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Chapter 5 

Econometric Approaches to the Evaluation 

Problem: Structural Models 

 

 
5.1   Introduction 

The methods described in Chapter 4 assume that the selection into the program occur 

on the basis of observable (to the analyst) individuals’ characteristics. In fact, this is the 

most troubling feature of these methods. Depending on the quality of the data at the 

analyst’s disposal, it may or not may be attractive to assume that the analyst knows as 

much as people, being studied. When analyst’s knowledge is perfect, matching methods 

would yield robust results. However, if it is implausible to assume that the analyst 

observes all the individuals’ characteristics that affect their decision to participate, the 

dependence between iY  and the training indicator variable Di is not eliminated even after 

controlling for Xi. Under such circumstances, the method of matching is not robust 

anymore and the problem has to be approached with alternative econometric methods. 

Also, since Xi may not be equal to Zi so that variables that affect participation may be 

different from those affect outcomes (in fact it is usually assumed that Xi is included in 

Zi), we use both Xi and Zi terms on this chapter.  

The traditional econometric approach to the selection model adopts a more 

conservative approach and allows for selection on unobservables. Several methods have 

been proposed to cope with this problem. These methods, initially developed by Roy 

(1951), and extended by Lewis (1974), Gronau (1974), Heckman (1974, 1978, 1979) are 

going to be discussed in this chapter. 
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5.2   Historical Review 

Roy (1951) with the development of the General Equilibrium model set up the 

conditions for the growth of structural (model-based) econometric approaches in 

evaluation studies. In his seminal work, he considered two occupational statuses, say 0 

and 1, in which income-maximizing agents can work. Agents are allowed to have 

heterogeneous skills and, more important, are free to enter the sector that gives them the 

highest income. However, they are restricted to only one occupation for a period. Under 

the assumption of normality for the logarithms of the incomes, Roy concluded that the 

distribution of earnings depends on certain “real” factors, i.e. the character of the 

distributions of various kinds of human skill and the state of technique existing in 

different occupations. The desires of the individuals in the community for various sorts of 

goods were found also of great importance, but they were only able to exert their 

influence within the framework determined by skill and technique. It must be 

emphasized, though, that the conclusions reached are dependent upon the normality 

assumption of the log incomes. They would not necessarily be true if other types of 

distribution were considered.  

Extending the work of Roy, Heckman (1974) observes a population of women that 

either participate in the labor force (sector 1 participants) or do not participate (sector 0 

participants). Their decision to work depends on the wage they face in the market. Only 

when their asking wage exceeds the offered wage the women work. Under the normality 

assumption for the logarithms of wages, the probability that a woman works, her asking 

wage and her offered wage are mainly sought to be estimated from a common set of 

parameters. 

The problem in obtaining these estimates come from the missing information (missing 

data) occurred from the inability to report wages for the “sector 0” women. Approaching 

this problem by estimating a wage function on a subsample of working women to 

estimate the missing wages and then performing OLS regression over all wages would 

give an estimate of the mean offered wage. However, as Heckman (1974) explained, this 

procedure would lead to biased parameter estimates for the wages because of the, 

possibly, selective nature of work decision. 
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Kalachek and Raines (1970) estimate an “expected hours of work” equation for all 

women by separately estimating hours of work relation of working women, and an 

equation determining the probability that a woman works. Leibowitz (1973) describes a 

procedure where observations of non-working women are assumed to lie on the same 

hours of work function as observations of working women, with a particular value of zero 

for their hours of work. However, all these applications led to implausible estimates due 

to the perceived assumption that conditional on Xi and Zi, outcomes Yi are mean 

independent of Di, or mathematically: 

 

                        ( ) ( ) ( )iiiiiiiiiii ZXDYEZXDYEZXYE ,,0,,1, ====                      (5.1)                 

 

The plausibility of this assumption has also been questioned sharply by Heckman and 

Sedlacek (1985). Although in an experimental setting, randomization can produce such 

data, observational studies do not satisfy this assumption due to the selective nature of 

participation decision. 

