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CHAPTER 2 
 

2 INITIAL CONCEPTS OF HIERARCHICAL DATA 
STRUCTURE 

 

In this Chapter we introduce all the basic concepts of Hierarchical Data Structure 

analysis, the research areas where hierarchical structure is met, as well as all the 

possible statistical approaches to analyze hierarchical data structures in these various 

research areas. 

The scope of this chapter is, starting from simple to most sophisticated models, to 

describe the limitations of the simplest models for analyzing hierarchical data and, 

therefore, to justify the need of using Multilevel Models for an effective analysis. 

 

2.1 Types of Variables in Hierarchical Data Structure 
In traditional data analysis techniques, where all data are measured at the same 

level, we simply refer to the “response” (dependent) variable, which is the variable to 

be examined, by using a number of “explanatory” (dependent) variables. In Multilevel 

Research, however, the situation is quite more complex, since variables can be 

defined at any level of hierarchy. In order to make clear to which level the 

measurements properly belong, we present a brief description of each type of 

variables (based on Hox, 1995) as well as a table with the relations between different 

types of variables, defined at different levels.  

Some of the variables may be measured directly at their natural level; for 

example, at the school level we may measure school size and denomination, and at the 

students’ level intelligence and school success. In addition, we may move variables 

from one level to another by aggregation or disaggregation. Aggregation means that 

the variables at the lower level are moved to a higher level, for instance by computing 

the school mean of the students’ intelligence scores. Disaggregation means moving 

variables to a lower level, for instance by assigning to all pupils a variable that reflects 

the denomination of the school they belong to. 
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Table 2.1: Types of variables in Hierarchical Structure Data Models 

Level: 1  2  3 etc 

Variable Type: Absolute ⇒ Analytical    

 Relational ⇒ Structural    

 Contextual ⇐ Global ⇒ Analytical  

   Relational ⇒ Structural  

   Contextual ⇐ Global ⇒ 

     Relational ⇒ 

     contextual ⇐ 

As shown in Table 2.1, at each level we have several types of variables, 

however some of them are related to each other. Global and Absolute variables refer 

only to the level at which they are defined, without reference to any other units or 

levels (‘absolute variables’ is simply the term used for global variables defined at the 

lowest level). A pupil’s intelligence would be a global or absolute variable. Relational 

variables also refer to one single level; they describe the relationships of a unit to the 

other units at the same level. Many sociometric indices are relational variables. 

Analytical and Structural variables are measured by referring to the subunits at a 

lower level. Analytical variables refer to the distribution of an absolute or a global 

variable at a lower level, for instance to the mean of a global variable from a lower 

level. Structural variables refer to the distribution of relational variables at the lower 

level; many social network indices are of this type. Constructing an analytical or 

relational variable from the lower level data involves aggregation (indicated by ⇒): 

data on lower level units are aggregated into data on a smaller number of higher level 

units. Contextual variables, on the other hand, refer to the superunits; all units at the 

lower level receive the value of a variable for the superunit to which they belong at 

the higher level. This is called disaggregation (indicated by ⇐): data on higher level 

units are disaggregated into data on a larger number of lower level units. The resulting 

variable is called a contextual variable, because it refers to the higher level context of 

the units we are investigating.   
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2.2 Areas with Hierarchical Data Structure 
Multilevel Analysis can be applied in situations where the existence of data 

hierarchies is neither accidental nor ignorable (Goldstein, 1995), in other words the 

hierarchical data structure is straightforward, or in cases where the applications of 

multilevel research are not so obvious. This chapter is just an introductory description 

of some research areas where Multilevel Analysis is commonly used. More detailed 

examples, when necessary, are presented in Chapter 4 of the thesis, both from 

educational and from other areas of interest:  

Organizational Research: The case where individuals are nested within their 

organizations. An illustrative example was performed by Kreft et al. (1995), when 

data were collected on workers in 12 different industries. The hierarchical 

structure of such model is straightforward, since the workers (first-level units) are 

nested in industries (second-level groups). The response variable of interest was 

the income of the workers, measured at the first level of hierarchy and explanatory 

variables were measured at both levels. Also aggregated measures were used in 

the analysis. We won’t go further to the techniques as well as the results of this 

particular study since the method used are “overlapped” in following examples. 

Clinical Therapy and health research: Clinical psychology is another area 

where multilevel techniques can be a rational approach, especially in the 

evaluation of group therapy research. In such studies the patients (first-level 

objects) are very often gathered in particular therapy groups (second-level 

objects). In group therapy the type of therapy is an effect under the control of the 

researcher, but the group dynamics is not. Therapy groups are, at the outset, as 

much alike as chance can make them by randomly assigning clients to therapy 

groups, but they change over time. The interactions within each group depend on 

the dynamics of the group, which develops over time in unpredictable directions. 

If the two types of group therapy administered are directive intervention and non-

directive interventions, groups within the same treatment can become different, 

especially under the non-directive intervention treatment. The behaviour of each 

client starts to reflect the type of therapy as well as the specific dynamics that 

develops in the client’s therapy groups. The interaction between group members 

makes clients in the same group more alike than clients in different groups. 

Consequently, the observations of group members can no longer be considered 

statistically independent.  
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Application of traditional statistical methods, such as ANCOVA, will fail to 

analyze correctly this kind of data, in the sense that it will ignore the intra-class 

correlation that develops over time, leading to an underestimation of the error 

variance of the estimated coefficients. The group dynamics cannot be modeled in 

a traditional ANCOVA model, nor can characteristics of the therapist. A 

multilevel model, on the contrary, will take care of the dependency of 

observations within groups, and also will model differences between groups by 

means of macro-level characteristics, such as different approaches by therapists 

and different group dynamics.  

Health economics is another area of health research where multilevel 

techniques can be applied. We will focus more on this area in Chapter 4 of the 

thesis.  

Twin Studies: A very special case of Clinical Research in which multilevel 

models can apply is the Twin Studies. This case is indeed special because we may 

have a large number of groups (2nd level units) but all these groups are of size two. 

