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CHAPTER 3 
 

3 THE BASIC MULTILEVEL MODEL AND 
EXTENSIONS 

 
In the previous Chapter we introduced a number of models and we cleared out 

the advantages of Multilevel Models in the analysis of hierarchically nested data. First 

of all, these models “respect” the hierarchy of the data and analyze data 

simultaneously in all levels. They allow for variables entry in all levels as well as 

cross-level interactions (interactions of variables measured in different levels). In 

Random Coefficient Models the lowest level regression coefficient are treated as 

random variables at the higher level, which explains further the variability of the 

model.  

In this Chapter we first elaborate more on the development of a basic 2-level 

model. We reconsider alternative ways and notations of setting up and motivating the 

model and introduce procedures for estimating parameters, forming and testing 

functions of the parameters and constructing confidence intervals. Then we extend to 

the natural extensions of the basic 2-level model by introducing higher-level structure, 

as well as special cases. These are the cross-classified models, the generalized 

multilevel models for proportion as outcome and the multivariate multilevel model.  

The scope of this Chapter is, therefore, to present in extent all theoretical 

aspects and advantages of a Multilevel Model and to show how this kind of analysis 

can be effective both in simple hierarchical data problems, as well as in even more 

complex theoretical statistical data structures. 

 

3.1 The Basic Two-Level Model - The Formulas 
 

3.1.1 The 2-level model and basic notation 
We first consider a simple model for one group, relating the response variable 

to one simple explanatory variable. We write: 

y x ei i i= + +α β   (3.1) 

where standard interpretations can be given to the intercept ( )α , slope ( )β  and 

residual ( )ei . We follow the normal convention of using Greek letters for the 
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regression coefficients and place a circumflex over any coefficient (parameter) which 

is a sample estimate. This is the formal model and describes a single-level 

relationship. To describe simultaneously the relationships for several groups we write, 

for group j  

ijijjjij exy ++= βα  (3.2) 

This is now the formal model where j  refers to the level 2 unit and i  to the level 1 

unit. As it stands, (3.2) is still essentially a single level model, albeit describing a 

separate relationship for each group. In some situations, for example where there are 

few groups and interest centres on just those groups in the sample, we may analyze 

(3.2) by fitting all the 12 +n parameters, namely 

 
2
e  and  ,...,1    ),( σβα njjj =  

assuming a common 'within-group' residual variance and separate lines for each 

group.  

If we wish to focus not just on these groups, but on a wider 'population' of 

groups then we need to regard the chosen groups as giving us information about the 

characteristics of all the groups in the population. Just as we choose random samples 

of individuals to provide estimates of population means etc., so a randomly chosen 

sample of groups can provide information about the characteristics of the population 

of groups. In particular, such a sample can provide estimates of the variation and 

covariation between groups in the slope and intercept parameters and will allow us to 

compare groups with different characteristics. 

An important class of situations arises when we wish primarily to have 

information about each individual group in a sample, but where we have a large 

number of groups so that (3.2) would involve estimating a very large number of 

parameters. Furthermore, some groups may have rather small numbers of 

observations and application of (3.2) would result in imprecise estimates. In such 

cases, if we regard the groups as members of a population and then use our population 

estimates of the mean and between-group variation, we can utilize this information to 

obtain more precise estimates for each individual group. This will be discussed later 

in the section dealing with 'residuals'. 
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To make (3.2) into a genuine 2-level model we let α βj j,  become random 

variables. For consistency of notation replace α βj j by 0  and β βj j by 1 and assume 

that 

 

jj u000 += ββ  (3.3a) 

jj u111 += ββ  (3.3b) 

where u uj j0 1,   are random variables with parameters 

0)()( 10 == jj uEuE   (3.4a) 

2
00 )var( uju σ= , 2

11 )var( uju σ= , 0110 ),cov( ujj uu σ=   (3.4b) 

 

We can now write (3.2) in the form 

)( 01010 ijijjjijij exuuxy ++++= ββ   (3.5) 

where  
2
00 )var( eije σ=    (3.6) 

 

We shall require the extra suffix in the level 1 residual term for models with more 

complex residual term. 

We have expressed the response variable yij  as the sum of a fixed part and a 

random part within the brackets. We shall also generally write the fixed part of (3.5) 

in the matrix form 

βXYE =)(  with }{ ijyY =   (3.7) 

ijijij XXyE )()( ββ == , }{ ijXX =  (3.8) 

where {}  denotes a matrix, X is the design matrix for the explanatory variables and 

Xij  is the ij-th row of X . For model (3.5) we have X xij= { }1  . Note the alternative 

representation for the i-th row of the fixed part of the model. 

The random variables are referred to as 'residuals' and in the case of a single 

level model the level 1 residual e ij0  becomes the usual linear model residual term. To 

make the model symmetrical so that each coefficient has an associated explanatory 

variable, we can define a further explanatory variable for the intercept 
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β0 0 and its associated residual,  u j , namely x ij0 , which takes the value 1.0. For 

simplicity this variable may often be omitted. 

The feature of (3.5) which distinguishes it from standard linear models of the 

regression or analysis of variance type is the presence of more than one residual term 

and this implies that special procedures are required to obtain satisfactory parameter 

estimates.  Note that it is the structure of the random part of the model, which is the 

key factor. In the fixed part the variables can be measured at any level. We can also 

include so called 'compositional' variables such as the average value of an explanatory 

variable for all individuals in each group. The presence of such variables does not 

alter the estimation procedure, although results will require careful interpretation. We 

will elaborate more on estimation procedures in the following section. 

 

3.1.2 Parameter estimation for the variance components model 
Equation (2.5) requires the estimation of two fixed coefficients,  β β0 1, , and 

four other parameters, σ σ σ σu u u e0
2

1
2

01 0
2, ,  and . We refer to such variances and 

covariances as random parameters. We start, however, by considering the simplest 2-

level model, which includes only the random parameters σ σu e0
2

0
2, . It is termed a 

variance components model because the variance of the response, about the fixed 

component, the fixed predictor, is 

var( | , , ) var( )y x u eij ij ij u eβ β σ σ0 1 0 0 0
2

0
2= + = +  (3.9) 

that is, the sum of a level 1 and a level 2 variance. This model implies that the total 

variance for each individual is constant and that the covariance between two 

individuals (denoted by i i1 2, ) in the same group is given by 

cov( , ) cov( , )u e u e u uj i j j i j j j u0 0 0 0 0 0
2

1 2
+ + = = σ  (3.10) 

since the level 1 residuals are assumed to be independent. The correlation between 

two such individuals is therefore 

ρ σ
σ σ

=
+
u

u e

0
2

0
2

0
2( )   (3.11) 

which is referred to as the ‘intra-level-2-unit correlation’ or the ‘intra-class’ 

correlation. This correlation measures the proportion of the total variance which is 
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between-groups. In a model with 3 levels, we will have two such correlations; the 

‘intra-level-3-unit correlation’ and the intra-level-2-unit correlation’, and so on. 

The existence of a non-zero intra-unit correlation, resulting from the presence 

of more than one residual term in the model, means that traditional estimation 

procedures such as 'ordinary least squares' (OLS) which are used for example in 

multiple regression, are inapplicable. A later section illustrates how the application of 

OLS techniques leads to incorrect inferences. We now look in more detail at the 

structure of a 2-level data set, focusing on the covariance structure typified by Figure 

3.1. 

