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Chapter 6 

Extension to Longitudinal Data 

 

 
6.1   Introduction 

So far, several cross-section experimental and non-experimental estimators have been 

reviewed. These estimators produce plausible estimates under specific assumptions 

outlined in the previous chapters. The experimental estimators seek to evaluate mainly 

the mean effect of Treatment on the Treated, given that one randomization takes place. 

The various non-experimental estimators account for estimation of structural models 

apart from the various mean impacts. Two kinds of estimation methods are dominant in 

the econometric literature of the latter estimators. These are the Maximum Likelihood 

and Heckman’s 2-step procedures. 

Here, we recast our discussion to cover the experimental and non-experimental 

approach in longitudinal studies. Verbeke and Molenberghs (1997) define longitudinal 

study as the analysis of data collected at different points of time for each unit of a 

population. Three different types of longitudinal studies occur in practice  – trend, cohort 

and panel studies. In a trend study, data from samples of different groups of people at 

different points in time, but from the same sample population, are collected. In a cohort 

study, subjects who presently have a certain condition and/or receive a particular 

treatment are followed over time and compared with another group who are not affected 

by the condition under investigation.  

Panel studies are different from the ones described above. They measure the same 

sample of respondents at different points in time. Unlike trend studies, panel can reveal 

both net change and cross change in the dependent variable. Hsiao (1990) mentions that 

these studies can reveal long-term shifting attitudes and patterns of behavior that might 
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go unnoticed in one-shot case studies (e.g. cross-sectional studies). Depending on the 

purpose of the study, researchers can use either a continuous panel, consisting of 

members who report specific attitudes or behavior patterns on regular basis, or an interval 

panel, whose members agree to complete a certain number of measurement instruments 

only when the information is needed. In general panel studies provide data suitable for 

sophisticated statistical analysis and might enable researcher to predict cause-effect 

relationships. For specific examples the reader is referred to Verbeke and Molenberghs 

(1997, pages 155- 189).  

The econometric literature on evaluation of social programs in a long-term framework 

is focused on panel studies. In the following paragraphs, we discuss methods of causal 

inference, first, for the experimental case and then in terms of the non-experimental, 

Maximum Likelihood and 2-step, procedures. The advantages and disadvantages of these 

methods are outlined and specification tests for model selection decisions are proposed.  

 

 

6.2   Panel Data – The Experimental Case 

An experimental evaluation procedure entails making certain comparisons between 

treated and untreated individuals. The most commonly used parameter that reflects these 

comparisons is the mean effect of treatment on the treated ( )r
i

r
i

r
i

r
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as before, “r” denotes the observations under randomization. While data on 
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i X,DYE 11 =  are available from program participants, the counterfactual 

( )r
i

r
i

r
i X,DYE 10 =  is not simple to be estimated.  

Assuming access to cross-sectional data, the estimation of the counterfactual mean 

requires specific statistical methods. By randomization of participants in treatment and 

control groups, prior receiving the services of the program or at eligibility stage, a 

program trainee is paired with an “otherwise comparable” person who does not receive 

treatment. However, when the analyst has access to panel data, other estimators can be 

applied to evaluate a social program. These estimators do not require a straight 

comparison between a treatment and a control group at a specific time period. Instead, the 
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data themselves exploit the intuitively appealing idea that persons can be in both states at 

different times, and that outcomes measured in one state at one time are good proxies for 

outcomes in the same state at other times, at least for the non-treatment state. 

  In the sequel, we describe two panel data estimators and adapt them in an 

experimental framework. These are the “before-after” and the “difference-in-differences” 

estimators. We discuss the assumptions that must be invoked to result in adequate 

estimates of the program effects to individuals as well as various applications on real 

data. 

 

6.2.1   The Before-After estimator 

To formulate this estimator we recall again the t script. Without loss of generality, let 

us denote by )t(Y r
i1  the post-program earnings and by )t(Y r

i ′1 the pre-program earnings 

for a treated person. The corresponding outcomes for the controls are )t(Y r
i0 and )t(Y r

i ′0 , 

respectively. For simplicity, assume that program participation occurs only at a single 

time period. The before-after estimator uses preprogram earnings )t(Y r
i ′0  to proxy the 

treatment state in post-program period. Under the assumption 
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and that the trainees and controls have the same permanent components in earnings, that 

is their pre-training earnings are equal, the before–after estimator (BA) is given by: 
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since the second term in equation (6.2) equals zero by assumption (6.1). This term 

denotes the approximation error and when (6.1) is satisfied difference (6.3) estimates 

adequately the BA parameter. Note that evaluation of BA does not require sampling the 

same persons in periods t and t΄. One needs just persons from the same populations. In 

this way the major drawback of panel data, that is the inability to sample the same 

persons across subsequent years from many periods, is solved.   