This is an uncommon case in hierarchical or clustered data where a large number 

of individuals (level-one units) are nested within a small number of common 

groups. On the other hand, within these small samples of two, we expect to have a 

high intra-class correlation. Since it is difficult to estimate a model within each 

group with only two observations, the statistical stability has to come from the 

number of groups. A Multilevel approach provides the advantage to introduce 

separate variables for the individuals in the pairs (1st level variables) and variables 

which the members of the pairs have in common (2nd level variables). 

Repeated Measures and Growth curve analysis: Repeated-measures and 

growth curve analysis is a wide area of research in Statistical Analysis. Although 

it is not straightforward, longitudinal studies can be considered as an issue where 

Multilevel Analysis techniques can be performed. However, they form a special 

case in Multilevel Analysis, since the individuals are the ‘macro level’ instead of 

the ‘micro level’ as in common cases. In other word, here the occasions 

(measurements) are clustered within individuals that represent the level-two units 

with measurement occasions the level-one units. Such structures are typically 

strong hierarchies because there is much more variation between individuals in 

general, than between occasions within individuals who are, naturally, correlated. 

Intra-class correlation, in this case measures the degree to which behaviour of the 
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same person is more similar to his/her own previous behaviour in comparison to 

behaviour of other people (Kreft, 1998). In the case of child growth, for example, 

once we have adjusted for the overall trend with age, the variance between 

successive measurements on the same individual is generally no more than 5% of 

the variation in height between children (Goldstein, 1995). 

The major advantage of performing Multilevel Techniques in repeated 

measures analysis is that they can handily deal with unbalanced data structure 

with missing values. There are cases in practice where individuals are measured 

irregularly, some of them a great number of times and some perhaps only once. 

By considering such data as a general 2-level structure (measurements-the 1st 

level and individuals-the 2nd level) we can apply the standard set of multilevel 

modeling techniques while providing statistically efficient parameter estimation 

and at the same time presenting a simpler conceptual understanding of the data.  

Later in the thesis we will focus more on application of multilevel analysis in the 

area of repeated measures, by presenting a rather special example of 

autobiographical memories. 

Geographical information systems: Spatial Statistics is also an area where 

multilevel techniques can be easily adapted to analyze the measured data. Such 

cases are census data, election data, demographical studies and so on. It is obvious 

that in all these cases sites or individuals are nested within geographic regions, 

and thus the intra-class correlation comes from spatial autocorrelation. The 

measured variables can refer to, either geographical characteristics and 

information about the region (2nd level units), or characteristics of the individuals 

themselves (1st level units). 

An illustrative example was presented by Courgeau and Baccaini (1998). In 

their work the migration flows of the 19 Norwegian regions is being examined, by 

using multilevel logit techniques. We will focus on this example with more details 

later on in the thesis. 

Survey Research: Survey research is a wide area where multilevel techniques can 

be and are already applied in order to examine the, more or less, obvious 

hierarchical structure of the data measured. This concerns both the methological 

aspect of sampling design and the practical aspect of data collection through 

interviews.  
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The standard literature on surveys, reflected in survey practice, recognizes the 

importance of taking account of the clustering in complex sample designs. Thus, 

in a household survey, the first-stage sampling unit will often be a well-defined 

geographical unit. From those geographical areas, which are randomly chosen, 

further stages of random selection are carried out until the final households (the 

final sample) are selected. This is an obvious case of hierarchical data structure 

where respondents nested in the same geographical area will be more similar to 

each other than respondents from different areas. However in the analysis insofar 

the population structure, as it is mirrored in the sampling design, is seen as a 

'nuisance factor'. Ignoring hierarchy in the analysis will cause estimates for 

standard errors that are too small, and ‘spurious’ significant results – the so-called 

‘design effect’ in survey research. The most usual correction for design effects, 

taking into account the clustering of individuals within groups, is to compute the 

standard errors by ordinary analysis methods, estimate the intra-class correlation 

between respondents within clusters (geographical regions) and to employ a 

correction formula to the standard errors (Kish,1987).  

Although these procedures developed to produce valid statistical inferences 

can be quite powerful (Skinner et al, 1989), they still do not allow for 

simultaneous analysis from variables taken from different levels, using a statistical 

model that includes the various dependencies. In other words, the multilevel 

modeling approach views the population structure as of potential interest in itself, 

so that a sample designed to reflect that structure is not merely a matter of saving 

costs as in traditional survey design, but can be used to collect and analyze data 

about the higher level units in the population. The subsequent modeling can then 

incorporate this information and obviate the need to carry out special adjustment 

procedures, which are built into the analysis model directly. 

In chapter 4 we will focus more on an example of survey research taking into 

account the hierarchy of individuals nested within households nested within 

geographical areas. 

Another aspect of survey research where multilevel techniques are applied is 

in the so-called ‘Interviewer Effect” on the results a study. Whenever the 

sampling method of the survey is telephone or personal interviews, the interview 

is carried out at the respondents from a smaller number of interviewers. Even 

though it is not so obvious, this kind of survey forms a hierarchical structure 
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where respondents (the 1st level units) are “nested” within their interviewers (the 

second-level of the analysis). It is logical, even though it is not desirable, that in 

many cases the interviewer characteristics affect the results of the survey, or in 

other words the respondents being interviewed by the same interviewer tend to 

have more similar answers. Multilevel analysis can detect such interviewers effect 

by introducing variables measured in both levels, as well as interactions between 

interviewers and respondents (cross-level interactions). An illustrative example 

performed by Hox (1994) will be presented later on in the thesis (Chapter 4). 

Meta-Analysis: Meta-analysis or integrative analysis, as it is often called, is a 

quantitative approach to reviewing the research literature. The term Meta Analysis 

(Hedges & Olkin, 1985) refers to the pooling of results of separate studies, all of 

which are concerned with the same research hypothesis. The aim is to achieve 

greater accuracy than that obtainable from a single study and also to allow the 

investigation of factors responsible for between-study variation. In other words, 

the primary goal of meta-analysis is to generalize from a set of studies about a 

specific substantive issue, by statistically combining quantitative study outcomes 

from existing research on a particular question. The basic idea is to apply formal 

statistical methods to the results of a specific set of studies. The statistical 

approach is the one of the main characteristics that distinguishes meta-analysis 

from the more traditional narrative literature review (Bangert-Drowns, 1986). 