 

Figure 3.1: Covariance matrix of three first-level units in a single 2-level context 

for a variance components model 
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The matrix in figure 3.1 is the (3 x 3) covariance matrix for the scores of three 

individuals in a single group, derived from the above expressions. For two groups, 

one with three individuals and one with two, the overall covariance matrix is shown in 

Figure 3.2. This 'block-diagonal' structure reflects the fact that the covariance between 

individuals in different groups is zero, and clearly extends to any number of level 2 

units. 

 

Figure 3.2: The block-diagonal covariance matrix for the response vector Y for a 

2-level variance components model with two level 2 units 
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A more compact way of presenting this matrix, which we shall use, again is given in 

figure 3.3. 

 

 

 

 

Figure 3.3: Block-diagonal covariance matrix using general notation 
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where I n( )  is the (n x n) identity matrix and J n( )  is the (n x n) matrix of ones. The 

subscript 2 for V  indicates a 2-level model. In single-level OLS models σu0
2  is zero 

and this covariance matrix then reduces to the standard form σ2 I  where σ2 is the 

(single) residual variance. 

 

3.1.3 The general 2-level model including random coefficients 
We now extend (3.5) in the standard way to include further fixed explanatory 

variables 

 

y x x u u x eij ij h hij
h

p

j j ij ij= + + + + +
=
∑β β β0 1 1

2
0 1 1 0( )  (3.12) 

 

and more compactly as 

y X u z e zij ij hj hij ij ij
h

= + +
=
∑β 0 0

0

1

 (3.13) 

 

where we use new explanatory variables for the random part of the model and write 

these more generally as 

}1 0{ ZZZ =   (3.14) 

where   }1{0 =Z i.e a vector of 1s and }1{1Z ijx= . 
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The explanatory variables for the random part of the model are often a subset of those 

in the fixed part, as here, but this is not necessary. Also, any of the explanatory 

variables may be measured at any of the levels; for example we may have individual 

characteristics at level 1 or group characteristics at level 2.  

This model (3.13), with the coefficient of X1 random at level 2, gives rise to 

the following typical block structure, for a level-two block with two level-one units. 

The matrix Ω2  is the covariance matrix of the random intercept and slope at level 2. 

Note that we need to distinguish carefully between the covariance matrix of the 

responses given in the following structure and the covariance matrix of the random 

coefficients. We also refer to the intercept as a random coefficient. The matrix Ω1 is 

the covariance matrix for the set of level-one random coefficients; in this case there is 

just a single variance term at level one. We also write Ω Ω= { }i  for the set of these 

covariance matrices. More explicitly:  

 

Figure 3.4: Response covariance matrix for a level 2 unit with two level 1 units 

for a 2-level model with a random intercept and random regression coefficient at 

level-2 
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We also see here the general pattern for constructing the response covariance matrix 

which generalizes both to higher order models and to complex variation at level 1.  

 

3.1.4 Parameter Estimates - Possible Approaches – Algorithms 
It is obvious even from the previous discussion that the parameters estimation 

for both the fixed and the random part of the model is a crucial issue in Multilevel 

analysis, especially due to the large number of parameters that have to be estimated. 

For a model of P predictors for the lowest level and Q predictors for the highest level 

the number of estimates is shown in the following Table (taken by Hox (1995)): 

 

Table 3.1: Number of parameters to be estimated in a “full” Multilevel model 

Parameters Number of Estimates 

Intercept 1 

Lowest level error variance 1 

Slopes for the lowest level predictors P 

Highest level error variances for these slopes P 

Highest level covariances of the intercept 

with all slopes 
P 

Highest level covariances between all slopes P(P-1)/2 

Slopes for the highest level predictors Q 

Slopes for cross level interactions P x Q 

 
Several techniques and principles and their corresponding algorithms have 

been proposed in order to reach reliable estimates for both fixed and random part. As 

far as Maximum Likelihood technique is concerned, two different varieties of 

Maximum Likelihood estimation are used for multilevel regression analysis. One is 
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called Full Maximum Likelihood (FML); in this method both the regression 

coefficients and the variance components are included in the likelihood function. The 

other method is called Restricted Maximum Likelihood (REML), here only the 

variance components are included in the likelihood function. The difference is that 

FML treats the estimates for the regression coefficients as known quantities when the 

variance components are estimated, while REML treats them as estimates that carry 

some amount of uncertainty (Bryk & Raudenbush, 1992). Since REML is more 

realistic, it should, in theory, lead to better estimates, especially when the number of 

groups is small (Bryk & Raudenbush, 1992). However, in practice, the differences 

between the two methods are not very important.  

Computing the Maximum Likelihood estimates requires an iterative 

procedure. The most commons of the algorithms (The Iterative Generalized Least 

Square Method and the EM algorithm) are discussed in this chapter, as well as other 

techniques and procedures. 

 

The Iterative Generalized Least Square (IGLS) Method 

We now give an overview of the Iterative Generalized Least Squares (IGLS) 

method which also forms the basis for many of the developments in more complex 

analysis. 

We consider the simple 2-level variance components model 

y x u eij ij j ij= + + +β β0 1 0 0   (3.15) 

Suppose that we knew the values of the variances, and so could construct immediately 

the block-diagonal matrix V2 , which we will refer to simply as V. We can then apply 

immediately the usual Generalized Least Squares (GLS) estimation procedure to 

obtain the estimator for the fixed coefficients 

$ ( )β = − − −X V X X V YT T1 1 1  (3.16) 
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with m  level 2 units and nj  level 1 units in the j-th level 2 unit. When the residuals 

have Normal distributions (3.16) also yields maximum likelihood estimates. 

Our estimation procedure is iterative. We would usually start from 'reasonable' 

estimates of the fixed parameters. Typically these will be those from an initial OLS fit 

(that is assuming σu0
2 0= ), to give the OLS estimates of the fixed coefficients $ ( )β 0 . 

From these we form the 'raw' residuals 

% $ $y y xij ij ij= − −β β0 1  (3.18) 

The vector of raw residuals is written 

% { % }Y yij=  (3.19) 

If we form the cross-product matrix % %Y Y T  we see that the expected value of this is 

simply V. We can rearrange this cross product matrix as a vector by stacking the 

columns one on top of the other which is written as vec YY T( ~~ )  and similarly we can 

construct the vector vec V( ) . For the structure given in figure 3.2, these both have 

3 22 2+ = 13 elements. The relationship between these vectors can be expressed as the 

following linear model 
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 (3.20) 

where R  is a residual vector. The left hand side of (3.20) is the response vector in the 

linear model and the right hand side contains two explanatory variables, with 

coefficients σ σu e0
2

0
2,   which are to be estimated. The estimation involves an 

application of GLS using the estimated covariance matrix of vec Y Y T( % % ) , assuming 

Normality, namely 2 1 1( )V V− −⊗  where ⊗  is the Kronecker product. The Normality 

assumption allows us to express this covariance matrix as a function of the random 

parameters. Even if the Normality assumption fails to hold, the resulting estimates are 

still consistent, although not fully efficient, but standard errors, estimated using the 

Normality assumption and, for example confidence intervals will generally not be 

consistent. For certain variance component models alternative distributional 

assumptions have been studied, especially for discrete response models of the kind 
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discussed later in the thesis and maximum likelihood estimates obtained. For more 

general models, however, with several random coefficients, the assumption of 

multivariate Normality is a flexible one, which allows a convenient parameterization 

for complex covariance structures at several levels.  