Instead of these erroneous approaches, Heckman (1974) applied a prototypic 

procedure for the estimation of the mean wage of married women without the implausible 

restriction (5.1). Specifically, he develops two simultaneous behavioral models; the first 

one determines the offered wage to the woman while the second her asking wage. If a 

woman works, her hours of work adjust to equate these wages if she has freedom to set 

her working hours. If a woman does not work, no offered wage matches her asking wage 

(in fact her asking wage is greater than the offered). The simultaneous estimation of this 

models, lead to unbiased estimators of the probability that a woman works, of her actual 

hours of work given that she works, of the potential market wage rates facing non-

working women and of the implicit shadow price (the highest amount of the offered wage 

for which a woman is not interested in working) for non-working women.  

Upon these findings, Gronau (1974) reports that the wage rate, and thus participation 

in the labor force, depends not only on the wage offered (a function of individuals’ 

market characteristics), but also on the job-search strategy a person follows. The higher 

the person’s wage demands, the higher the wage he can expect, though the probability of 

finding an adequate job is lower. Ignoring this relationship results in selectivity bias. 
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Under that perspective, the author also comments on the selectivity biases that occur in 

wage comparisons. He examines the selection bias in the case where the population under 

study is homogeneous. Specifically, he recognizes that in such a population the bias α 

measures the extend to which the mean market wage, Ε , of employed persons in the 

group overstates the mean µW of their common wage-offer distribution. Adopting this, he 

proceeds with the extension of selection bias in wage comparisons between two 

homogeneous groups.    

Lewis (1974) examines selection bias under the assumption of a heterogeneous 

population, an issue not considered by Gronau (1974). He also recognizes the existence 

of selection bias in fields other than wage comparisons and labor-force participation. As 

illustrative examples, he mentions the returns from schooling (compares the wages of 

persons with different amounts of schooling) and the return to geographic migration 

(compares the destination wages of migrants with the corresponding origin wages of non-

migrants). 

Later, Heckman (1978) develops the “dummy endogenous variable model” and 

supports that it produces credible estimates of program impacts. As a member of the 

simultaneous equation models family, this model is described to include both discrete 

(endogenous) and continuous random variables based on normally distributed latent 

random variables. In Heckman’s (1978) seminal work, conditions for its existence and 

identification criteria are provided, and consistent estimators are proposed.  

Heckman (1979) adopts a similar approach and discusses the bias that results from 

using nonrandom selected samples to estimate behavioral relationships. Specifically, he 

develops a computationally tractable technique based on simple regression methods to 

estimate behavioral functions that account for selection bias in the case of a censored 

sample. Asymptotic properties of the estimator are also derived. This model and its 

descendants are mainly discussed in this chapter. 

Singh et al (1979) propose a model where the variable being studied (duration of the 

postpartum amenorrhea) is directly related to the probabilities of selection in the study. 

The selection bias that results, leads in underestimation of the level of the variable. The 

nature of selection bias is then investigated and an analytical procedure is outlined to 

adjust the sample estimate of the mean value in which they are interested. Greene (1981) 
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comments on Heckman’s (1979) method and proposes an alternative modeling approach 

to correct for selection bias. 

 

 

5.3   Useful Notation 

In the context of a social program, assume a sample of individuals with heterogeneous 

skills (target population) that are free to decide between participation (sector 1) or not 

participation (sector 0). Following Roy (1951), each individual is restricted to belong to 

only one sector at a time. There are no costs of changing sectors and investment is 

ignored. 

 

5.3.1   The Evaluation Problem 

Suppose that an analyst observes the post-program incomes of a sample of N 

individuals (i = 1, …, N). Denoting as Ti the N × J skill vector for persons i with skills j, 

post-program outcomes can be modeled as a function of Ti and a  N × 1 vector of 

unobserved (to the analyst) individual characteristics ui. In the general econometric 

approach, the functions of outcomes for each sector are postulated in the following way: 

 

( ) ( )iiiiii uTgYuTgY 11110000 ,     and     , ==  

 

Considering additive separability assumption, outcomes Y0i and Y1i can be represented, 

respectively, as: 

 )(     and     )( 000111 iiiiii uTgYuTgY +=+=  

 

Each person has a (Y0i, Y1i) pair but only one outcome can be observed at a time for unit i 

according to its sector decision. Then, the unobserved outcome is regarded as a latent 

variable. 