Each study typically provides an estimate for an ‘effect’, for example a group 

difference, for a ‘common’ response and the original data are unavailable for 

analysis. In general, the response measure used will vary, and care is needed in 

interpreting them as meaning the same thing. Furthermore, the scales of 

measurement will differ, so that the effect is usually standardized using a suitable 

within-study estimate of between-unit standard deviation.  

Clearly, in a meta-analysis the most important preliminary question is, 

whether the results differ more from each other than corresponds to the random 

sampling variation that is expected given the studies’ sample size. If the results do 

not differ more than is expected given the pure sampling error, they are called 

homogeneous, meaning that they come from a single population. In the next 

analysis step we would want to estimate the common value of the population 

parameter of interest. If the results differ more than expected given the pure 

sampling variation, they are called heterogeneous, meaning that they come from 
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different populations. In this case, estimating the ‘average’ result is not the 

primary goal; instead, our goal becomes to analyze the excess variation as a 

function of the known study characteristics such as the age or sex composition of 

the sample, or methological characteristics such as the methological quality of the 

study. 

There are various methods to analyze and combine separate study results, one 

of them, even not so profound, is multilevel analysis. The problem of combining 

the varying results from different studies has some similarity to the multilevel 

problem of combining the varying micro-models from different groups or 

contexts. If we had access to the original data of all the studies, we could analyze 

them using the hierarchical regression model. But in meta-analysis we generally 

do not have access to the row data. Still, the statistical problem looks familiar. In 

multilevel modeling we have a number of regression models computed in 

different contexts, and we want to estimate the expectation and the variability of 

the various regression coefficients, and draw conclusions based on all available 

information. In meta-analysis we have a number of statistics computed in different 

contexts, and we want to assess their average value and their variability, and again 

draw conclusions based on all available information. According to Raudenbush & 

Bryk (1992) meta-analysis may be viewed as a special case of the two-level 

hierarchical linear model. In each study, a within study model is estimated, and a 

second level or between study model is added to explain the variation in the 

within study parameters as a function of differences between the studies. The 

variability within the studies is considered to be sampling variability, which is 

known if the relevant sampling distribution and sample size are known. The 

variability between the studies reflects both sampling variance and systematic 

differences between the results of different studies. If the study level variance is 

significant, the studies’ results are assumed to be heterogeneous, meaning that 

there are indeed systematic differences between the studies. If the study level 

variance is not significant, they are assumed to be homogeneous, meaning that the 

apparent differences between the studies are just sampling variance. 

 School Effectiveness Research: Schooling and more generally educational 

systems is an area where the hierarchical data structure is profound, since students 

(the 1st level units) are nested or clustered within schools/universities (the 2nd level 

units), which themselves may be clustered within education authorities or boards 
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or geographical regions (the 3rd level units) and so on. In special cases, students 

form the 2nd level of hierarchy when repeated measures (the 1st level) are 

performed within the same student.  

In one or another way, school and other institutions effectiveness has been 

widely examined by educational researchers who have been interested in 

comparing schools and other educational institutions, most often in terms of the 

achievements of their pupils. In other examples, the teachers effectives on 

students achievement is of primary interest, see Bennet (1976) and the analysis of 

different teaching styles, which was reconsidered by Aitkin et al. (1981) using 

more advanced statistical methodology. In other cases we are interested in 

studying the extent to which schools differ for different kinds of students, for 

example to see whether the variation between schools is greater for initially high 

scoring students than for initially low scoring students (Goldstein et al, 1993) and 

whether some factors are better at accounting for or 'explaining' the variation for 

the former students than for the latter. Moreover, there is often considerable 

interest in the relative ranking of individual schools, using the performances of 

their students after adjusting for intake achievements. The response variable in 

most of the cases discussed above is the students’ performance, which is 

measured, for example, by an examination test. 

Most of the traditional approaches for the analysis of such data have been 

carried out by researchers, such as regression analysis, sometimes by fitting a 

separate regression line within each group, or ANCOVA models that treat schools 

as fixed factor. All of them however, either ignore the hierarchy of the data 

structure at all, or fail to correct for the intra-class correlation within each group. 

Multilevel techniques stand for a straightforward solution, since multilevel 

analysis models introduce variables in all levels of hierarchy simultaneously, as 

well as interactions of the characteristics between levels. They can answer, 

therefore, to all the theoretical questions as stated in the previous paragraph, and, 

at the same time obtain statistically efficient estimates of regression coefficients, 

correct standard errors, confidence intervals and significance tests. 

In Greece, although the school effectiveness and students’ performance issue 

has been discussed widely, statistical approaches are very poor in literature and, 

when they exist, they are mainly constrained in descriptive presentation of the 

results (Centre of Development of Educational Policy, General Confederation of 
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Greek Workers (GSEE) 2009). Marouga (2004) used more sophisticated factor 

analysis and cluster analysis techniques in order to examine students’ performance 

and preferences according to the Greek National Exams. Moreover, 

Kosmopoulou’s dissertation (1998) is the only statistical project where multilevel 

techniques were performed in Greek educational data in order to assess school 

effectiveness and students’ performance in the National Exams of 1990 and 1991. 

However, both projects referred before analyze educational data from a national 

educational system of student’s Access in the National Universities and Technical 

Institutions that does not longer exist. 

A more thorough examination of multilevel techniques approach in 

educational data and school effectiveness research will be performed later on in 

the thesis, by reviewing, presenting or applying representative examples. 

 

2.3 Possible Approaches for Hierarchical Data Structure - 
Traditional Models to Random Coefficient Models 

In this Chapter we present a number of variations on the ordinary linear model 

and on OLS regression that have been suggested to deal with hierarchically nested 

data. They vary from total or pooled regression, which completely ignores the 

between-group variation, to aggregate regression, which completely ignores the 

within-group variation. And, on another dimension, they vary from separate 

regressions for each group, with separate sets of regression parameters, to a single 

regression with only one set of parameters.  