The major drawback of this estimator is its reliance to assumption (6.1). This 

assumption requires that among participants, the mean outcome in the non-treatment state 

is the same in t and t΄. Violations of this assumption due to economic changes, affect 

negatively the estimator. An example of this problem is provided by a work of 

Ashenfelter (1978) who observes that prior to enrollment in a training program, 

participants experience a decline in their earnings. He called this phenomenon 

Ashenfelter’s dip and it is a common feature of the pre-program earnings of participants 

(treated and non-treated) in training programs. If this decline in earnings is transitory and 

the dip is eventually restored, even in the absence of treatment, and if period t΄ falls in the 

period of transitorily low earnings, then the approximation error will not average out and 

assumption (6.1) will be violated. On the other hand, if the decline is permanent, the 

before-after estimator is unbiased for the parameter of interest. 

According to Heckman and Smith (1999), Ashenfelter’s dip with transitory decline 

occurs very often in training program evaluations. A common way to solve this problem 

requires knowledge of many periods’ pre-program data. If the program takes place in 

period t΄ + 1 and Ashenfelter’s dip occurs in period t΄, an appealing solution is to 

extrapolate from the periods before t΄ to generate the counterfactual state in period t. 

Given the absence of extrapolation errors and if it is safe to assume that such errors 

average out to zero across persons in period t, one can estimate by averaging and replace 

the biased data of period t΄. 

 

6.2.2  The Difference-in-Differences estimator 

When the above problems cannot be solved by using past data, other estimators have 

to be considered. Another widely used approach to estimate the effect of Treatment on 

the Treated is the Difference-in-Differences estimator. This estimator is based on the 
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previous parameter. Their difference is placed on that Difference-in-Differences approach 

subtracts not only participants’ mean pre-program earnings from the mean of their post-

program earnings but also non-participants’ mean pre-program earnings from the mean of 

their post-program earnings. Analogously to the previous estimator, it must be satisfied: 
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that is the pre-program earnings of treated and untreated persons should be equal in order 

to estimate the parameter without bias. The Difference-in-Differences estimator (DD) is 

given by: 
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Assumption (6.4) is considered as weaker than assumption (6.1) since it does not require 

equality to zero for any term. Equality of the relative measurement errors, so that the 

second term in (6.5) accounts for the measurement errors of the first terms of (6.5), 

suffices. Again, here, the analyst needs just to sample persons from the same populations. 

 Ashenfelter’s dip can also be considered as a problem in this case, but for completely 

different reasons from the ones described before. Heckman and Smith (1998) indicate 

that if Yi(t′)’s are measured at the time of transitory earnings dip and if non-participants 

do not experience a dip, then assumption (6.5) is violated because the time path of no-

program earnings between t΄ and t will be different between participants and non-

participants.                 

   Although panel data are widely regarded as panacea for selection and simultaneity 

problems in recent experimental studies, Heckman and Robb (1985a) and Heckman, 

LaLonde and Smith (1999) claim that there is no need to use panels to identify the impact 

of training on earnings if assumptions (6.1) and (6.4) hold. Similar obtained estimators, 

based on cost effective repeated cross-section data for unrelated persons, estimate the 
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same parameters. An analogous statement also holds in the non-experimental case for the 

various estimators that provided and analyzed below on this chapter.   

 

 

6.3   Panel Data – The Non-Experimental Case 

Similar to the experimental case, program evaluation can be approached in panel 

studies by applying econometric procedures. Several estimators have been proposed. To 

be implemented, they require access in either panel data on outcomes measured before 

and after program implementation or in repeated cross-section data from the same 

population where at least one cross-section is from a period prior to the program. Again 

here assume that post-earnings are measured in period t and the pre-program earnings at 

period t΄ while, again, program participation occurs only at a single time period.  

In terms of the conventional model of Heckman (1979) and its assumption of 

normality for the error terms, the (mixed) selection bias model in a panel data framework 

is formulated as: 
 

)t(u)t(X)t(Y ii
)l(

i += β                                                                                             (6.6) 
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The new notation here is that the random errors ui(t) and vi(t) of the primary and selection 

equation respectively, are decomposed into: 

 

                                                )()()( ttetu iii ξε ++=  

                                               )()()( tthntv iii ω++=                                           
(6.10)
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where ( )ii n,ε           are mean zero error terms specific to individual i and constant over  

                                 time (individual specific random effects)   

           ( ))(),( thte     are mean zero error terms specific to period t,  constant across  

                                individuals and independent of all other values of ( ) ))(,( thte ′′ ,   

                                 respectively (time specific random effects) 

           ( ))(),( tt ii ωξ  are mean zero error terms specific to individual i at time t,   

                                independent of all other values of ( ))(),( tt ii ′′ ωξ , respectively. 

 

6.3.1    Maximum Likelihood estimators 

Given the distributional assumptions for the residuals: 
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where )()()( 222 ttt vu σσσ ==  and ( ))t(v),t(uCorr ii=ρ , selection bias exists if 0≠ρ . 