From the econometricians’ standpoint, utility theory indicates that an individual i with 

endowments Ti participates in the program (sector 1), if participation maximizes his post-

program earnings, that is if: 
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ii YY 01 ; iiii uTguTg 000111 )()( ++⇔ ;  

 

where )T(g i11  and )T(g i00  denote utility functions (see McFadden, 1975). The 

evaluation problem does not allow a straight comparison of the outcomes. Simple 

regression methods for estimation of 01   and  YY  across individuals results in biased 

estimates due to the selective nature of participation decision. Thus, other approaches 

have to be considered. 

 

5.3.2   Description of the Structural Approach 

The conventional econometric approach addresses selectivity in terms of 

unobservables to the analyst individuals’ characteristics ui by postulating econometric 

(structural) models. Heckman (1974) corrects for selection bias in the estimation of 

program impacts through the estimation of the participation probability for each 

individual, given a vector of attributes. To attain this result in terms of a simple 

computational procedure, Heckman (1978, 1979) partitions the endowments vector Ti 

into two, not necessarily disjoint, sets (Xi, Zi). Then, he estimates the models: 

 

     )( 1111 iii uXgY +=  

                                                          )( 0000 iii uXgY +=                                              (5.3) 

iii vZD += γ  

 

where the last equation accounts for the probability of participation. In a linear regression 

framework, equation (5.3) is specialized in the familiar form: 

 

  1111 iiii uXY ++= βα  

  00000 iii uXY ++= βα  

iii vZD += γ  
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To estimate adequately the above models an exclusion restriction is invoked. More 

specifically, Zi vector must contain at least one variable that does not appear in Xi. In a 

parametric setting this restriction is not strictly required, but in semi-parametric 

procedures is essential to be satisfied. 

Regarding selection on unobservables, expression 

 

( ) 0,, ≠iiii ZXDuE  

 

indicates that participation depends on the unobserved variable ui, resulting in selection 

bias. For this reason Di is regarded as an endogenous variable. Alternatively, selection on 

unobservables can be represented by the relationship 

 

( ) 0≠×= iii vvuE ρ  

 

that indicates the correlation between the unobservables ui and vi.  

 

 

5.3.3   Definition of Mean Impacts 

In terms of a linear model, the gain from participation in a program for each person i 

can be expressed as: 

( ) ( )iiiiiii uXuXYY 0000111101 ++−++=−=∆ βαβα  

 

The gain has two components, namely the gain for the average person with characteristics 

Xi  

000111 Χ−−Χ+ βαβα  

and the idiosyncratic gain 

ii uu 01 −  
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The idiosyncratic components may be observed by the person deciding participation in 

the program, but not by the econometrician who evaluates the program. In this notation, 

the mean impacts of a social program can be formulated.  

The most commonly estimated mean parameters in modern applied econometrics are 

the Average Treatment Effect (ATE) and the Effect of Treatment on the Treated (TT). At 

this point it is worth discussing them in a non-experimental framework. 

 

 

The Average Treatment Effect parameter (ATE) 

This parameter is defined as the expected gain from participating in the program for a 

randomly chosen individual. The ATE, conditional on Xi = xi, is given by: 

 

  ( ) ( )iiiii XYYEXEXATE 01)( −=∆=                                                                                                            

                                          ( ) ( )iiiii XuuEXX 01000111 −++−+= βαβα  

 

Note that due to selectivity ( ) 001 ≠− iii XuuE  and thus a simple mean comparison does 

not yield plausible estimates of the mean effect. In practice, most evaluation studies do 

not estimate ( )ii   E Χ∆ . Since it does not account for participation status Di, ATE(X) 

does not answer economically interesting questions in program evaluations and other 

estimators are preferred. 