In many cases, however, it makes sense to take the group structure into 

account more explicitly. Forms of regression analysis, in which both individual and 

group level variables are used, are known as contextual analyses. In contextual 

analysis group membership is not neglected. The units of observation are treated as 

members of certain groups, because the research interest is in individuals as well as in 

their contexts. Traditional contextual models, the Cronbach model, the ANCOVA 

model and the various multilevel models decompose the variation in the data into a 

within and a between part, but each in their one way. 
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2.3.1 Models and formulae  
In contextual analysis techniques the free parameters of the linear model are 

estimated based on the following model, where y is the response variable, x  the 

explanatory variable at the individual level and z is the explanatory variable at the 

context level. The subscript i is for individual, and j  is for context. The model is: 

ijjijjij
czbxay ε+++= .  (2.1) 

The ijε  are disturbances, which are centered, homoscedastic and independent. This 

means they have expectation zero and constant variance 2σ . Generally, of course, 

there may be more than one explanatory variable on both levels. We will discuss more 

on model structure in the next Chapter by using even more appropriate formulas, 

since in this Chapter the main interest is to explain the differences between the 

various models. 

Model (2.1) can be expressed in a slightly different way, that more clearly 

shows its structure. We write: 

ijijjij
bxay ε++=  (2.2a) 

jj czaa +=   (2.2b) 

Equation (2.2b) shows that the contextual models of equation (2.1) are varying 

intercept models, i.e. regression models for each group which are linked because they 

have the same slope b  and the same error variance 2σ . They differ, however, in their 

intercepts. The different contextual models we discuss in this chapter specify the 

relationship between the varying intercepts and the group-level variables in different 

ways. 

In hierarchically nested data with two levels the variances and covariances of 

the observed variables can be divided into a between-group and a within-group 

matrix. This distinction of between and within variation of variables is not 

straightforward and differs from technique to technique. To explain the definition of 

regression coefficients in different models we make use of the notion of the 

correlation ratio. The correlation ratio is the percentage group variance of a variable, 

which can be explained as follows. Variables such as x  as an explanatory variable 

and y as response variable can be divided into a between- and a within-group part. 

This induces a corresponding decomposition of the variances as 

)()()( xVxVxV WBT +=  (2.3a) 
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and equally 

)()()( yVyVyV WBT +=  (2.3b) 

where the indices T, B and W denote total variance, between-group variance and 

within-group variance, respectively. Moreover, the total covariance between variables 

x  and y  can be divided in the same way into a within and a between part, 

),(),(),( yxCyxCyxC WBT +=  (2.3c) 

where C denotes covariance. 

 The coefficients for regressions over the total sample Tb , between groups Bb  

and within groups Wb , can be defined by the variances within or between groups, 

compared to the total variance, as follows: 
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These coefficients can be related to the correlation ratio 2η , defined for x  and y  in 

the following way: 
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The equations show group variation in the response variable as the percentage of the 

total variance in y  declared between groups. This is at the same time the definition of 

the intra-class correlation. We will return to this measure later on in the thesis, since it 

is of great importance in Multilevel Analysis. 

Also, 
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The proportion of variance within groups is equal to )(1 2 xη− , and equal to the ratio 

of the within variance and the total variance. 

We know from classical regression theory that the “best” estimate of b  for the 

regression over the total sample, irrespective of group membership, is Tb . It can be 

shown that the estimate of Tb  is a weighted composite of the between-group 

regression Bb  and the within-group regression Wb , as we can see in the following 

equation: 

WBT bxbxb ))(1()( 22 ηη −+= . (2.7) 

 

2.3.2 Total or Pooled regression 
The first technique we discuss is a simple one. It is not a multilevel analysis, 

and in most cases not even a contextual analysis. We analyze the effect of the 

explanatory variable of the individual level on the response variable in a single 

regression for the total sample. No context variable is used; the fact that some 

individuals are in the same group and others are in different is not reflected in the 

model. 

Executing a regression analysis over the total sample of individuals, ignoring 

group membership, is the same as ignoring the subscript j  in equation (2.1). The 

model becomes 

ijijij
bxay ε++= , (2.8) 

where the ijε  are independent, with mean zero and constant variance 2σ . For 

completeness, and for later comparisons, we also fit the corresponding null model, 

with only the intercept a  and no explanatory variable. This null model is: 

ijij
ay ε+= . (2.9) 

A regression analyzing individual observations over the total group is called a 

total regression. The individual is the unit of analysis, the unit of sampling and the 

unit of decision-making. Using this analysis means that no systematic influence of 

groups on the response variable is expected, and all influences of the groups are 

incorporated in the error term of the model. The fact that the observations are nested 

within groups is disregarded, and assumed to be of no importance for the research 
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question. In terms of the contextual model (2.2a), in the total regression the intercepts 

ja  are assumed to be equal for all groups j . 

 

2.3.3 Aggregate regression 
One rather crude way to take the grouping of the individuals into account is to 

do a regression over the group means, a so-called aggregated analysis. There is a 

priori no real reason to expect that regression coefficients from a total regression 

analysis and those from an aggregate regression analysis will be similar. In fact, it is 

easy to construct examples in which the differences between the two techniques will 

be very large.  

For the analysis we form the means for the explanatory variable jx• , the 

means for the response variable jy• , and we fit the model 

jjj
bxay ε++= ••

,  (2.10) 

where the bullet replaces the index for individuals i  to indicate that the x  and y  are 

summed over individuals. As usual, it is assumed that jε  has a mean of zero. The 

variance of jε  is now, compared to the total model, 21σ−
jn , because it is a mean of 

jn  disturbances, each with variance 2σ . In this analysis we fit a weighted regression, 

with weights equal to jn . The regression is heteroscedastic.  

Clearly aggregate regression ignores all within-groups variation, and thus 

throws away a large amount of possibly important variance. At the same time, the 

standard errors of the regression coefficients normally become much larger, because 

they are based on only jn  observations. Aggregate regression equations must be 

interpreted carefully. From the prediction point of view, we can state predictions and 

merely draw conclusions for individuals, and actually making such statements on the 

basis of aggregated results. This is known as the “ecological fallacy” (Robinson, 

1950). 