With the estimates obtained from applying GLS to (3.20) we return to (3.16) 

to obtain new estimates of the fixed effects and so alternate between the random and 

fixed parameter estimation until the procedure converges, that is the estimates for all 

the parameters do not change from one cycle to the next. At convergence, assuming 

multivariate Normality, the estimates are maximum likelihood. Essentially the same 

procedure can be used for the more complicated models discussed later on in the 

thesis. The maximum likelihood procedure produces biased estimates of the random 

parameters because it takes no account of the sampling variation of the fixed 

parameters. This may be important in small samples. Goldstein (1989a) shows how a 

simple modification leads to restricted iterative generalized least squares (RIGLS) or 

restricted maximum likelihood (REML) estimates which are unbiased. The IGLS 

algorithm is readily modified to produce these restricted estimates (RIGLS)  

Full details of efficient computational procedures for carrying out all these 

calculations are given by Goldstein & Rasbash (1992). 

 

The EM algorithm 

To illustrate the procedure, consider the 2-level variance components model 

y X u e eij ij j ij ij u= + + = =( ) var( ) , )β σ σ,          var(ue j
2 2

 (3.21) 

The vector of level 2 residuals is treated as missing data and the 'complete' data 

therefore consists of the observed vector Y  and the u j  treated as observations. The 

joint distribution of these, assuming Normality, and using our standard notation is  

Y
u
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This generalizes readily to the case where there are several random coefficients. If we 

denote these by β j  we note that some of them may have zero variances. We can now 

derive the distribution of β j Y| , and we can also write down the Normal log 

likelihood function for (3.22) with a general set of random coefficients, namely 
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∑ ∑ −− Ω−−Ω−−∝
ij

ju
j

T
jijee eJNL ββσσ 1222 ||log)log()log(  (3.23) 

Maximizing the latter for the random parameters we obtain 

∑−=
ij

ije eN 212σ)  (3.24) 

∑−=Ω
j

T
jju m ββ1)

 (3.25) 

where m is the number of level 2 units. We do not know the values of the individual 

random variables. We require the expected values, conditional on the Y  and the 

current parameters, of the terms under the summation signs, these being the sufficient 

statistics. We then substitute these expected values in (3.24) and (3.25) for the 

updated random parameters. These conditional values are based upon the 'shrunken' 

predicted values and their (conditional) covariance matrix. With these updated values 

of the random parameters we can form V  and hence obtain the updated estimates for 

the fixed parameters using generalized least squares. We note that the expected values 

of the sufficient statistics can be obtained using the general result for a random 

parameter vector θ . 

E E ET T( ) cov( ) [ ( )][ ( )]θθ θ θ θ= +  (3.26) 

 

The prediction is known as the E (expectation) step of the algorithm and the 

computations in (3.25) and (3.26) the M (maximization) step. Given starting values, 

based upon OLS, these computations are iterated until convergence is obtained. 

Convenient computational formulae for computing these quantities at each iteration 

can be found in Bryk & Raudenbush (1992). 

 

Markov Chain Monte Carlo estimation – The Gibbs Sampling 

Markov Chain Monte Carlo algorithms exploit the properties of Markov 

chains where the probability of an event is conditionally dependent on a previous 

state. The procedure is iterative and at each stage from the full multivariate 

distribution the distribution of each component conditional on the remaining 

components is computed and used to generate a random variable. The components 

may be variates, regression coefficients, covariance matrices etc. After a suitable 

number of iterations, we obtain a sample of values from the distribution of any 

component, which we can then use to derive any desired characteristic such as the 



 45

mean, covariance matrix, etc. The most common procedure is that of Gibbs Sampling 

and Gilks et al. (1993) provide a comprehensive discussion with applications and an 

application to a 2-level logit model is given by Zeger & Karim (1991). It allows the 

fitting of Bayesian models where prior distributions for the parameters are specified. 

 We outline a Gibbs Sampling procedure for a 2-level model. We write: 

Y X Z u Z e= + +β ( ) ( )2 1
 (3.27) 

We first consider the distribution β| ,( )u Yk  where k refers to the k-th iteration. 

Given u k( ) , Z u( )2  is just an offset so that we can regress y xij ijon  to estimate 

$ var( $ )( ) ( )β βk k and . 

We can then select a random vector from this distribution, assumed to be multivariate 

normal ( $ ( $ ))( ) ( )β βk k , var . 

We now consider the distribution of  Ω2 | ( )u k . We have (with a non-informative prior) 

that the (posterior) distribution of Ω2
1−  is a Wishart distribution with parameter (i.e. 

covariance) matrix 

S u u with d J qk
j
k

j
k

j

J T( ) ( ) ( )= = − +
=
∑

1

1     d.f.  (3.28) 

where J is the number of level 2 units and q is the number of random coefficients. 

A simple way of generating such a Wishart distribution is to generate d multivariate 

normal vectors from N S k( , )( )0  and form their SSP matrix. This provides $ ( )Ω2
k . 

Finally we consider the distribution u Yj | , ,β Ω2 . These are the usual level 2 residuals, 

for which we have standard expressions for their expected values and covariance 

matrix. We note that for a 2-level model (but not within a three level model) these are 

block-independent. Assuming Normality we can now generate a set of uj
k( )  and this 

completes an iterative cycle. 

There are some particular computational details to be noted. For example 

'rejection sampling' at each cycle can be used and we can do several cycles for Ω2 ,uj  

for each β  since the former tend to have higher autocorrelations across cycles.  

The procedure can be applied to any existing models, e.g. logit models, where 

the conditional distributional assumptions are explicit. Gibbs Sampling tends to be 

computationally demanding, with hundreds if not thousands of iterations required and 

this can be particularly burdensome when several different models are being explored 
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for their fit to the data. On the other hand, this approach has the advantage, in small 

samples, that it takes account of the uncertainty associated with the estimates of the 

random parameters and can provide exact measures of uncertainty. The maximum 

likelihood methods tend to overestimate precision because they ignore this 

uncertainty. In small samples this will be important especially when obtaining 

'posterior' estimates for residuals, which will be discussed in the following section. 

Gibbs sampling approach is therefore useful for small and moderate sized samples 

and when used in conjunction with likelihood based EM or IGLS algorithms. 

 

Other estimation procedures 

A variation on IGLS is Expected Generalized Least Squares (EGLS) or the 

“Gauss-Newton method” as it is mentioned by other authors (Kreft & Leeuw, 1998). 

This focuses interest on the fixed part parameters and uses the estimate of  V  obtained 

after the first iteration merely to obtain a consistent estimator of the fixed part 

coefficients without further iterations. A variant of this separates the level 1 variance 

from V  as a parameter to be estimated iteratively along with the fixed part 

coefficients. 

Longford (1987) developed a procedure based upon a 'Fisher scoring' 

algorithm which can be seen that it is formally equivalent to IGLS. This algorithm can 

also incorporate certain extensions, for example to handle discrete response data. 

We have already mentioned the full Bayesian approach, which has become 

computationally feasible with the development of 'Markov Chain Monte Carlo' 

(MCMC) methods, especially Gibbs Sampling (Zeger & Karim, 1991). An alternative 

to the full Bayes estimation, known as 'Empirical Bayes’, ignores the prior 

distributions of the random parameters, treating them as known for purposes of 

inference. When Normality is assumed, these estimates are the same as IGLS or 

RIGLS.  

Another approach, which parallels all that was mentioned so far, is that of 

Generalized Estimating Equations (GEE) introduced by Liang & Zeger (1986). The 

principal difference is that GEE obtains the estimate of V using simple regression or 

'moment' procedures based upon functions of the actual calculated raw residuals. It is 

concerned principally with modeling the fixed coefficients rather than exploring the 

structure of the random component of the model. While the resulting coefficient 

estimates are consistent they are not fully efficient. In some circumstances, however, 
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GEE coefficient estimates may be preferable, since they will usually be quicker to 

obtain and they make weaker assumptions about the structure of V. The GEE 

procedure can be extended to handle most of the models dealt with more complex 

cases. 