Hausman and Wise (1979) propose a Maximum Likelihood estimator, which examines 

the impact of endogenous attrition, that is attrition occurred in the selection equation. The 

procedure yields efficient estimates of the structural parameters in the presence of 

attrition, as well as an estimate of a parameter that indicates the presence or absence of 

attrition bias. While the method was demonstrated using data from the Gary income 

maintenance experiment, Hausman and Wise (1979) support that their estimator is 

applicable in any kind of panels. 

Later, Keane, Moffit and Runkle (1988) apply the Maximum Likelihood procedure to 

estimate the impact of heterogeneity on wages. Nijman and Verbeek (1992) analyze non-

response bias in ML estimates of a life-cycle consumption model using data from the 

Expenditure Index Panel for the period of April 1984 to March 1987. Several ways are 

examined empirically to reveal the nature and the severity of the selection problem due to 

non-response, as well as a number of methods to estimate the resulting model. 
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Regarding the above approaches, Vella (1998) indicates the computational demands 

and the time-cost that ML estimation entails in evaluating multiple integrals. These 

limitations led analysts to develop simpler model-based procedures for panel data. 

   

6.3.2    2-Step Estimators  

Several econometric, 2-step approaches have been developed for program evaluations 

referring to panel studies. Here, we first describe some early procedures that are 

commonly used due to the simplicity in their application. Some proposed tests of model 

specification are then examined. However, because certain forms of selection bias are not 

eliminated by these procedures, other, modern, approaches are also discussed. 

 

6.3.2.1 Some Early Approaches  

1. The Fixed-Effects (FE) estimator  

This method was developed by Ashenfelter (1978) who supposes that the earnings of 

the ith individual in period t, Yi(t), can be modeled as shown by equation (6.6). The Fixed 

- Effects model assumes that the change in earnings between pre-program and post-

program periods can be explained by changes in personal characteristics and 

environmental conditions during the intervening period and by program participation. 

Following Verbeek and Nijman (1992a), we treat e(t) and h(t) as fixed time effects, 

absorbed in Xi(t) and Zi(t), respectively and consider the following transformation for the 

explanatory variable (and correspondingly for the dependent variable) of the primary 

equation: 
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The FE estimator for balanced (B) and unbalanced (U) panels, respectively, is: 
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where ( ){ }1
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The above estimators are consistent provided that the following assumptions are met: 

A1. ( ) 00 == ξωσξ   or  )t(D),t(X)t(E ii
d
i  and sample selection operates purely through 

the individual specific terms εi. 

A2. The earnings function that would prevail in the absence of training is the same for    

       participants and non-participants. 

Alternatively, Bassi (1984) formulates the FE estimator in terms of the endogenous 

variable model without imposing the restrictive assumption of fixed time effects. Under 

the consistency conditions A1 and A2, FE is presented as: 

 

( ) ( ) ( ) ( ) ( ))t()t()t(e)t(e)t(D)t(D)t(X)t(X)t(Y)t(Y iiiititiiiii ′−+′−+−+′−+′−=′− ′ ξξεεθθβ
                 

                ( ) ( ) ( ))()()()()()()( tttetetDtXtX iitiii ′−+′−++′−= ξξθβ                     (6.12) 

 

where 0=×′ ′ti )t(D θ  because t′ is chosen to be a period prior to training and thus the 

training effect t′θ  equals zero. Given that 

 

[ ] 0)(),()()( =′− tDtXttE iiii ξξ  

 

OLS regression of the difference between post-program earnings in any year and earnings 

in any pre-program year on the change in regressor between those years and a dummy 

variable Di(t) for training status produce plausible estimates for β and θt.  
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2. The Random-Effects (RE) estimator 

In many applications, it is implausible to assume that selection on unobservables 

occurs on the component εi. This is the case where the random effects estimator is 

appropriate. Let us define the vectors ( ) ( )′=′= itiiTitiiT X,...,XX,Y,...,YY 11  and 

( )itiiT ,...,ξξξ 1= . Also define the number of units for which Di(t) = 1 as Wi and a Wi × T 

matrix Ri transforming Yi(t) into the Wi dimensional vector of observed values )t(Yi
0 . 

Matrix Ri is obtained by deleting rows of the T dimensional identity matrix corresponding 

to Di(t) = 0. Under fixed time effects, by setting the following distributional assumption 

for the primary error term: 

( ) [ ]Ω+ ,N~)t(ii 0ξε  

where TI22
ξε σιισ +′=Ω  and TI  is the identity matrix of dimension T, ( )′= 1,...,1Tι , the 

random effects estimator is presented: 
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for the balanced and unbalanced panels, respectively.  

Consistency of the RE estimator requires the stronger condition 

( ) 0=+ )t(D),t(X)t(E iiii ξε  or 00 == εηξω σσ   and  . Thus it cannot produce 

consistent estimates if the selection is operating either through the individual and/or the 

idiosyncratic effects.     