 

2.3.4 The contextual model 
The contextual model has been used widely in the past in research interested 

in the effect of group membership on individual behaviour. Typically in this type of 
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analysis the group mean of an individual-level variable is used as a contextual 

variable. Together with the individual level characteristic ijx , a characteristic of 

groups is defined as the average value of the groups’ members jx• . The same 

measurement is used twice in the same regression, once as the original individual 

measurement, and once as the mean for each group. In other words, the characteristic 

is aggregated from individual to group level. The model is thus written as follows: 

 ijijjij
bxay ε++=  (2.11a) 

jj cxaa •+=   (2.11b) 

Substitution gives us the following equation for the contextual model: 

ijjijij
cxbxay ε+++= • . (2.12) 

It turns out that the best estimate of b  in equation (2.12) is Wb , while the best 

estimate of c  is WB bb − . It can be shown (Duncan et al., 1966) that the within 

regression ( Wb ) is confounded with the between regression ( Bb ) in the estimation of 

the context effect. 

Some more technical problems are present in this contextual model, one 

related to multicollinearity and one to the level of analysis. Multicollinearity is 

introduced in this analysis by the correlation of the individual variable and the group 

mean for this variable. The level of analysis is the individual, because the response 

variable is defined at the individual level. Performing a regression analysis at one 

level ignores the true hierarchically nested structure of the data, and treats the 

aggregated variable as if it was still measured at the first level. The contextual effect 

in this contextual model is merely the difference between Bb  and Wb . It is clear that 

the individual and group effects are confounded in c , and as a result interesting and 

significant relationships can be distorted by this procedure. 

 

2.3.5 The Cronbach model 
The Cronbach Model (Cronbach & Webb, 1975) provides a clearer picture of 

the individual effect together with the group mean effect on the response variable. The 

individual variables are first centered around their respective group means, as in the 

following equation: 
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ijjjijij
xxbxxbay ε+−+−+= •••• )()( 21 . (2.13) 

In equation (2.13) the centered individual scores jij xx •−  form a variable that is 

orthogonal to the variable formed by the centered group-level scores ••• − xx j . Raw 

scores are thus transformed into deviation scores from the group mean. Centering 

explanatory variables in this model provides a convenient way of avoiding the 

problem of correlation between the two variables that are measurements for a 

characteristic at the two different levels. The two predictors in the Cronbach model 

are a centered individual characteristic and the centered group mean for this 

characteristic analyzed again with regression. Because the two predictors are 

orthogonal, the best estimate of 1b  is equal to Wb , and thus also to the estimate in the 

contextual model discussed previously. The difference compared to the contextual 

model is in the estimate for the contextual effect, where 2b  is now equal to Bb  and 

thus equal to the effect of Bb  in the aggregate model. Within and between effects are 

no longer confounded in the Cronbach model.  

Although the collinearity problem of the correlation between the individual 

variable and its aggregated counterpart is solved in the Cronbach model, the 

significance tests are just as suspect as they are in the contextual model. In both 

contextual models discussed so far, the analysis is executed at the lower level. As a 

result the standard error for the coefficient of the group mean is underestimated. The 

result is an increase in the alpha level of the test of significance. The group mean has 

only as many independent observations as the number of groups. Since we have say 

k  groups with nk  observations each, the total number of observations on which the 

standard error is based is knk × , instead of the correct number k . Another threat to 

the validity of the standard errors in the above contextual model is intra-class 

correlation in the sense that when intra-class correlation is present, the alpha level 

enhances. 

 

2.3.6 Analysis of Covariance (ANCOVA) 
Analysis of covariance is another traditional way of analyzing group data. 

Both levels are included in the model but not in equal roles. Individual-level 

explanatory variables are involved, as in regression models, but at the same time 

groups are allowed to differ in the intercepts. The ANCOVA model incorporates both 
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quantitative and qualitative variables and therefore has a mixed character. It is a 

regression model, with dummy variables to code group membership. While the 

regression model enables us to access the effect of quantitative factors, ANCOVA 

enables us to model qualitative factors. 

ANCOVA is a technique with a somewhat different purpose from contextual 

analyses. It evaluates the effect of groups, correcting for pre-existing differences 

among these groups. With this technique we can study if the groups are equal in the 

response variable, corrected for the differences in the amount of a first- level variable. 

Such an analysis would tell us if groups differ in average response, and which group 

“scores”, on average, the best. In ANCOVA the individual effects are neglected, or 

considered as noise, and the emphasis is on the group effect.  

The individual variable(s) functions as covariate (s), while the grouping is 

used as the important factor in the design. Because the model was originally 

developed for designed experiments, groups in ANCOVA are considered to be 

different treatment categories. The equation for the analysis of Covariance is  

ijijjij
bxay ε++= . (2.14) 

Different values for ja  mean that some groups have higher “starting values” for the 

response variable than others. The assumption in ANCOVA, that all groups have the 

same slope (the b  in the model), means that we assume that the relation between the 

first-level explanatory variable and response variable is the same for all groups. We 

can see that equation (2.14) is the same as (2.2a) and that (2.2b) is missing. There is 

no additional structure imposed on the ja ; they can take all possible values. 

Since ANCOVA expresses the differences between k  groups using all 1−k  

degrees of freedom, the model provides an upper limit on the amount of variance 

potentially attributable to overall differences in contexts. In contrast to the traditional 

contextual model in equation (2.1), ANCOVA cannot tell us which characteristics of 

the context explain the differences between them. The only thing it shows is how 

large the overall group effect is, by giving a measure of the explained between-group 

variation of the intercepts.  

The chief advantage of ANCOVA is that it has greater predictive power than 

the traditional contextual models, as in equations (2.2a) and (2.2b). ANCOVA 

accounts for all variability between the context means, and not only for variability 

related to a context-specific explanatory variable, as in contextual models. At the 
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same time the specificity is strength of the contextual model, because it identifies 

important group characteristics.  Most researchers consider the analysis of 

(co)variance useful as an estimate of the composite group effect preliminary to 

contextual analysis. It is true that where the ja  in a covariance analysis adds little 

explained variance, we know from the outset that none of the context characteristics 

can explain much additional variance of the response variable in subsequent models. 