 

 

 

3.1.5 Estimating the residuals 
In a single level model such as (3.1) the usual estimate of the single residual 

term ei  is just %yi  the raw residual. In a multilevel model, however, we shall generally 

have several residuals at different levels. In this chapter we consider estimating the 

individual residuals in all levels.  

Given the parameter estimates, consider predicting a specific residual, say u j0  in a 2-

level variance components model. Specifically we require for each level 2 unit 

$ ( | , $ , $ )u E u Yj j0 0= β Ω  (3.29) 

We shall refer to these as estimated or predicted residuals or, using Bayesian 

terminology, as posterior residual estimates. If we ignore the sampling variation 

attached to the parameter estimates in (3.29) we have 
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We regard (3.29) as a linear regression of u j0  on the set of { % }yij  for the j-th level 2 

unit and (3.13) defines the quantities required to estimate the regression coefficients 

and hence $u j0 . For the variance components model we obtain 
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where nj  is the number of level 1 units in the j-th level 2 unit. The residual estimates 

are not, unconditionally, unbiased but they are consistent. The factor multiplying the 

mean ( %y j ) of the raw residuals for the j-th unit is often referred to as a 'shrinkage 

factor' since it is always less than or equal to one. As nj  increases this factor tends to 

one, and as the number of level 1 units in a level 2 unit decreases the 'shrinkage 

estimator' of u j0  becomes closer to zero. In many applications the higher level 

residuals are of interest in their own right and the increased shrinkage for a small level 

2 unit can be regarded as expressing the relative lack of information in the unit so that 

the best estimate places the predicted residual close to the overall population value as 

given by the fixed part. 

These residuals therefore can have two roles. Their basic interpretation is as 

random variables with a distribution whose parameter values tell us about the 

variation among the level 2 units, and which provide efficient estimates for the fixed 

coefficients. A second interpretation is as individual estimates for each level 2 unit 

where we use the assumption that they belong to a population of units to predict their 

values. In particular, for units which have only a few level 1 units, we can obtain more 

precise estimates than if we were to ignore the population membership assumption 

and use only the information from those units. This becomes especially important for 

estimates of residuals for random coefficients, where in the extreme case of only one 

level-one unit in a level-two unit we lack information to form an independent 

estimate.  

As in single level models we can use the estimated residuals to help check on 

the assumptions of the model. The two particular assumptions that can be studied 

readily are the assumption of Normality and that the variances in the model are 

constant. Because the variances of the residual estimates depends in general on the 

values of the fixed coefficients it is common to standardize the residuals by dividing 

by the appropriate standard errors, which are referred as 'diagnostic' or  'unconditional' 

standard errors (Goldstein, 1995).  

When the residuals at higher levels are of interest in their own right, we need 

to be able to provide interval estimates and significance tests as well as point 

estimates for them or functions of them.  For these purposes we require estimates of 

the standard errors (the so-called 'conditional' or 'comparative' standard errors) of the 

estimated residuals, where the sample estimate is viewed as a random realization from 
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repeated sampling of the same higher-level units whose unknown true values are of 

interest.  

The level 1 residuals are generally not of interest in their own right but are 

used rather for model checking, having first been standardized using the diagnostic 

standard errors. Checking the model assumptions in a multilevel model are used in an 

exactly analogous way as in simple regression models. In other words, we use plot of 

the standardized level 1 residuals against the fixed part predicted value to check the 

assumption of a constant level 1 variance (‘homoscedasticity’) and Normal score plots 

for level-one (and level-two) residuals to check the assumption of Normality. 

 

3.1.6  Hypothesis testing and confidence intervals 
In this section we deal with large sample procedures for constructing interval 

estimates for parameters or linear functions of parameters and for hypothesis testing. 

Hypothesis tests are used sparingly in multilevel analysis since the usual form of a 

null hypothesis, that a parameter value or a function of parameter values is zero, is 

usually implausible and also relatively uninteresting. Moreover, with large enough 

samples a null hypothesis will almost certainly be rejected. The exception to this is 

where we are interested in whether a difference is positive or negative, and this is 

discussed in the section on residuals below. Confidence intervals emphasize the 

uncertainty surrounding the parameter estimates and the importance of their 

substantive significance. 

 

Fixed parameters 

We have already presented parameter estimates techniques for the fixed part 

parameters together with their standard errors. These are adequate for hypothesis 

testing or confidence interval construction separately for each parameter. In many 

cases, however, we are interested in combinations of parameters. For hypothesis 

testing, this most often arises for grouped or categorized explanatory variables where 

n group effects are defined in terms of n −1 dummy variable contrasts and we wish 

simultaneously to test whether these contrasts are zero. We may also be interested in 

providing a pair of confidence intervals for the parameter estimates. We proceed as 

follows: 



 50

Define a (r x p) contrast matrix C. This is used to form linearly independent 

functions of the p fixed parameters in the model of the form f C= β, so that each row 

of C defines a particular linear function. Parameters that are not involved have the 

corresponding elements set to zero. Suppose we wish to test the hypothesis that the 

coefficients of two variables each having two categories are jointly zero. We define  
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and the general null hypothesis is 
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Cf =  (3.32b) 

 

If the null hypothesis is true this is distributed as approximately χ2  with r degrees of 

freedom. Note that the term ( $ )X V XT − −1 1 is the estimated covariance matrix of the 

fixed coefficients. 

If we find a statistically significant result we may wish to explore which 

particular linear combinations of the coefficients involved are significantly different 

from zero. The common instance of this is where we find that n groups differ and we 

wish to carry out all possible pairwise comparisons. A simultaneous comparisons 

procedure which maintains the overall type I error at the specified level involves 

carrying out the above procedure with either a subset of the rows of C or a set of  (less 

than r) linearly independent contrasts. The value of R obtained is then judged against 

the critical values of the chi-squared distribution with r degrees of freedom. 

We can also obtain an α% confidence region for the parameters by setting $R  

equal to the α% tail region of the χ2  distribution with r degrees of freedom in the 

expression 
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$ ( $ ) [ ( $ ) ] ( $ )R f f C X V X C f fT T T= − −− − −1 1 1

 (3.33) 

This yields a quadratic function of the estimated coefficients, giving an r-dimensional 

ellipsoidal region.  

In some situations we may be interested in separate confidence intervals for all 

possible linear functions involving a subset of q parameters or q linearly independent 

functions of the parameters, while maintaining a fixed probability that all the intervals 

include the population value of these functions of the parameters. As before, this may 

arise when we have an explanatory variable with several categories and we are 

interested in intervals for sets of contrasts. For a ( )%1−α  interval write Ci  for the i-th 

row of C, then a simultaneous ( )%1−α  interval for Ciβ , for all Ci is given by  

( $ , $ )C d C di i i iβ β− +   (3.34) 

where  

d C X V X Ci i
T

i
T

q= − −[ ( $ ) ],( )
.1 1 2 0 5χ α   (3.35) 

 

where χ αq ,( )
2  is the α% point of the χq

2  distribution. 

We can also use the likelihood ratio test criterion for testing hypotheses about 

the fixed parameters, although generally the results will be similar. The difference 

arises because the random parameter estimates used in (3.32a) and (3.32b) are those 

obtained for the full model rather than those under the null hypothesis assumption, 

although this modification can easily be made. We shall discuss the likelihood ratio 

test in the next section dealing with the random parameters.  

