisson, Binomial
or Négafive Binomial and the survival distribution is Binomial, Rao
proves that fhe résulting distribution is of the same form as the original
distribution, but with the original parameter A multiplied by p, where p
is the binomial paréﬁeter; he shows that A and p get confounded, i.e.
cannot be sepératély estimated.

He also shows that in this case the pfobability distribution of the
damaged observations alone; the distribution of the undamaged observations
alone aﬁa th§ distribution of the observations when the'éIaSSificatiQn as
damagéd or undamaged is not known, are éll the same. Moreover he found
that this result is true even when the original distributiof is truncated

at an arbitrary point.
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Revankar, Hartley and Pagano (1974) use the same model in a slightly
different form to study the distribution of under-reported income.

Talwalker (1975) applies the damage model to medical and toxicological
problems. -

Patil and Rao (1976) consider the distribution of the "undamaged
observation" of the damage model as a special case of the weighting model.
‘This model gives rise to distributions which have been modified by the
method of ascertainment as a result of sampling witﬁ unequal probabilitigs
of observation. ‘' The concept was also introduced by Rac (1963).

The form of the resulting weighted distribution can be deduced from
'the original distribution provided of course tﬁat tﬁe model for the

sampling chance (weight) is known.

1.3.2 The R-R Characterization and its Variants

Using damage model theory, Rao and Rubin (1964) obtained the
following characterization of the Poisson distribution.
Suppose that the survival distribution s(r,n) is Binomial with

parameters n and p, where p is fixed. Then the condition

P(Y=r) = P(¥=r|X=Y) = P(Y=r|X>Y)

is necessary and sufficient for the distribution of X to be Poisson. This
is’known askthe’Réo—ﬁubin condition. (R-R condition.) A modified version
of the R-R coﬂdition was used by them to characterize the truncated
Pqisson distribution.

This,was the first characterizatiop based on the damage_modél thepry.
The matﬁematical iﬁpértance qf it lies in the fact that independence of Y

and the event X=Y is sufficient to determine the distribution of the r.v.
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X as, Poisson when Y|X is Binomial.

A number of interesting problems have been generated by the. introduction
of the R-R condition.

' The first is to examine whether the R-R condition characterizes the
Binomiél‘distribution as the only form of the distribution of Y]X when X.
is Poisson. ' Srivastava and Srivastava (1970) gave a positive answer to
the problem, but subject to the additional assumption that the parameter A
of the Poisson distribution is vafiable.

The second is to examine whether the‘variant of the R-R condition,

namely

8 P(Y:r‘]Y>k) = P(Y=r|X=Y)

determines uniéuely the diétribution of YIX when X is truncétéd Poisson.
Srivastava and Singh (1975) éonjectﬁred that a "modified" Binomial provides
the only sblution. Hokever, their conjecture is not velid as we will show
vla{er on in Chapter 2. |

The third is to find pairs of distributions other than the Poisson,

‘Binomial fof which the R-R property is characteristié. Many papers of that
‘kind have appeared recently. However, most of thesé require soﬁe
additional conditions in order to obtain the required result. Patil and
Ratnaparkhi (lé?Sj used a result of Patil and Seshadri (19645 and assumed
that the r-th orderkderivative of Gx(t) exists; this enabled them to derive
a characterizétion‘for the‘Negative Binomial (with Y]X ~ Negative Hyper-

" geometric). They aléo proved{that the R-R condition holds when Y|X is
Hypergeometric and ins Bigomial. They léft unsolved the problem as to
whether if Y[XVis again’Hypergeometfic and fhe R?R éonditioﬁ holds then X
must be Biﬁomiai. (The answer to this question will ﬁe givenkin Chapter 5.)

¢
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Consul (1974, 1975) studied the characterization of the Lagrangian-
Poisson distribution as the original distribution with the Quasi-Binomial
as the survival distribution in the damage model. (For definition and
properties_of the Lagrangian-Poisson and Quasi-Binomial distributions see
Consul and Jain (1973),)

The fourth is’to find pairs of distributions other than the truncated

Poisson,Binomial for which the property
P(Y=r|Y > k) = P(Y=r|X=Y)

is characteristic. No work seems to have beén published in this field.