But that is only true if variation among contexts is studied in relation to the intercepts, 

the main effects. But more and more research is dedicated to studying differences 

among contexts in relationships between explanatory variables and response variable, 

the b -coefficients in model (2.14). The assumption of ANCOVA that each of the k  

explanatory variables, or covariates, has the same relation with the response variable 

over all groups is unrealistic. Each group may need its own unique solution, and its 

own unique relation between the response variable and the explanatory variable.  

 

2.3.7 Moving from one single-level to multilevel-model techniques 
By now, we have discussed some of the traditional ways of analyzing grouped 

data that consist of two levels, an individual one and a contextual one. The data 

analysis in these models is always executed at one single level, which can be either 

the individual or the context level. Analyses executed at the individual level can still 

be different in the way they handle the between variation. As a result, different 

regression estimates for the contextual effect are observed among models. From the 

discussion of the models and the different results, we see that we are in need of a 

more general model. We need a model that treats the data at the level they are 

measured, and can answer research questions about the influence of all explanatory 

variables on the response variable, irrespective of the level in the hierarchy at which 

they are measured, or to which they are aggregated. Such models are multilevel 

models, i.e. the Varying Coefficients Models and their modern version, the Random 

Coefficient (RC) models. Varying coefficient models are also known as the “slopes-

as-outcomes” approach.  

 

Varying coefficients or “slopes-as-outcomes” 

Traditional strategies for analyzing group data are several forms of regression 

analysis. The basic equation defining this linear model is  
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ijijjjij
xbay ε++= ,  (2.15) 

which is similar to equation (1.2a) discussed previously. In equation (2.15) x  is again 

the individual explanatory variable, and y  the response variable. The ja  are 

intercepts and the jb  are slopes. We use the plural form, since instead of the usual 

single intercept and single slope, separate ones are estimated for each context. To 

indicate that fact in the formula the subscript j  is added to the coefficients a  and b . 

Thus subscript j  refers to contexts and subscript i  to individuals. The ijε  is the usual 

individual error term, with an expectation (mean) of zero and a variance of 2σ . In 

equation (2.15) only ijε  and 
ij

y  are random variables. Later, when we move away 

from varying to random coefficient models, the ja  and jb  will be underlined too, 

implying that ja  and jb  are also random variables. 

Within the traditional fixed effects linear framework the ‘slopes-as-outcomes’ 

approach can be considered a multilevel analysis approach. This approach is the first 

step toward modern multilevel modeling. A linear model with individual-level 

explanatory variables and an individual-level response variable estimates separate 

parameters within each group, allowing each context to have its own micro model. 

Three hypothetical situations of varying coefficients analysis are used for comparison: 

 A situation with varying intercepts only; 

 A situation with varying slopes only; and 

 A situation with varying intercepts and varying slopes. 

In the first case, the groups’ regression lines are parallel, meaning that the 

slope of the regression of y  on x  is equal for each group. But the lines start at 

different points, showing that the overall mean level for y is different from context to 

context. Unequal intercepts mean that some groups “score” better than others on the 

response variable, after the amount of the explanatory variable is taken into account. 

This situation resembles an ANCOVA solution already discussed previously, where 

unequal intercepts but equal relationships (or parallel lines) between x  and y  are 

assumed.  

The second case represents a situation where all regression lines for groups 

start at the same point, thus having the same intercept. But the regression of y  on x  
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is stronger in some groups, resulting in different slopes. The steeper the slope, the 

stronger the relationship between x  and y .  

The third case exhibits a more realistic situation where both intercepts and 

slopes in the regression model differ. This is an example of where the ‘slopes-as-

outcomes’ approach is most valuable. Each group is allowed to have its own unique 

solution, which may be a more realistic situation than forcing groups to have some or 

all features in common. 

All three situations show that different intercepts and/or slopes are estimated 

for each context, representing the first step in the slopes-as-outcomes approach. In 

subsequent steps parameter estimates for intercepts and slopes are used as response 

variables in macro-level regressions together with macro-level explanatory variables.  

Another name sometimes used for this type of analysis is ‘two-step-analysis’, 

because in a first step the individual, or micro-level, parameters are estimated within 

each context and used in a second step as response variables, predicted by macro-level 

variable(s). In both steps Ordinary Least Squares (OLS) is the estimation method. The 

following equations show the second step, which is at the macro level 

jj zcca 10 += , (2.16a) 

jj zddb 10 += , (2.16b) 

where ja  and jb  are the regression coefficients for intercept and slope respectively. 

The number of observations in each step can be different. In the micro analyses of the 

first step the number of observations varies for each group. In the macro analyses, 

with either intercepts or slopes as response variable, the number of observations is 

equal to the number of groups. m  groups produce m  different slopes jb  and m  

different intercepts ja . The macro equations produce macro intercepts and slopes 

which are 0c  and 0d  and 1c  and 1d  respectively in (2.16a) and (2.16b). The same 

equations show the group-level variable z  is used to explain the variation among 

intercepts and slopes. z  can either be a global variable or an aggregated variable, as 

were determined in previous chapter.  

The ‘slopes-as-outcomes’ approach is promising and a potentially good way to 

find interesting features in the data, features that were previously ignored. But the 

approach has a practical disadvantage; it requires a separate analysis for each context. 

Separate analyses for each group may be the best way to represent its group in its 
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uniqueness, but with a large number of groups, this method is hardly feasible, not 

parsimonious and ignores the fact that groups also may have things in common. The 

model of the ‘slopes-as-outcomes’ approach has also some other drawbacks. First, the 

error structure is not specified correctly, which makes the p-values for the parameter 

estimates questionable. Secondly, the regression coefficients obtained in the first step 

are not equally efficient: some may have large standard errors and some small ones. 

This is not accounted for in the second step. Each coefficient is weighted equally.  

An alternative way is the extension of this approach to RC models, which will 

be discussed in the next section. This approach combines the conceptually interesting 

features of the ‘slopes-as-outcomes’ approach with the statistical advantage of 

parsimony, and the practical advantage of taking into account not only the uniqueness 

of each group but also what they have in common. 