 

Random parameters 

In very large samples it is possible to use the same procedures for hypothesis 

testing and confidence intervals as for the fixed parameters. Generally, however, 

procedures based upon the likelihood statistic are preferable. To test a null hypothesis 

H0 against an alternative H1 involving the fitting of additional parameters we form the 

log likelihood ratio or deviance statistic 

D e01 0 12= − log ( / )λ λ  (3.36) 
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where λ λ0 1,  are the likelihoods for the null and alternative hypotheses and this is 

referred to tables of the chi-squared distribution with degrees of freedom equal to the 

difference (q) in the number of parameters fitted under the two models.  

We can also use (3.36) as the basis for constructing a ( )%1−α  confidence 

region for the additional parameters. If D01 is set to the value of theα% point of the 

chi squared distribution with q degrees of freedom, then a region is constructed to 

satisfy (3.36), using a suitable search procedure. This is a computationally intensive 

task, however, since all the parameter estimates are recomputed for each search point.  

An alternative is to use the ‘profile likelihood’ (McCullagh & Nelder, 1989). 

In this case the likelihood is computed for a suitable region containing values of the 

random parameters of interest, for fixed values of the remaining random parameters. 

Interval estimates can be provided also by bootstrap simulations. 

 

Residuals 

In studies of institutions (e.g. schools, hospitals etc) effectiveness (Goldstein 

& Spiegelhalter, 1996), one requirement is sometimes to try to identify institutions 

with residuals which are substantially different. From a significance testing 

standpoint, we will often be interested in the null hypothesis that institution (group) A 

has a smaller residual than institution (group) B against the alternative that the 

residual for institution (group) A is larger than that for institution (group) B (ignoring 

the vanishingly small probability that they are equal). In the case when a standard 

significance test accepts the alternative hypothesis (at a chosen level) of some 

difference against the null hypothesis of no difference, this is equivalent to accepting 

one of the alternatives (A  > B, A < B) at the same level of significance and we shall 

use this interpretation. 

Where we can identify two particular institutions (groups) then it is 

straightforward to construct a confidence interval for their difference or carry out a 

significance test. Often, however, the results are made available to a number of 

individuals, each of whom are interested in comparing their own institutions (e.g. 

schools) of interest. This may occur, for example where policy makers wish to select a 

few schools within a small geographical area for comparison, out of a much larger 

study. In the following discussion, we suppose that individuals wish to compare only 
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pairs of institutions, although the procedure can be extended to multiple comparisons 

of three or more residuals. Further details are given by Goldstein & Healy (1994).  

When the sample size of a study is fairly large, we can assume that the estimated 

residuals together with their comparative standard errors estimates are uncorrelated.  

First, we order the residuals from smallest to largest. We construct an interval 

about each residual so that the criterion for judging statistical significance at the 

( )%1 − α level for any pair of residuals is whether their confidence intervals overlap. 

For example, if we consider a pair of residuals with a common standard error (se) and 

assuming Normality, the confidence interval width for judging a difference significant 

at the 5% level are given by ±1 39. ( )se . The general procedure defines a set of 

confidence intervals for each residual i as 

$ ( )u ci i± se  (3.37) 

For each possible pair of intervals, (3.37) there is a significance level associated with 

the overlap criterion, and the value c is determined so that the average, over all 

possible pairs is ( )%1 − α . A search procedure can be devised to determine c. When 

the ratios of the standard errors do not vary appreciably, say by not more than 2:1, the 

value 1.4 can be used for c. As this ratio increases so does the value of c.  

These kinds of residual analyses are useful for conveying the inherent 

uncertainty associated with estimates for individual level 2 (or higher) units, where 

the number of level 1 units per higher-level unit is not large. This uncertainty in turn 

places inherent limitations upon such comparisons. 

 

3.2 Extensions of the 2-Level Linear Model 
What we have discussed so far refers to notations, techniques and estimations 

for the two-level linear model, which is the most common case in the multilevel 

analysis theory. However, in order to examine more demanded applications presented 

in the next chapter, we need to present the logical extensions of the two-level linear 

model. In all cases discussed here, the extensions are straightforward and stem either 

from the hierarchy of the subjects or from the nature of the data that are being 

measured. The extensions discussed here are: 

 The 3-Level linear Model 

 Cross-Classification Models 

 Models for Discrete response data – The Proportions as responses case 
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 Multivariate Multilevel Models – The basic 2-level Multivariate model 

 Multilevel Structural Equation Models – Multilevel Factor Analysis case 

 

3.2.1 The Three-Level Linear Model 
The most profound, maybe, extension of a 2-Level linear model comes when 

we add more levels of hierarchy in the model. We focus on the 3-level model since 

higher-level cases are rarely of importance in practice. Some examples of 3-level 

hierarchical structures are students (Level-1) nested within schools (Level-2) nested 

within prefectures (Level-3). Or in another point of view repeated visits (Level-1) of 

patients (Level-2) in heath provider units (Level-3).  

In the simplest case the basic linear 3-level model can be written as follows: 

)( ijkjkkijkijk euvxy +++= β  (3.38) 

where ijkx  is a vector of covariates and β  a corresponding vector of parameter 

estimates. The vector of covariates includes a constant together with explanatory 

variables measured at any of the three levels. The error terms kv , jku  and ijke  are 

considered are considered as random variables with mean zero and variances  
2)var( vkv σ=  (3.39a) 

2)var( ujku σ=  (3.39b) 

2)var( eijke σ=  (3.39c) 

If we now introduce Z explanatory variables in the random part of the model, in any 

of the three levels, we obtain the more general form of the 3-level model, as follows: 
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where ijkx  is again the vector of covariates,β  the corresponding vector of parameter 

estimates, and )3(
hkz , )2(

hjkz and )1(
hijkz  the explanatory variables of the random part of the 

3rd, 2nd and 1st level of hierarchy, respectively.  

Although such models seem more complicated and demanding than the two-

level models, the computations, estimation techniques and algorithms are totally 

analogous to the methods described before for the two-levels case. 
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3.2.2 Cross-Classified Models 
So far we have considered only data where the units have a purely hierarchical 

or nested structure. In many cases, however, a unit may be classified along more than 

one dimension. An example is students classified both by the school they attend and 

by the neighbourhood where they live. This is diagrammatically represented as 

follows for three schools and four neighbourhoods with between one and six students 

per school/neighbourhood cell. The cross classification is at level 2 with students at 

level 1. 

 

Table 3.2: A random cross-classification at level 2 

 School 1 School 2 School 3 

Neighbourhood 1 x x x x  x x  x 

Neighbourhood 2 x x x x x x x  x x x 

Neighbourhood 3  x x x x x x x 

Neighbourhood 4 x x x x x x x 

 
 

Another example is in a repeated measures study where children are measured 

by different raters at different occasions. If each child has its own set of raters not 

shared with other children then the cross classification is at level 1, occasions by 

raters, nested within children at level 2. We note that, by definition, a level 1 cross 

classification has only one unit per cell.  

These basic cross-classifications occur commonly when a simple hierarchical 

structure breaks down in practice. Consider, for example, a repeated measures design, 

which follows a sample of students over time, say once a year, within a set of classes 

for a single school. If students change classes during the course, that is a cross 

classification at level 2 for classes by students. If we now include schools these will 

be classified as level 3 units, but if students also change schools during the course of 

the study then we obtain a level 3 cross classification of students by schools with 

classes nested at level 2 within schools and occasions as the level 1 units. The 

students have moved from being crossed with classes to being crossed with schools. 