 

 

3. The First – Order Autoregressive estimator 

In many applications of the FE estimator assumption A1 is not satisfied because 

participation is correlated with ξi(t). Bassi (1984) refers to the case where individuals in 
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areas experiencing unusually high unemployment are more likely to participate in the 

program. Similarly, for various reasons individuals may self-select into the program 

based on unobservables that are not constant over time, violating assumption (6.11) or 

alternatively program administrators may have an incentive to “cream”, that is to choose 

which individuals will participate and thus turn out to work with choice-based samples of 

participants, analyzed extensively in Manski and Lerman (1977) and Manski and 

McFadden (1981). To allow for these types of correlation, it is necessary to generalize the 

FE estimator.  

A useful generalization is obtained by decomposing the individual, time-specific error 

term )t(iξ  into two components –a systematic )t(i 1−ξ  and a random component 

)t(M i . Then, the first-order autoregression model of )t(iξ  and )t(i ′ξ , accounting for 

the above problems, may be written as: 
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 Intuitively, higher order autoregresion schemes may be applied to capture selection on 

unobservables successfully. Bassi (1984) discusses this approach and suggests an 

appealing recursive formula to estimate β and θt (the effect of participation in the 

endogenous variable model) in both self-selective and choice-based sampling designs. 

Heckman and Robb (1985a) also discuss the case of choice-based sampling and 

propose an Instrumental Variable estimator to handle with this case. They also constitute 

that estimators, similar to FE, can be applied to repeated cross-section data of unrelated 

persons given a homogeneous environment (satisfaction of assumption (6.11)). Repeated 

cross-section data are cheaper to collect and do not suffer from problem of non-random 

attrition which plague panel data. 
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4. The Random – Growth (RG) estimator 

Adopting the assumptions posed for the FE estimator, Heckman and Hotz (1989) 

discuss program evaluation when, in terms of the model (6.6) – (6.9), )(tui  has a factor 

structure of the form: 

                                                )t()t(et)t(u iiii ξεε ++×+= 21                                (6.14) 

 

i1ε  is a person-specific, time-invariant component, i2ε  is a person-specific growth rate 

and ( i1ε , i2ε ) are assumed to have zero means, finite variances and independency of vi(t) 

for all i and t. In this specification, we formulate the random growth model as: 

 

     ( ) ( ) ( ))1()()()( −′−′×′−−′− tYtYtttYtY iiii                

                    ( ) ( ) ( )[ ] βθ ×−′−′×′−−′−+= 1()()()()( tXtXtttXtXtD iiiii                     

                       ( ) ( ) ( ))1()()()( −′−′×′−−′−+ tvtvtttvt iiiiξ                                       (6.15) 

 

Under the above error specification (6.14), the dependence between ui(t) and vi(t) is 

thought to arise because of dependence between vi(t) and ( i1ε , i2ε ) and is assumed to be 

eliminated by differencing out the outcomes of period t′ from those of t. The resulting 

estimators of β and θt are reported to be consistent under standard conditions. 

Furthermore, the asymptotic distribution of the estimator of β is invariant to the choice of 

earnings from other periods used to proxy for i1ε  and i2ε , provided that all of the ξi(t) 

have nonzero variances and the equation is estimated by Generalized Least Squares. 

Heckman and Hotz (1989) constitute that both the FE and RG models yield consistent 

estimators of the training effect when applied to choice-based samples, because it is 

based on conditional ( ))( on tDi  moment restrictions.  

Alternatively, one could be faced up with the assumptions posed for the RE estimator 

where differencing method cannot produce consistent estimates of β and θt. However, this 

case is not analyzed in the literature. Heckman and Hotz (1989) provide three model 

specification tests for the FE and RG models. These tests are discussed in the following 
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paragraph along with the specification tests of Bassi (1984) and Verbeek and Nijman 

(1992a).  

 

6.3.2.2    Specification Tests 

9 Tests proposed by Bassi (1984) 

Bassi (1984) provides two model specification tests to select between the fixed effects 

and the random-effects models in a particular application. The null hypotheses of the tests 

are: 

H0(1): The coefficient on the dummy variable measuring program participation in a pre- 

       program RE estimator is not significally different from zero. 

H0(2): The coefficients in a pre-program RE estimator are the same between participants 

and non-participants. 

He declares that non-rejection of neither H0(1) nor H0(2) in terms of specification (6.12), 

denotes the existence of correlation between the random error )()( tutu ii ′−  and the 

selection variable Di(t), since in pre-program data the coefficients that are tested should 

not be statistically significant different to zero. Thus assumption A1 is violated and a 

simple random-effects estimator is sufficient for unbiased estimation of training effects. 

If, however, either null hypothesis is rejected, then a fixed effects estimator should be 

chosen as more efficient than the alternative.  

 

9 Tests proposed by Heckman and Hotz (1989) 

Heckman and Hotz (1989) propose three model specification tests for the fixed-effects 

and the random-growth models. The first two tests are close to these proposed by Bassi 

(1984). The first (T1) is based on access to data on pre-program earnings and regressor 

variables for future program participants and non-participants. For the fixed effect and 

random growth versions of this test, one has to modify equations (6.12) and (6.14) and 

use pre-program information for periods t and t΄. Then, the estimated value of θt should 

not be statistically significant different from zero for any correctly specified selection-

correction model.  