 

The Random Coefficient (RC) Model 

The RC model is conceptually based on the ‘slopes-as-outcomes’ model. One 

difference between the two models is that the RC model does not estimate coefficients 

for each context separately, although each context is allowed to differ from the other 

contexts in intercept, in slope(s), or in both. A single model is estimated from which 

the groups are allowed to deviate. From a “graphical” point of view, in the RC 

approach, a single (solid) regression line is calculated with two other (dashed) lines on 

either side of it. These two lines capture the variation of the groups from the average 

line, corresponding with the variance in the ‘fixed but varying coefficient’ cases in the 

previous section. 

The three situations discussed in the previous chapter are compared with 

similar ones referring to RC models, in order to show similarities and differences 

between models. These three situations are again: 

 A situation with varying intercepts only; 

 A situation with varying slopes only; and 

 A situation with varying intercepts and varying slopes. 

In the first case where intercepts vary but slopes are the same, this is reflected 

in a variance around the regression line, which is regular and equal for all values of 

x . 

In the second case, where intercepts do not vary but slopes do, the space 

around the regression line is not equal for all values of x . This is to be expected in 
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RC models, because variation in slopes is related to values of x , the explanatory 

variable. The higher the value of x , the larger the spread around the mean 

(regression) line. 

Finally, in the third case where both slopes and intercepts are different for the 

groups, the variation around the regression line is produced by the combination of the 

variance of the slope, the variance of the intercept and the covariance between the 

two. The variation in slopes is related to values of x , as is the covariance between the 

variances of intercept and slope. The total variance around the line is the sum of all 

three (co)variances. As a result, the pattern of the variation of the groups around the 

average line is irregular, with a minimum and a maximum at certain values of x . If 

the variation around the average (regression) line, as indicated by the values for the 

variances, is large, we say that the single line does not represent all groups equally 

well. Since the regression line is an ‘average’, we know by the value of the dispersion 

or variance of the coefficients that some groups are above the line, while others are 

below it. If, on the other hand, the variances of the intercept and slope are small, the 

line is close to equal for all groups. A single-level regression analysis would then 

represent the relationship in this data equally well. The groups can differ either in 

intercept, in slope, or in both. In RC models each coefficient has its own variance, 

allowing groups to be unique. Uniqueness for each context is translated into the extent 

of the deviation of a group from the overall regression line. This deviation (or error) 

can be used to calculate the posterior means, which are separate values for intercepts 

and slope(s) for separate contexts, very similar to the ‘slope-as-outcomes’ approach.  

In the previous paragraphs we have described the principles of RC modeling, 

as well as the differences between RC models and ‘slopes-as-outcomes’ models. Next 

we formalize the same principles in equation form. We have shown that the 

coefficient estimates for separate contexts are represented as varying around the 

overall regression line. As a result coefficients in RC models consist of two parts: a 

mean or fixed part, and a variance or random part. The random part is represented by 

a macro variance, showing the deviation from the overall solution. This variance is 

referred to as macro-level variance, because the coefficients differ from each other at 

the macro or context level. The equation of the random model starts with the familiar 

regression equation, where we underline random variables as before: 

ijijjjij
xbay ε++= .  (2.17) 
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Index i  is again used for individuals and index j  for groups. 
ij

y  is the score on the 

response variable of an observation i  within a context j ., while ijx  is the individual 

level explanatory variable of the same observation. The variable ja  is the random 

intercept, jb  is the random slope, and ijε  is the disturbance term. We assume that ijε  

has expectation zero. All ijε  are independent of each other. The variance of ijε  is 

equal to 2σ . 

Note that the underlining of a  and b  in equation (2.17) is a new feature signifying 

random coefficients. Observe that this underlying is the only difference between this 

equation and equation (2.15) for the ‘slopes-as-outcomes’ model. 

The models discussed so far have fixed coefficients. In RC models coefficients 

can be either fixed or random. The choice between random and fixed coefficients can 

be made separately for each coefficient in an analysis based on an RC model. 

Coefficients in RC models are estimated as a main effect with a variance around it. 

This variance represents the deviation of contexts from that overall or main effect. To 

specify the properties of the random coefficients, we define them as fixed components 

plus disturbances. These disturbances are at the group level. They have expectation 

zero, as usual, and they are independent of the individual-level disturbances ijε . The 

macro-level equations express the properties of the random slope and intercept in 

terms of overall population values plus error, as specified in the following macro 

equations: 

jj ua 000 += γ , (2.18a) 

jj ub 110 += γ .  (2.18b) 

The macro-level errors ju 0  and ju1  in (2.18a) and (2.18b) indicate that both the 

intercept 00γ  and slope 10γ  vary over contexts. The grand mean effect in (2.18a) is 

00γ  while ju 0 , the macro-error term, measures the deviation of each context from this 

overall or grand mean. In the same manner the grand slope estimate across all 

contexts is 10γ , while ju1  represents the deviation of the slope within each context 

from the overall slope, as in equation (2.18b). For the gammas the subscript is defined 

as follows: the fist index is the number of the variable at the micro level, the second 

represents the number of the variable at the macro level. Hence, stγ  is the effect of the 
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macro variable t  on the regression coefficient of micro variables s . Zero signifies the 

intercept, that is to say, the variable with all values equal to +1, either at the micro 

level or at the macro level. For instance, 00γ  is the effect of the macro-level intercept 

on the micro-level coefficient of the intercept. Note that equations (2.18a) and (2.18b) 

display the model coefficients ja  and jb  as a function of two components: a fixed 

component 00γ  and 10γ  respectively, and a random component ju 0  and ju1  

respectively, where ju 0  has variance 00τ , ju1  has variance 11τ , while ju 0  and ju1  

have covariance 01τ . 