Note that since students are crossed at level 3 with schools they are also automatically 

crossed with any units nested within schools and we do not need separately to specify 

the crossing of classes with students.  
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Such designs will occur also in panel or longitudinal studies of individuals 

who move from one locality to another, or workers who change their place of 

employment. 

Other examples of such designs occur in panel studies of households where, 

over time, some households split up and form new households. The total set of all 

households is crossed with individual at level 2 with occasion at level 1. The 

households, which remain intact for more than one occasion, provide the information 

for estimating level 1 variation.  

In health studies cross-classification occurs naturally in many cases. Consider 

for example the case where patients may be classified both by the hospitals they visit 

and by the clinicians the frequent, so that individuals within one hospital cluster are 

not grouped in the same way under clinicians. This type of cross-classification does 

not occur when clinicians operate within a single medical care, but this is not always 

the case. This kind of cross-classification is illustrated diagramatically in the 

following figure (Rice & Jones, 1997): 

 

Figure 3.5: Patients within Cross-classified clinicians and Provider Units 

 

 

In another example, patients may receive care from more that one medical centre 

during the year. This arrangement forms a multiple or cross-unit membership model, a 

special case of cross-classification (Carey, 2000).  
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We now set out the structure of the basic models described above and then go 

on to consider extensions and special cases of interest. 

 
A basic cross-classified model 

We consider first the simple model of Table 3.2 with variance components at 

level 2 and a single variance term at level 1. 

We shall refer to the two classifications at level 2 using the subscripts j j1 2,   and in 

general parentheses will group classifications at the same level. We write the model as 

y X u u ei j j i j j j j i j j( ) ( ) ( )1 2 1 2 1 2 1 2
= + + +β  (3.41) 

 
The covariance structure at level 2 can be written in the following form 
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Note that if there is no more than one unit per cell, then model (3.41) is still valid and 

can be used to specify a level 1 cross classification. 

Thus the level-2 variance is the sum of the separate classification variances, 

the covariance for two level 1 units in the same classification is equal to the variance 

for that classification and the covariance for two level 1 units, which do not share 

either classification, is zero. If we have a model where random coefficients are 

included for either or both classifications, then analogous structures are obtained. We 

can also add further ways of classification with obvious extensions to the covariance 

structure. 

We can now show how cross-classified models can be specified and estimated 

efficiently using a purely hierarchical formulation, including random cross-classified 

structures. 

We illustrate the procedure using a 2-level model with crossing at level 2. The 

2-level cross-classified model, using the same notations as in previous chapters for the 

basic model, can be written 
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Parentheses group the ways of classification at each level. We have two sets of 

explanatory variables, type 1 and type 2, for the random components defined by the 

columns of Z n p q n p q1 1 1 2 2( ), ( )× × Z2  where p p1 2,   are respectively the number of 

categories of each classification, i.e. 

 
}{

111 hijzZ =   (3.44a) 

where otherwiseunitleveltypethmformjifzz himhij  0 , 2  1      ,      111 1
−==  

 
and 

}{
222 hijzZ =  (3.44b) 

where otherwiseunitleveltypethmformjifzz himhij  0 , 2  2      ,     222 2
−==  

 

These variables are dummy variables where for each level 2 unit of type 1 we have q1 

random coefficients with covariance matrix Ω( )1 2  and likewise for the type 2 units. To 

simplify the exposition we restrict ourselves to the variance component case where we 

have  
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It is clear that the second term in (3.45b) can be written as 

Z I Z J Jp
T T

1 1 2
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1 1 2
2

1
( )( ) ( ) ( )σ σ=  (3.46) 

 
where J  is a (n x 1) vector of ones. The third term is of the general form Z Z T

3 3 3Ω , 

namely a level 3 contribution where in this case there is only a single level 3 unit and 

with no covariances between the random coefficients of the Z h2  and with the variance 

terms constrained to be equal to a single value, σ( )2 2
2 . 

More generally we can specify a level 2 cross classified variance components 

model by modeling one of the classifications as a standard hierarchical component 

and the second as a set of dummy explanatory variables, one for each category, with 

the random coefficients uncorrelated and with variances constrained to be equal. We 

can summarize the procedure using the simple model of (3.41). We specify one of the 

classifications, most efficiently the one with the larger number of units, as a standard 
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hierarchical level 2 classification. For the other classification we define a dummy 

(0,1) variable for each unit, which is one if the observation belongs to that unit and 

zero if not. Then we specify that each of these dummy variables has a coefficient 

random at level 3 and in addition constrain the resulting set of level 3 variances to be 

equal. The variance estimate obtained is that required for this classification and the 

level-2 variance for the other classification is the one we require for that.  

To extend this to further ways of classification we add levels. Thus, for a three 

way cross classification at level 2 we choose one classification, typically that with the 

largest number of categories, to model in standard hierarchical fashion at level 2, the 

second to model with coefficients random at level 3 as above and the third to model in 

a similar fashion with coefficients random at level 4. So we can obtain the third 

variance by defining a similar set of dummy variables with coefficients varying at 

level 4 and variances constrained to be equal. This procedure generalizes 

straightforwardly to sets of several random coefficients for each classification, with 

dummy variables defined as the products of the basic (0,1) dummy variables used in 

the variance components case and with corresponding variances and covariances 

constrained to be equal within classifications. In general a p-way cross classification 

at any level can be modeled by inserting sets of random variables at the next p-1 

higher levels. Thus in a 2-level model with two crossed classifications at level 1 we 

would obtain a three level model with the original level 2 at level 3 and the level 1 

cross classifications occupying levels 1 and 2. 

 

Interactions in cross-classifications 

If the second (type-2) classification has further explanatory variables with 

random coefficients as in (3.43) then we form extended dummy variable ‘interactions’ 

as the product of the basic dummy variables and the further explanatory variables with 

random coefficients, so that these coefficients have variances and covariances within 

the same type-2 level-2 unit but not across units. In addition the corresponding 

variances and covariances are constrained to be equal. We illustrate this case using the 

simple model with variance components at level-2 and a single variance term at level-

1 (3.41). Consider the following extension of equation (3.41) 

y X u u u ei j j i j j j j j j i j j( ) ( ) ( ) ( )1 2 1 2 1 2 1 2 1 2
= + + + +β  (3.47) 
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We have now added an ‘interaction’ term to the model which was previously an 

additive one for the two variances. The usual specification for such a random 

interaction term is that it has simple variance σu( )12

2  across all the level 2 cells (Searle et 

al, 1992). To fit such a model we would define each cell of the cross classification as 

a level 2 unit with a between cell variance σu( )12

2 , a single level 3 unit with a variance 

σu1
2  and a single level 4 unit with a variance σu2

2 . The adequacy of such a model can be 

tested against an additive model using a likelihood ratio test criterion.  

Extensions to this model are possible by adding random coefficients for the 

interaction component, just as random coefficients can be added to the additive 

components.  

 
Level 1 cross classifications 

Some interesting models occur when units are basically cross-classified at 

level 1. By definition we have a design with only one unit per cell, and we can also 

have a level 2 cross classification which is formally equivalent to a level 1 cross-

classification where there is just one unit per cell. This case should be distinguished 

from the case where a level 2 cross classification happens to produce no more than 1 

level 1 unit in a cell as a result of sampling, so that the confounding occurs by chance 

rather than by design. 