The second specification test (T2) is based on access to data on post-program 

earnings. However, the definition of the dichotomous variable Di(t) is modified to 
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1)( =tDi  if an observation is a member of an experimental control group and 0)( =tDi  if 

an observation is a member of a comparison group (as in method of matching). Since 

neither group receives training, estimated values of θt under fixed effects or random 

growth models, should not be statistically significantly different from zero for a valid 

non-experimental, selection-correction estimator. 

Finally, Heckman and Hotz (1989) provide a test for model restrictions (T3). They 

observe that under the assumptions justify the FE and RG estimators, values of )(tYi  

from periods other than those specified by equations (6.12) and (6.13) should not appear 

as regressors in those equations. A test that the coefficients on these extraneous )(tYi  

values are equal to zero is a test of the restrictions implied by these models. This test 

requires access only on post-program data. If none of the models passes (T3) then one has 

to reject all models and look for alternatives.    

Nevertheless, Heckman and Hotz (1989, rejoinder) claim that T3 is unlikely to be of 

general practical use because data on experimental control groups are rarely available, 

due to the prohibitive cost of experimentation. On the other hand, even if they were 

available, the authors comment that such tests may be a useful only as a way of using 

data from pilot experimental studies to narrow the class of non-experimental estimators.     

Finally, Heckman and Hotz (1989) refer to the difficulties posed on the development 

of alternative model-selection criteria based on predictive criteria such as Bayesian. 

Although consider such an approach very attractive, they comment that is suffers from 

practical problems. Bayesian information criteria assume that a “correct” model is 

included among the possible models considered. This is not true in many evaluation 

situations. We already mentioned above that if none of the models examined passes the 

tests then the analyst has to look for alternative models.  

Moreover, predictive criteria assume known prior probabilities of participation and 

specification of the full joint distribution of outcomes. The aspect of assuming a specific 

distribution for participation probabilities prior to the program is extremely complex. The 

analyst usually recognizes the selective nature of participation decision but very rarely 

can explain the reasons of this selectivity, since it occurs due to unobserved on the 

analyst factors. Thus, the respective distribution is very difficult to be determined.  
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9 Tests proposed by Verbeek and Nijman (1992) 

Verbeek and Nijman (1992a) discuss several tests to check for the presence of 

selectivity bias in estimators based on panel data. They considered the selectivity bias of 

the FE and RG estimators for linear models, although they support that most of the tests 

could be straightforwardly generalized to nonlinear models. The work of these two 

authors indicated that the FE is more robust to non-response biases than the RE estimator. 

A few simple tests have been conducted to infer on the validity of this result. Neither of 

them required estimation of the model under selectivity nor a specification of the 

response mechanism. 

A proposed test for selection bias refers to the important model selection discussion of 

Heckman and Hotz (1989) earlier. Verbeek and Nijman (1992a) test the null hypotheses: 

 

VN0(1): ( ) )consistent isestimator  FE (the   00 =)t(D)t(E:H i
d
i

FE ξ   

where )t(d
iξ  is a transformed error term of the FE estimator. 

 

VN0(2): ( ) )consistent are estimators RE and FE (the   0:0 =+ ititi
RE DEH ξε  

 

Non-rejection of each hypothesis means consistency for the corresponding estimator. The 

second hypothesis implies the first in the sense that whenever the random effects 

estimator is consistent, the FE is consistent as well. However, if both hypotheses cannot 

be rejected in a significant level, then FE estimator must be preferred to the RE as more 

efficient. This result agrees with the findings of Bassi (1984). Finally, if both hypotheses 

are rejected then other models have to be considered. 

The authors apply this theory on a model with one explanatory variable. They note 

that including an additional variable that is uncorrelated with )(tX i  essentially would not 

change the results, while inclusion of a correlated variable would result in biases that 

depend heavily on the sign and the magnitude of the correlation coefficient.    

Wooldridge (1995) do not agree with the above results. He supports that rejection in 

the Verbeek and Nijman’s (1992a) comparison of RE versus FE procedures could simply 

be due to the relative robustness of these procedures to serial dependence and 
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heteroscedacity rather than their tendency to deviate in the presence of selectivity bias. 

Then, he suggests other tests procedures, under different assumptions for a model with 

FE structure. Specifically, he considers an assumption that puts no restrictions on how 

)(tDi  relates to ( ))(, tX iiε . This model is described later.  

Verbeek and Nijman (1992a) also suggest some tests for variable addition into either 

model, based on the use of variables denoting the number of times a particular 

observation appears in the sample, and whether or not the observation appears in all 

periods. They conclude that when response is partly determined by an individual effect, 

which is correlated with the regressor, the power of the variable addition tests is also 

equal to the power of the LaGrange Multiplier test derived when the model is estimated 

by ML. 