            

 

The Treatment on the Treated parameter (TT) 

This is the average gain from treatment for those that actually select participation. In 

other words this parameter expresses the gain from moving a participation person with 

attributes Xi from the non-participation to participation state. This is what is called wage 

gap by Heckman (1990b). Treatment on the Treated effect, conditional on Xi is calculated 

by: 

    ( ) ( )iiiiiiiii ZXDYYEZXDEXTT ,,1,,1)( 01 =−==∆=  

                                              ( ) ( )iiiiiii ZXDuuEXX ,,101000111 =−++−+= βαβα  
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Again, selectivity causes ( ) 0,,101 ≠=− iiiii ZXDuuE and specific methods are required 

to evaluate the above expression. In practice, this is the most popular parameter in 

evaluation studies because it reflects the difference of participants’ outcomes had they not 

participated in the program ( )iiii ZXDY ,,10 =  from participants’ outcomes under 

participation ( )iiii ZXDY ,,11 = . 

 

 

5.4   The Conventional Selection Bias Model (Tobit Type – II Censoring) 

By definition, evaluation of the above mean parameters requires unbiased estimation 

of the corresponding linear models for participants and non-participants. Several 

procedures, either parametric or semi-parametric, have been proposed. At this point, we 

discuss them, beginning with the conventional selection bias model of Heckman (1979), 

which is a two-equation model of the form: 

 

N ..., 1,i         ;uXY ii
)l(

i =+= β                                                                                (5.10) 

N1,...,i       ;vZD ii
)l(

i =+×= γ                                                                               (5.11) 

      otherwise  0D   0;D   if   D i
(l)
ii == ;1                                                              (5.12) 

i
)l(

ii DYY ×=                                                                                                             (5.13) 
 
 

The crucial feature of the above formulation is the censoring rule that is imposed as: 

 

Censoring Rule 1 (Tobit Type – II censoring rule) 

Only the sign of )l(
iD  is observed and this sign determines whether an individual 

participates or not. 

 

 )l(
iD  is a latent variable that accounts for the participation decision. Specifically, when 

participation is identified by a prescribed rule, i.e. one participates if the offered wage in 

he faces in the market exceeds a threshold (e.g. his asking wage), then equation (5.11) 
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determines the probability of participation, denoted by ( )iii ZXDP ,1= . Relatively to 

equation (5.12) that defines 0D   if   D (l)
ii ;1= , the choice of zero as a threshold reflects 

to an inessential normalization. γ  is again a J × 1 vector of parameters of the effect of 

attributes in the participation probability while β  is a J × 1 vector of parameters of the 

effect of attributes on the post-program wages. 

The importance of equation (5.13) in this formulation is minor. Its inclusion indicates 

that only iY1  (participants’ outcome) are observed (sample selectivity) while its exclusion 

indicates that both ii YY 01   and   can be recorded. Model (5.10) is known literarily as the 

primary model and the model of interest, while (5.11) as the participation model, the 

selection model and the discrete choice model. 

This formulation is applicable in several social fields, e.g. evaluation of training 

programs for workers. The primary interest is to estimate parameter β  of equation (5.10) 

for participants and non-participants (if (5.13) does not exist). As we denoted before, 

OLS procedure leads in biased estimates due to selectivity on unobservables that causes 

( ) 0,, ≠iiiDi ZXDuE . Therefore, other procedures have to be considered.   

 

 

5.5   Parametric Methods 

5.5.1   Maximum Likelihood Estimation 

Heckman (1974) proposed an appealing procedure to account for sample selection 

bias. He stated the following assumption: 

 

Assumption 1 

ui and vi, i = 1, …, N, are independent of Zi, and independently and identically distributed 

(iid) over the entire population (participants and non-participants) with the bivariate 

Normal distribution N(0, Σ), where: 









=Σ 2

2

vvu

uvu

σσ
σσ
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The phrase “over the entire population”, inserted in Assumption 1 is crucial. Basically, it 

discriminates the selection models from the mixture-distribution models where the 

distribution of iu , i = 1, …, N, is defined only for a subpopulation of persons (e.g. 

participants). In a discussion for the latter family of models, Maddala (1983) states that 

despite its observational equivalence with sample selection bias models, mixture-

distribution models cannot be applied in evaluation studies.  