A 2-level variance components model with a cross classification at level 1 can 

be written as 

y X u e e ei i j i i j j i j i j i i j( ) ( ) ( )1 2 1 2 1 2 1 2
= + + + +β  (3.48) 

where for level 1 we use a straightforward extension of the notation for a level 2 

cross-classification. The term e i i j( , )1 2
 is analogous to the interaction term in (3.47). To 

specify this model we would define the u j  as random at level 4, the e ei j i j1 2,  as random 

at levels 3 and 2, each with a single unit and the interaction term random across the 

cells of the cross classification at level 1, within the original level 2 units.  

Suppose now that we were able to extend the design by replicating 

measurements for each cell of the level 1 cross-classification. Then (3.48) would refer 

to a 3-level model with replications as level 1 units, and which could be written as 

follows where the subscript h denotes replications 

y X u e e eh i i j h i i j j i j i j h i i j( ) ( ) ( )1 2 1 2 1 2 1 2
= + + + +β  (3.49) 
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Since (3.48) is just model (3.49) with one unit per cell, we could interpret the 

‘interaction’ variance in (3.48) as an estimate of the extent to which the additive 

variances of the cross-classification fail to account for the total level 1 variance.  

So called ‘generalisability theory’ models (Cronbach & Webb, 1975) can be 

formulated as level-1 cross-classifications. The basic model is one where a test or 

other instrument consisting of a set of items, for example ratings or questions, is 

administered to a sample of individuals. The individuals are therefore cross-classified 

by the items at level 1 and may be further nested within schools etc. at higher levels. 

In educational test settings the item responses are often binary so that we would apply 

the methods discussed in next chapter (3.5.3.) to the present procedures in a 

straightforward way. Since each individual can only respond once to each item this an 

example of a genuine level 1 cross classification. 

Another extension to what we have discussed so far is to allow simultaneous 

crossing at more than one level. However, the approach of such structures is totally 

analogous. Thus for example, if there is a 2-way cross classification at level 1 and a 3-

way cross classification at level 2, we will require five levels, the first two describing 

the level 1 cross classification and the next three describing the level 2 cross 

classification. 

 
Cross-unit membership models 

In some circumstances units can be members of more than one higher-level 

unit at the same time. An example is friendship patterns where at any time individuals 

can be members of more than one friendship group. Another example is where 

children belong to more than one ‘extended’ family, which includes aunts and uncles 

as well as parents. In an educational system students may attend more than one 

institution. In all such cases we shall assume that for each higher level unit to which a 

lower level unit belongs there is a known weight, summing to 1.0 for each lower level 

unit, which represents, for example, the amount of time spent in that unit. We may 

also have data where, although there is no cross-unit membership, there is some 

uncertainty about which higher-level unit some lower level units belong to. For 

example, in a survey of students information about their neighbourhood of residence 

may only be available for a few students for larger geographical units. For these cases 

it may be possible to assign a weight for each of the constituent neighbourhoods, 

which is in effect a probability of belonging to each based upon available information. 
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Such a structure can be analyzed formally as a cross-unit membership model with 

most students having a single weight of 1.0 and the remainder zero. 

Consider the 2-level variance components model (3.41) with each level 1 unit 

belonging to at most two level-2 units where the j j1 2,  subscripts now refer to the 

same type of unit: 

)(21)()( 2122112121 jjijijjijjjijji euwuwXy +++= β  (3.50) 

where 1
21 21 =+ ijij ww . 

The overall contribution at level 2 is therefore the weighted sum over the level 2 units 

to which each level 1 unit belongs. This leads to the following covariance structure 
222

2
2
1)( )()var(

2121 euijijjji wwy σσ ++=  (3.51a) 

2
2211)()( )()cov(

22112121 ujiijjiijjjijji wwwwyy σ′′′ +=  (3.51b) 

2
22()( 222121

)cov( ujiijjjijji wwyy σ′′′ =   (3.51c) 

This has the structure of a standard 2-level cross-classified model with the additional 

constraint σ σ σu u u1
2

2
2 2= =  and where the explanatory indicator variables Z Z1 2,   

described in (3.44a) and (3.44b) have the value 1 replaced by the relevant weights for 

each level 1 unit. As with the standard cross-classification this model can be extended 

to include random coefficients and general p-unit membership. In this case we need 

only in fact specify a single level 2 unit with explanatory variable design matrix Z, 

containing dummy weight vectors, and Ωu  as diagonal of order equal to the number 

of level 2 units, and elements equal to σ u
2 . 

In the next Chapter we introduce examples where the cross-classified structure 

has to be taken seriously into account.   

 

3.2.3 Models for Discrete response data – The Proportions as 
responses case 
All the models of previous chapters have assumed that the response variable is 

continuously distributed. We now look at data where the response is essentially a 

count of events. This count may be the number of times an event occurs out of a fixed 

number of  ‘trials’ in which case we usually deal with the resulting proportion as 

response: an example is the proportion of deaths in a population, classified by age. 
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We may have a vector of counts representing the numbers of events of different kinds 

which occur out of a total number of events: an example is the number of responses to 

each, ordered, category of a question on abortion attitudes. In all these cases the 

assumption of normality for the response variable is clearly violated as well as the 

assumption of homoscedastic error terms. 

The approach to the problem of non-normally distributed variables is to 

include the necessary transformation and the choice of the appropriate error 

distribution (not necessarily a normal distribution) explicitly in the statistical model. 

Statistical models for such data are referred to as ‘generalized linear models’ 

(McCullagh & Nelder, 1989). A 2-level model can be written in the general form 

 
π βij ij jf X= ( )  (3.52) 

where π ij  is the expected value of the response for the ij-th level 1 unit and f is a 

nonlinear function (called the ‘link function) of the ‘linear predictor’ Xij jβ  . Note 

that we allow random coefficients at level 2. The model is completed by specifying a 

distribution for the observed response yij ij|π . Where the response is a proportion this 

is typically taken to be binomial and where the response is a count taken to be 

Poisson. Equation (3.52) is a special case of the nonlinear models and the estimation 

methods for fixed and random part are extensions to those of linear models, using the 

appropriate transformations (e.g. the Taylor series expansion). However, what 

remains is to specify the nonlinear ‘link’ function  f. Table 3.3 lists some of the 

standard choices, with logarithms chosen to base e. In addition to these we can also 

have the ‘identity’ function f − =1( )π π , but this can create difficulties since it 

allows, in principle, predicted counts or proportions which are respectively less than 

zero or outside the range (0,1). Nevertheless, in many cases, using the identity 

function produces acceptable results, which may differ little from those obtained with 

the nonlinear functions.  For the purpose of the thesis we consider only the type of 

model where responses are proportions in dichotomous variables. 

 
Table 3.3: Some nonlinear link functions 

Response f −1( )π  Name 

Proportion log{( ) / ( )}π π1−  logit 

Proportion log{ log( )}− −1 π  complementary log log 



 64

Vector of proportions log( / ) ( ,..., )π πs t s t  = −1 1  multivariate logit 

Count log( )π  log 

 
 
 
 
Proportions as responses 

Consider the 2-level variance components model with a single explanatory 

variable where the expected proportion is modeled using a logit link function 

π β βij ij jx u= + − + + −{ exp( [ ])}1 0 1 1 0
1 (3.53) 

The observed responses yij  are proportions with the standard assumption that they are 

binomially distributed 

y Bin nij ij ij~ ( , )π  

where nij  is the denominator for the proportion. We also have  

var( | ) ( ) /y nij ij ij ij ijπ π π= −1  (3.54) 

We now write the model in the standard way including the level 1 variation as 

( )y e z z nij ij ij ij ij ij ij ij e= + = − =π π π σ,     ,    1 12/  (3.55) 

Using this explanatory variable Z  and constraining the level 1 variance associated 

with this to be one we obtain the required binomial variance in equation (3.54). When 

fitting a model we can also allow the level-1 variance to be estimated and by 

comparing the estimated variance with the value 1.0 obtain a test for ‘extra binomial’ 

variation. Such variation may arise in a number of ways. 