 

6.3.2.3 Modern Approaches 

An advantage of FE and RE estimators is that they do not formulate a selection 

equation and do not specify a response mechanism. They only define a form for the 

disturbances of the primary and the selection equation, and without imposing any 

distributional assumptions, FE and RE estimator result in adequate estimates of the 

parameters of the selection model and, in extend, of the mean outcomes. However, these 

estimators do not eliminate specific form of selection biases. Recent papers have 

extended the work upon estimation in panel data studies. Some alternative estimators are 

presented here. 

 

1. E.M. Algorithm approach 

The rationality of E.M. algorithm has already been outlined in paragraph 5.13. We add 

that this approach can certainly applied in a panel data study not only to replace the 

missing values due to the evaluation problem ( ))(,0)()(1 tXtDtY iii =  and 

( ))(,1)()(0 tXtDtY iii =  but also to replace missing information due to attrition from panel 

studies.  

Despite the wide use of E.M. algorithm in various applications (see for example 

Molenberghs, Bijnens and Shaw, 1997), the literature barely considers this method in 
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order to estimate the missing data that constitute the evaluation problem (see Heckman, 

1990a). It seems that the disadvantages of this method lead the analysts to develop 

econometric estimation methods (see paragraph 6.4).   

 

 

2. Replacement Functions 

Replacement functions are also referred in Heckman (1990a) as a tool to solve the 

missing data problem by invoking functional form assumptions on outcome and 

participation equations. In particular additive separability of the outcome functions in 

terms of functions of observables and unobservables is usually invoked although this 

assumption is not essential to this approach. The idea is to solve out some unobservables 

in terms of other unobservables and observables. To see this clearer, let us introduce the 

following longitudinal selection model: 

 

              ( ) )();(),()( tutDtXgtY iiii += θ    ( ) TttuEwith i ,...,1  and  0)(  ==              (6.16) 

 

Under the assumptions imposed for the fixed effects model, suppose the simple case 

where  tallfor  )( ),()()( QtMtMQttu iiii ⊥+= α  where Q is a factor element with 

associated known factor loading ( ) 1=tiα . Then, if: 

 

( ) ( ))(),...,1()(),...,1( TMMTDD iiii ⊥  

or 

( ) ( )( ))(),...,1()(),...,1()(),...,1( TXXTMMTDD iiiiii ⊥  

 

eliminating Q from the model makes D exogenous with respect to disturbances in the 

transformed primary model since ( ) ( ) 0)()( ≠= tMEtuE ii . A sensible replacement 

function for Q is: 

 

( ) )();(),()( tMtDtXgtYQ iiii ′−′′−′= θ  
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that yields the conventional FE model as 

 

            ( ) ⇔+= )();(),()( tutDtXgtY iiii θ  

            ( ) ( ) ⇔+′−′′−′+= )()();(),()();(),()( tMtMtDtXgtYtDtXgtY iiiiiiii θθ  

( ) ( ) )()();(),();(),()()( tMtMtDtXgtDtXgtYtY iiiiiiii ′−+′′−=′− θθ                      (6.17)                  

 

From (6.17) θ can be consistently estimated by a simple Least Squares method.  

When Q represents a vector J × 1 of factors (J ≠ 1) and 1)( ≠tiα , a more general 

replacement function form can be the below: 

 

                                           ( )( )∑
=′

′′′′ −−=
T

t
tititit

t

MDXgY
T

Q
1

;,1 θ                               (6.18)      

 

Heckman (1990a) generalizes once more this approach by discussing for replacement 

functions when TJ ≺≤1  and )(tiα  be a function of ).(tX i    

 

 

3. Wooldridge’s (1995) estimator  

Wooldridge (1995) derives a conditional expectation for the primary equation of 

model (6.6)-(6.10) that leads to a selection bias test. He assumes that FE estimator 

produce plausible estimates if: 

 

                                      ( ) ∞→= NastDtXtE iiii     0)(),(,)( εξ                                  (6.19) 

provided that all periods Tt ,...,1=  are available for any cross-section drawn from the 

population. In practice, this assumption is more restrictive than the one of Verbeek and 

Nijman (1992a), posed for the consistency of the FE estimator. However, it is simpler to 

be stated and less cumbersome to be applied to cases where selection is based on the 

exogenous variables )(tX i . In fact, because assumption (6.19) puts no restrictions on 
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how )(tDi  relates to ( ))(, tX iiε , it follows that selection can depend on ( ))(, tX iiε  in an 

arbitrary, and thus more general, fashion. 

As the simplest selectivity pattern can be thought the following:     

                                  

( ) )()(),(),(,,)( ttDttZtE iiiiiii ωρωηεξ ×=                                                                (6.20) 

 

for some unknown scalar ρ. Under equation (6.20), Wooldridge (1995) shows that a 

conditional expectation of the primary equation can be represented as: 

 

                             ( ) )()()(),(),(,,)( ttXtDttZtYE iiiiiiiii ωρεβωηε ×++=             (6.21) 

 

A test for Η0: ρ = 0, is a test for the FE estimator. The author describes a procedure to test 

this null hypothesis using the t-statistic for an estimate of ρ, ρ�. Under some conditions, a 

serial correlation and heteroscedacity-robust standard error can be computed for ρ�. 