The fif%h is to obtain characterizations for‘families of distributicns,
using the R-R property. Shanbhag (1976) used a technique existing in the
renewal theory to characterlze the form of the dlstrlbutlon of X using
the R-R condltlon, in the case where the dlstrlbutlon of XlY satlsfles
a given condltlon. This result provides many other characterizations as
‘particﬁlar cases.

Tﬁé sixth is to study the R-R proﬁerty under the -assumption that YIX
follows a ;runcated distribution; Again here, there do not seem to be
any results avéiiable in the literaturé. | |

The’seventh is to éxtend the results menfioned previously to the
Bivariate aﬁd Multivariéte caseé. Talwalker (1970) extended Rao and
Rubin's ré;ult to tﬁe Bivariate and Multivariate case. Patil and
Rafnaparkhi (1975) and Ratnaparkhi (1975) have obtained the Biyariate
versions of thelr result whlch has already been mentloned - so has
Shanbhag (1976) Clearly there are many gaps 1n the llterature so far
as the Blvarlate amd Multlvarlate cases are concerned Except for the

Double and Multlple Poisson, and Negatlve Blnomlal no other bivariate or

,
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multivariate distfibution has been characterized through the R-R condition.
Truncated bivariate and multivariate distributions have been totally
ignored, both when truncation’ concerns the distribution of X, and also
where truncation concerns the distribution of Y]x. |

The eighth is to deriverimilar‘characterizations based on variants
of the R-R condition. This has been done by Ratnaparkhi (1975), Kumar
and Consul (1976), and Srivastava and Singh (1975). Talwalker (1975) has

used the condition

P(Y=rIX damaged when prob. of survival is p)
= P(Y=r|X undamaged when prob. of survival is p')

with p" = O <p <‘l; qQ=1l-p,0<a<l,d=-1,0,+1

- AP
1l+dqa

to characterize: the Negative Binomial, Poisson and Binomial distributions
when Y|X is Binomial. .She argues that the above condition reduces to the
R-R condition when d=0. However, this is not the case, because in the:
course of her proof she treats p, p' as variables, while in the situation
examined by Rao ahd,Rubin p is fixed.

Many@authors have tried to improve or simplify some of the results
mentionéd above. Aczél (1972) and Van der Vaart (1972) attempted to give
simpler methods for deriving the result of Rao and Rubin and Talwalker
(1970). However, they did this by allowing p (the parameter of the
Binomial survival in the Univariate case) and P, s P, (the parameter of
the double Binomial survival in the bivariate case) to vary over (0,1),

a condition which is of course very stringénf. This was pointed out by
Shanbhag (1974), who in fact used an elementary method to arrive at the
R-R characterization and also to improve Talwalker's result by relaxing

some of the conditions.. Ord (1975) derived a version of Talwalker's
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bivariatéygxtension (again by assuming p variable) as a special case of

a characterization of ﬁis‘Bivariate dependent Poisson distribution.

A characterization of the Bivariate Hermite was derived as a special case.
The conditional expectation has been used,instead of the R-R condition,

by a number of research workers. Shanbhag and Clark (1972) established

that if X Has a power series distribution with parameter A, and s(r,n)‘has

~

mean np and variance. np(l-p) with p and s(n,n) independent of A, then
CE(Y) = E(Y|X=Y) and Var Y = Var(Y|X=Y)

iFf P is Poisson and s(n,n) = p . (For the definition_of a power: series
distribution the reader is referred to Patil (1962).)

Patil and Ratnaparkhi (1975) made use of the conditional expectation
‘of YIX to charactefize the Poisson, Binomial, Negative Binomial, Faétorial
and Hypergeometrlc distributions. The same authors in their (1977) paper
con31dered a blvarlate observatlon w1th the second component subjected to
damage.k Under this assumptlon they characterlzed the Poisson, Binomial
and Negatlve Blnomlal dlstrlbutlons within the framework of the damage
model using the invariance of linearity of regre331on of the flPSt compoﬁent
on the sécond. o ’ |

Korwar (1975) defived a characterization for a class of distributions
aééumiﬁg that the distribution of YIX‘is Binomial and the regression of X

on Y is linear.