  Estimation methods for both fixed and random parameters for a proportion as 

response model is a demanding procedure and therefore will not be discussed further. 

Goldstein (1995) refers to the distinction between ‘predictive quasilikelihood’ (PQL) 

and ‘marginal quasilikelihood’ (MQL) estimation procedures (Breslow & Clayton, 

1993). In many applications the MQL procedure will tend to underestimate the values 

of both the fixed and random parameters, especially where nij  is small. When the 

sample size is small the unbiased (RIGLS, REML) procedure should be used.  

In the next Chapter we focus more on examples where proportions are used as 

the response variables and generalized linear models in the form discussed here are 

used. 
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3.2.4 Multivariate Multilevel Models – The basic 2-level Multivariate 
model 

 

Multivariate Multilevel models 

In the models discussed so far we have considered only a single response 

variable, either normal or not, measured at the first level of hierarchy. We now look at 

models where we wish simultaneously to model several responses as functions of 

explanatory variables. As we shall see, the ability to do this provides us with tools for 

tackling a very wide range of problems. These problems include missing data, rotation 

or matrix designs for surveys and prediction models.  

We develop the model considering the case of two response variables 

measured at the individual level while explanatory variables are measured at all levels 

of hierarchy. 

 
The basic 2-level multivariate model 

To define a multivariate, in this case a 2-variate, model we treat the 

individuals as a level 2 unit and the 'within-individuals' measurements as level 1 units. 

Each level 1 measurement 'record' has a response, which is either the first or the 

second variable. The basic explanatory variables are a set of dummy variables that 

indicate which response variable is present. Further explanatory variables are defined 

by multiplying these dummy variables by individual level explanatory variables, for 

example a dichotomous variable with values 1 and 0. The model is written as 

 

jjjijjijijijij uuxzxzzzy 0201212111202101 +++++= ββββ  (3.56) 

where 

⎭
⎬
⎫

⎩
⎨
⎧

=−=
⎭
⎬
⎫

⎩
⎨
⎧

=
 0
 1

   ,1    ,
present is  variable2nd if 0

present is le1st variab if 1
121 jijijij xzzz  (3.57) 

and  
2
0101 )var( σ=ju  (3.58a) 

2
0202 )var( σ=ju  (3.58b) 

0120201 )cov( σ=jjuu  (3.58c) 
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There are several features of this model. There is no level 1 variation specified 

because level 1 exists solely to define the multivariate structure. The level 2 variances 

and covariance are the (residual) between-individuals variances. In the case where 

only the intercept dummy variables are fitted, and since every individual has scores 

for both the response variables, the model estimates of these parameters become the 

usual between-subjects estimates of the variances and covariance. The multilevel 

estimates are statistically efficient even where some responses are missing, and in the 

case where the measurements have a multivariate Normal distribution they are 

maximum likelihood. Thus the formulation as a 2-level model allows for the efficient 

estimation of a covariance matrix with missing responses. 

We can further allow the individuals to be grouped within level 3 units and 

therefore add more variability terms in the 3-rd level of the model. These can be 

variances and a covariance for the two components added at level 3 as well as 

additional variance terms for the second level explanatory variables. 

 

Designs with subsets of responses – Missing cases 

We have already seen that fully balanced multivariate designs are unnecessary 

and randomly missing responses are handled automatically. The basic 2-level 

formulation does not formally recognize that a response is missing, since we only 

record those present. We now look at designs where responses are effectively missing 

by design and we see how this can be useful in a number of circumstances.  

In many kinds of surveys the amount of information required from 

respondents is so large that it is too onerous to expect each one to respond to all the 

questions or items. In education we may require achievement information covering a 

large number of areas, in surveys of businesses we may wish to have a large amount 

of detailed information, and in household questionnaires we may wish to obtain 

information on a wide range of topics. We consider only measurements that are used 

as responses in a model. If we denote the total set of responses as { }N  then we choose 

p subsets { , ,... }N i pi = 1  each of which is suitable for administering to a subject (level 

1).  

When choosing these subsets we can only estimate subject-level covariances 

between those responses that appear together in a subtest. It is therefore common in 

such designs to ensure that every possible pair of responses is present. If we wish to 
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estimate covariances for higher-level units such as schools it is necessary only to 

ensure that the relevant pair of responses are assigned to the some schools - a large 

enough number to provide efficient estimates. The subjects are assigned at random to 

subtest and higher-level units are also assigned randomly, possibly with stratification. 

Each subset is viewed formally as a multivariate response vector with randomly 

missing values, although the missing observations are produced by design. We can 

then fit a multivariate response model for such data and obtain efficient estimates for 

the fixed part coefficients and covariance structures at any level. In this formulation, 

the variables to be used as explanatory variables should be measured for each level 1 

unit.  

 

Multivariate cross-classified models 

We know consider the multivariate case of a type of models discussed 

previously – the cross-classified models. For multivariate models the responses may 

have different structures. Thus in a bivariate model one response may have a 2-level 

hierarchical structure and the other may have a cross classification at level 2. Suppose, 

for example that we measure the height and the mathematics attainment of a sample 

of students from a sample of schools. The mathematics attainment is assessed by a 

different set of teachers in each school and the heights are measured by a single 

anthropometrist. For the mathematics scores there is a level-1 cross-classification of 

students within each school whereas for height there is a 2-level hierarchy with 

students nested within schools. Height and mathematics attainment will be correlated 

at both the student and the school level and we can write a model for this structure as 

follows 

 
)()(

11212121 222221111)(11)( jijjihjijijjiihjiih euXeeuXy ++++++= βδβδ  (3.59) 

where 

hhh heightifsmathematicif 121 1    ,   0  ,   1 δδδ −==  (3.60) 

and 

1221 )cov( ujjuu σ=   (3.61a) 

1221 )cov(
11 ejiji ee σ=  (3.61b) 
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and all other covariances are zero. This will therefore be specified as a 4-level model 

with the bivariate structure as level 1 and level 2 units being individual students. 

There will be a single level 3 unit with the coefficients of the dummy variables for 

teachers having variances random at this level, with level 4 being that of the school. 

 

3.3 Conclusions of the Chapter 
 

The conclusions drawn by the discussion of this Chapter can verify the 

theoretical advantage of Multilevel Models compared to other techniques. First of all, 

in simple situations they respect totally the hierarchy of the data and they end up to 

more precise estimations both for the model parameters and for the model variability. 

Secondly, all known statistical techniques and procedures (such as Maximum 

Likelihood, EM Algorithm, MCMC estimations etc) for statistical inferences 

(parameter estimates, testing functions, confidence intervals) can be easily used, 

making Multilevel Methods theoretically understandable and easily applicable for 

statisticians and researchers. Finally, the simple multilevel models can be readily 

extended to more sophisticated theoretical concepts, such as multivariate or 

generalized models, and therefore can be applied effectively to more complex 

situations. In the following Chapter we will discuss if the theoretical advantages of the 

Multilevel Techniques are also present in practice, or, in other words, why and how 

Multilevel Analysis is useful and effective in practical situations. 