Finally, the author extends his method in several ways. First, he allows for serial 

dependence and heterogeneity in the selection equation. Then, he recasts the selection 

mechanism as follows: 

 

Alternative Selection Mechanism  

( ))(,0max )( thh l
i≡  

[ ] TtthtD l
ii ,...,1   ,0)(1)( )( =≡ ;  

 

This specification is considered under a partially observable selection variable and under 

observation of the selection indicator only. 

 

 

4. Kyriazidou's (1997) estimator 

Kyriazidou’s (1997) approach to the panel data selection model is based on the 

assumption that the time effects e(t) and h(t) of model (6.6) – (6.10) are absorbed into the 

conditional mean of the primary equation and thus they are excluded from her analysis. 
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Therefore, she develops a fixed-effects model for two time periods t΄ and t over the 

sample that satisfies Di(t′) = Di(t) = 1. Observe that the individual effects εi and ni are 

also eliminated in the FE model since they are constant over the time periods t and t΄. 

However, the error terms ξi(t) and ωi(t) remain in the analysis and their correlation with 

the selection variable Di(t) operates for the selection bias. Kyriazidou applies a 2-step 

approach to correct for the selection bias and estimate the primary equation without 

making any distributional assumptions for the error terms.  

The correction term that is used here is given by: 

 

        ( )iiiii tDtDttE ζξξ ,1)()()()( =′=′−   

    ( )iiiiiiii ntzttzttE ζγξηγωξ ,)()(,)()()( +′′′+′= ≺≺                  

                                                              ( )iiiiiiii tztvntztvtE ζηγγξ ,)()(,)()()( +′′′+′′− ≺≺  

    [ ] [ ]iiiiiiiiiiii ntzntztntzntzt ζγγζγγ ,)(,)()(,)(,)()( +′′+′′Λ−+′′+′Λ=  

    )()( tt ii ′−= λλ                                                                                                          (6.22) 

 

where ζ = [Xi(t′), Xi(t), Zi(t′), Ζi(t), ni, εi] and Λi(t) is an unknown function determining 

the value of the correction term. When γγ )()( tZtZ ii ′′=′ and ( ) ( ) 1=′= tDtD ii  the sample 

selection effect )(  and  )( tt ii ′λλ  is the same in both periods t and t′. Thus, for the 

particular individual i, applying the first differences: 

 

( ) ( ) ( )( ) ( )( ))()()()()()( ttEEtXtXtYtYE iiiiiiii ′−+−+′−=′− ξξεεβ  

                          ( ) ( )( ))()()()( ttEtXtX iiii ′−+′−= ξξβ  

                          ( )β)()( tXtX ii ′−=  

 

eliminates ni and λi(t) – λi(t′) and yields consistent estimates of β. This result is similar to 

the one described for the FE estimator of Chamberlain (1982).  

Kyriazidou (1997) generalizes her approach by indicating that in general there is no 

reason to expect that γγ )()( tZtZ ii ′′=′  and thus λi(t) – λi(t′) = 0 since the sample selection 

effect λi(t) depends not only on the partially unobservable vector ζi, but also on the 
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generally unknown joint conditional distribution of (ξi(t), ωi(t), ωi(t′)), which may differ 

across individuals as well as over time for the same individual. The primary equation “of 

difference” can be written then: 

 

( ) iiiiiiiiii ctDtDttEtXtXtYtY +=′=′−+′−=′− ζξξβ ,1)()()()()()(()()(  

 

The author suggests estimating γ by some procedure that does not impose distributional 

assumptions on the ωi(t). An appealing one is the method of the Maximum score 

estimator of Manski (1987), who developed a semi-parametric method for estimating the 

parameters of a discrete choice model in a panel data setting without making any 

distributional assumptions for the disturbances. He assumes only that: 

a) The disturbances are time-stationary, that is ( ) ( )iiii txtx FF εξεξ ),(),( ′= , where 

( ) ( )iiii txtx FF εξεξ ),(),(   and ′  are the distributions of the disturbances conditional on Xi(t) 

and Xi(t′), respectively and an unobserved time invariant person – specific effect εi. 

b) The support of ( )ii txF εξ ),( ′  is R1, for all (Xi(t′), εi) (unbounded support). 

c) The explanatory variables Xi(t) vary enough over time. 

The estimates of γ are then used to estimate the regression equation of interest. A 

plausible estimator of β is given by: 
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where ∆[.] denotes the first differences of the respective term in brackets, iNψ�  is a weight 

that declines to zero as the magnitude of the difference γγ )()( tZtZ ii ′′−′  increases and                   

φi ≡ 1{Di(t) = Di(t′) = 1}. Most usually kernel weights of the form: 
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are applied, where K is a kernel density function and hN is a sequence of “bandwidths” 

which tend to zero as N → ∞. Thus, for non-zero [ ]γ)(tZi′∆  the weight iNψ�  shrinks as 

the sample size N increases, while for fixed N, a larger [ ]γ)(tZi′∆  corresponds to a 

smaller weight. It is showed that the estimator of β consistent and asymptotically normal. 