1.3.3 Conditionality Characterizations

Let us con51der 1nteger«valued non—negatlve r. v.‘s Y and Z where
X=Y+Z. Then one can obtain characterlzatlons relatlng the dlstrlbutlons

of Xand Y when ‘the dlstrlbutlon of YIX is glven. Another prbblem is to



-23-

.

study -the relation between the distribution of Y and the distribution
of Y|X when the distribution of X is known. One can also examine the form
of the distributions of Y and Z for a given form of the distribution of YIX.
Many papers have' appeared in the literatube’dealing wiﬁh these
problems....The main assumption in all 6f”them‘is thaf‘Y‘and Z are
independent. ‘Patil and Seshadri (1964) proved that if the distribution of
Y|x éétisfiesqa‘certainrcondition then the distributions of Y and Z are
uniquely determinéd. Menon (1966), clarified certain points of Patil
and Seshadri's work.‘, |
This work was motivated by a very interestiyg result derived by

Moran‘(1952); he showed that if
o e dveey — . In) r n-r
’;.,p(Y,—r[X—n) e { ) p.a

then ;;is independent of n,rand Y, Z have Poisson distributions. A
-gmilar result was given by Chatterji (1963).

Using Menon's théorém, Kemp (1974b) derived é general characterization
for géneralized,Hypergeometric probability diStributions, which contains
the reSultﬁof Patil and Seshadri, Kemp and Kemp (1975) and Moran (for pn=p)
as special cases. ~(For definitidn and properties of the g'hip' distributions
the reader is referred to Kemp (1968, 1974a).

Some of Patil and Seshadri's results were extended to the multi-
variate’case by Janardan (1974). Janardan (1975) proved that if Y|X is
mixed,Quasi-Binomial distribution (M.Q.B.D.), then Y and Z follow
generalized Poisson distributions (G.P.D.) (G.P.D. is called Lagrangian—k
~ Poisson by Consul.) Janardan also showed that if Y|X isimixed;Quasi-
Hypergeometric thén‘Y, Z have generalized Negative Binomial ?istributions.

Govindarajulu and Leslie (1970) examined the same models in more detail.
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Consul‘(1974, i975) has also studied the above models.,

Most of these results require independence’of Y and Z; this condition
is very étringent.

Svenssgp‘(lgsg) avoided the assumption of independence. He proved
that for a given r.v. X there,exists a two-dimensional random variable
(X?Y) with the property that the p.g.f. of the distribution of Y|X is of
the form (q#pt)” iff ' ’

G (t) = ¢ [El;ﬁ] g

Seshadri and ?afil‘(igsé) obtained the form of the‘distributién of 7 in
vafioﬁs caseé whenkthé distributions of Y and YIX are given. Haight (1972)
discussed in detail some of the results that have appeared iﬁ the literature
in connection with Svensson's theorem.>

. Considering the distribution of the r.v. Y to be the pesult of mixing
the distribution of X with the distribution of Y|X, Skibinsky (1970) praved
‘ thaf,with the assumption'tﬁat Y|X is Hypergeometric, X is Binomial iff Y
is Binomial.‘ A physical interpretation of this result has been given’by
Mood (1943) ‘and by Hald (1960). Nevilland Kemp (1975) and Janardan (1973)
have extended this.characterization to the multivariate case. Krishnaji
(1970) = derived a characterization for the Yule’distribution truncated at
zero using the fact that when the survival distribution is uniform, the
reéulting distribution truncated at zero coincides with the original
distribution.

It is interesting that conditionality models (and hence damagevmodels)
-Qith the distribution of X or the distribution of Y|X having a mixed form

have not been considered in detail. Only Krishnaji (1974) studied the
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independence of Y and Z for mixed original or survival distributions.

It is,élear that. the conditionality model is more géneral than the
damage ‘model. .This is so because the conditionality model is a
mathematical model whereas the damage model corresponds to a particular
application of this. The assumption of independence of Y and Z, existing
in most cases of the former, is dropped in the latter. '

The introduction ofjthe damage ‘model has extended considerably the
existing conditionality results. The reason for this is that the R-R
propérty, introduced in the damage model theory,is clearly a weaker
assumption than independence. Moreover, the R-R property has given rise

to many interesting characterizations.

Note: Other éapers not directly of use in thls thesis which deal w1th
certain of these toplcs and which may be of some interest to  the reader’
include Aczél (19753) Medhi (1975), Samaniego (1976) Svensson (1975),
Telcher (1954 1961), Gan1 and Shanbhag (1974) 0ttav1an1 (1957),
Chatfleld and Theobald (1973) Gurland (1957, 1958) Gupta (1971),

Moran (1951), Daboni (1959) Lamberti (1959) lepln (1958).