The elements in the matrix T  in equation (2.19) summarize the variance 

components of an RC model with a random intercept and one random slope and 

indicate the extra parameters that are estimated in RC models. The τ  parameters 

show the degree to which the groups differ from the overall line. 
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To show that the separate equations are not really separate, but part of the model, we 

substitute the separate equations (2.18a) and (2.18b) into equation (2.17) resulting in  

ijijjjij
xuuy εγγ ++++= )()( 110000 .  (2.20) 

Expanding and rearranging terms yields 

).( 101000 ijijjjijij
xuuxy εγγ ++++=   (2.21) 

The rearranging of the terms yields an equation that looks a bit more organized. The 

fixed effects (gammas) are together and the micro error ijε  and the two macro errors 

ju 0  and ijj xu1  are also collected together (in parentheses). The result is a single 

equation that resembles a traditional regression equation, except for the error terms in 

parentheses. It is already mentioned that the macro-level variance of the slope (the 

variance of ju1 ) is related to the values of x , as in equation (2.21), the error term, in 

parentheses, depends on the variable x . 

The uniqueness of each context is expressed in these macro errors (the u s) 

which are the deviances from the overall solution. Solutions based on this model no 

longer produce unique regression lines for each context, such as in the ‘slopes-as-



 29

outcomes’ approach. The result of the RC analysis is a single regression line as an 

overall solution. Groups fluctuate around this average line. The parameters of the line 

are the gammas in the above equation, also called the fixed effects. The random 

effects or macro variances are ju 0  and ijj xu1 . If these variances are significantly 

different from zero we say that context effects are present.     

The next step in the RC approach is to add a new second-level variable to the 

analysis model, in order to ‘explain’ the variation in the coefficients for slope and 

intercept. By adding a macro-level variable z , the variation among groups in general 

(in the intercepts) or in particular (in the slopes) may disappear. If that works we say 

that the macro-level variable ‘explains’ the variation among groups. 

As in the ‘slopes-as-outcomes’ approach, we can choose to model the intercept 

variance or the slope variance. What we could not do in the ‘slopes-as-outcomes’ 

approach was model both variances in the same step. We will show how the model 

can be extended by fitting macro variances together. All parameters are estimated in a 

single model, instead of fitting two different macro models as in the ‘slopes-as-

outcomes’ approach. 

Out task is to add an explanatory macro-level variable jz that can account for 

the explanation of the intercept variance as well as the slope variation among groups. 

We relate the macro-level variable to the intercept and slope by changing the 

equations (2.18a) and (2.18b) respectively to: 

jjj uza 00100 ++= γγ , (2.22a) 

jjj uzb 11110 ++= γγ .  (2.22b) 

By fitting this model we assume that intercepts vary as a function of the macro-level 

explanatory variable jz  plus a random fluctuation, which is represented in the macro-

error term ju 0  in (2.22a) and, at the same time, we create and introduce an interaction 

of the micro-level variable ijx  with the macro-level variable jz . Substituting the new 

macro equations for the slope (2.22b) and for the intercept (2.22a) into the basic 

equation (2.17), we produce the single equation: 

).( 1011100100 ijijjjjijijjij
xuuzxxzy εγγγγ ++++++=  (2.23) 

The difference between model (2.23) and (2.21) is in the estimation of two more 

parameter coefficients, 01γ  and 11γ , while the rest stay the same. 
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We will discuss in more extent about the estimation methods for all the 

parameters of the RC model (fixed and random) in the next Chapter of the thesis. 

 

2.3.8 Assumptions and Differences for the Linear Models – A Brief 
Summary  
Table 2.2 summarizes the differences between the models discussed in this 

Chapter, two traditional linear models, regression and ANCOVA, and two multilevel 

linear models, ‘slopes-as-outcomes’ and random coefficients. Most models in Table 

2.2 are fixed effects linear models, while the RC model is the only random effects 

linear model. Within the fixed models the choice is to allow intercepts to be equal 

(2.24a) or different (2.24b): 

maaa === L21 , (2.24a) 

maaa ≠≠≠ L21 . (2.24b) 

Equation (2.24a) applies to the total regression model, where group membership is 

ignored, and all contexts are assumed to have the same effect on individuals. 

ANCOVA models assume unequal intercepts over contexts, as in equation (2.24b). 

Linear models can also differ in what they assume concerning slope coefficients. 

Slopes can also be assumed to be equal or unequal over contexts. Equal slopes are 

assumed in the analysis of variance model, where a pooled within slope is estimated, 

as in equation (2.25a): 

mbbb === L21 , (2.25a) 

mbbb ≠≠≠ L21 . (2.25b) 

Random and varying coefficient models allow slopes to differ, as in equation (2.25b). 

RC and ‘slopes-as-outcomes’ model allow researchers to assume that coefficients 

within contexts vary systematically as a function of the context. Different intercepts 

together with different slopes can be fitted. 

ANCOVA and regression are based on a more restrictive model than the two 

multilevel models. Multilevel models are more general, because some restrictions are 

lifted and more parameters are estimated. While more general models allow more 

freedom than restricted models, they are at the same time less parsimonious.  

The equations of RC model presented previously show that this model is an 

intermediate solution between a totally restricted one, such as standard regression that 

ignores the context, and a totally unrestricted one, such as the ‘slopes-as-outcomes’ 
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approach that takes the context too literally. In the ‘slopes-as-outcomes’ approach all 

contexts are treated as separate entities as if they have nothing in common, while in 

the total regression approach contexts are treated as if they are the same and 

interchangeable. The RC model is also statistically in between the two extremes. The 

RC model estimates fewer fixed parameters than the ‘slopes-as-outcomes’ approach, 

but RC models estimate more parameters than are estimated in the total regression 

model. 

 

Table 2.2: Assumptions of Traditional Linear Models and Multilevel Models 

Model Intercepts Slopes 

Traditional linear regression Equal Equal 

ANCOVA Unequal Equal 

‘Slopes-as-outcomes’ Unequal Unequal 

Random Coefficients (RC) Unequal Either equal or unequal 

 

2.4 Conclusions of the Chapter 
 

 As we can conclude from the thorough discussion of the Chapter, despite the 

attempts to introduce more sophisticated models in order to analyse hierarchical data 

(Total or Pooled Regression, Aggregated Regression, Contextual Model, Cronbach 

Model, ANCOVA, “Slopes-as-Outcomes” Model), all these attempts fail to describe 

effectively the hierarchy of the data. On the other hand, Multilevel Models seem to be 

more effective and, therefore, the theoretical aspects of these models will be 

elaborated more in the following Chapter. 
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