 

 

5. A Non-parametric approach 

To estimate parametrically the parameters of the (mixed) selection bias model (6.6)-

(6.9), one should assume that the individual and time specific random effects are 

normally distributed with mean zero. Deviation from normality of the random effects can 

have an important effect on inferences involving these terms (see Verbeke and Lesaffre, 

1996). For this reason, an alternative, more relaxed approach may be needed.  

Ghidey, Lesaffre, Eilers and Verbeke (2002) describe an alternative linear mixed 

model with a P-spline smoothed density function for the random effects. This model 

relaxes the usual normality assumption in a classical linear mixed model to a more 

general distribution function for the random effects. It also has the advantage that the true 

underlying distribution will be better estimated when the normality assumption fails. 

Although, the authors develop this approach in a panel framework without the presence 

of selectivity bias, a selection bias model estimation procedure may be developed based 

on these findings.       

 

 

6.4 Evaluation Under Dropouts 
One aspect of self-selection that is often ignored is the bias created by ignoring 

missing information from subjects that either refuse or are unable to participate after a 

number of sequential measurements. This problem, known as dropping out in panel 

studies, is endemic to all large-scale social programs. Social researchers may restrict their 

analysis to those subjects who are observed at the cases where missingness occurs 

Completely at Random (MCAR), or at least at Random (MAR). Nevertheless, in Non-

Ignorable missing situations (NIM), restriction of the analysis only to observed 
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individuals leads in severe biases and inappropriate standard errors for the model 

estimates. The extend and the direction of any bias will depend upon the magnitude of the 

NIM mechanisms that affect the data. 

Crouchley, Oskrochi and Bradley (2002) study the case of NIM data in terms of an 

evaluation study where selection bias also appears. They construct a mixed parametric 

model for a bivariate selection mechanism, which includes one component for missing 

subjects and another component for selection into the state of interest. After testing for 

ignorable missingness, the authors compare the parameter estimates found with the ones 

obtained from simpler models that do not take into account the NIM mechanisms.           

 

 

6.5 Discussion on the Panel Data Estimators 
A significant amount of literature involves discussion on evaluation social programs 

within a panel data setting. As in the cross-section case, either an experimental design or 

econometric models can be applied for evaluation purposes. Matching has not been met 

as an option in the present literature although, a generalization of matching methods for 

panel analysis is straightforward. 

In experimental methods, participants have been randomized in treatment and control 

group before the program starts and the pre-program data on these individuals are 

collected. Post-program data (outcomes) are those collected after the completion of the 

program. A direct comparison of post-program and pre-program (if needed) outcomes 

can produce plausible estimates of the participation impact. In this framework, panel data 

estimators are easy to be implemented.  

In a structural model framework, the various estimators discussed above can be 

applied to produce plausible estimates under specific distributional assumptions and 

under specific forms for the error terms. Fixed-Effects and Random-Effects estimators, as 

well as their extensions, have been successfully implemented in the past. However, as 

Vella (1998) indicates these estimators cannot eliminate all kinds of selection bias. Thus 

other estimators have to be considered. Wooldrigde’s (1995) method have been 

successfully implemented in real data. Kyriazidou’s (1997) estimator has been also 

applied in practice but it is restricted for the special case where the time effects e(t) and 
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h(t) are absorbed into the conditional mean of the primary equation excluded from the 

analysis.  

The major limitation of the panel data studies is the phenomenon of attrition from the 

samples of participants. The large number of participants at the first time the data are 

collected is usually followed by a much less number of persons in collecting the post-

program data. Various reasons such as inability to find respondents that have moved in 

other places, refusal of response in post-program period and other natural reasons (e.g. 

deaths) are common sources of attrition in panel studies. Note that sample attrition is not 

the same as dropping out of the program. Both control and treatment group members can 

attrit from the sample causing much serious problem in the analysis.  

Sample attrition poses a problem for experimental evaluations when it is correlated 

with individuals’ characteristics or with the impact of treatment conditional on 

characteristics. Heckman, LaLonde and Smith (1999) support that persons with poorer 

labor market characteristics tend to have higher attrition rates. Even if attrition affects 

both experimental and control group members in the same way, the experiment estimates 

the mean impact of the program only for those who remain in the sample. In this case, the 

experimental estimate of training is biased because individuals’ status r is correlated with 

their likelihood of being in the sample. In this setting, experimental evaluations become 

non-experimental evaluations since some assumptions have to be made to deal with 

selection bias. Determination of the missing mechanism contributes to overcome these 

problems. Possibly, a useful alternative to panels would be the repeated cross-section data 

that are studied extensively in the modern econometric literature.  

 
 
 