Under Assumption 1 the parameters of the model can be estimated by Maximum 

Likelihood method. The log-likelihood to be maximized is: 

 

( )∑ ∫
=

∞

′−







 −×=

N

i
Z iiiiuvi

i

dvv,XYlnD
N

L
1

1
γ

βφ  

                                            ( ) ( ) 



×−+ ∫ ∫

∞

′−

∞

∞−γ
φ

iZ iiiiuvi dvduvuD ,ln1  

 

where φuv denotes the probability density function for the bivariate normal distribution of 

(ui, vi). Maximum Likelihood method is easy to be implemented while it yields consistent 

and fully efficient parameter estimates given Assumption 1. Relaxation of this 

assumption is accompanied by an efficiency loss.  

 

 

5.5.2   2-Step Estimation 

Given the necessary distributional assumptions, a likelihood function, which accounts 

explicitly for the selection mechanism is theoretically easy to be derived and maximized. 

Nevertheless practically, the likelihood equations may be non-linear and thus the form of 

the function will be relatively complicated while the required computer programming 

will be difficult and the computational costs high. These computational difficulties led 

Heckman (1979) to propose a simple 2-step estimator. The author suggested estimation 

of γ  in the first step by modeling iD  as a dichotomous variable as in logit or probit 

analysis. Under Assumption 1, then, γ̂  contributes to estimate iY  and  β  without bias. 
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More mathematically, recall model (5.10) – (5.13) and remember that estimation of 

equation (5.10) is of primary interest although equation (5.11) have also to be estimated 

using conventional methods. Heckman (1979) suggested overcoming the bias problem 

through the inclusion of a correction term (control function) that accounts for 

( )iiii DZXuE ,, . 

To see this observe that if all individuals participated (Di = 1), the primary equation 

(5.10) would be: 

                                                       ( ) 1111 , β×Χ= iiii ZXYE                                         (5.15)                

 

However, from the population N, only a subsample N1 participates under a specific 

selection rule that produces selectivity. Therefore (5.15) is rewritten as (see Panaretos, 

1974): 

      

                                      ( ) ( )iiiiiiiii ZXDuEZXDYE ,,1,,1 1111 =+×Χ== β   

                                                                      ( )iiiii XZvuE ,11 γβ −+×Χ= ;            (5.16) 

 

The regression function (5.16) depends ii ZX   and  . Regression estimators of its 

parameters fit on the selected sample omit the final error term as a regressor, so that the 

bias that results from using non-randomly selected samples to estimate behavioral 

relationships is seen to arise from the econometric problem of omitted variables of 

Griliches (1957).  

To describe how this problem is solved remember that Assumption 1 validates the 

property: 

( ) iuvvii vvuE ××= − σσ 1  

                                                                  iu v××= ρσ  

indicating the selectivity bias problem that according to Olsen (1980) occurs from the 

dependence (correlation ρ ) between ii vu   and  . By using the theory of biserial 

correlation of Kotz, Johnson and Campell (1986, Vol. 4), one corrects for selectivity in 

the sample by using the Mill’s ratio: 
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“Ri” is a monotone decreasing function of the probability that an observation is selected 

into the sample, 




Φ

v

iZ
σ

γ . This formula has appeared in approximating binomial and 

geometric probabilities in terms of standard Normal distribution (see Johnson and Kotz, 

1972). In particular, φ and Φ are, respectively, the density and the distribution function 

for a standard normal variable and 
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(A more detailed discussion on the Mill’s ratio is found in Appendix 1).  

The primary model of outcome Y1i for participants Di = 1 can be written as: 
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where iλ  is the inverse Mill’s ratio whose coefficient uσρ ×  accounts for the selectivity 

bias. In practice, λi is not known. Heckman (1979) suggested a procedure that estimates λi 

and in extend β, uσρ ×  and iY  adequately. 

 

Figure 5.1: Heckman’s 2-step procedure 

1. Estimate the parameters of the probability that D ≥ 0   

*
i

v

i
ii

)l(
i ZZ)D,ZD(P γσ

γ ==≥ 0  

using probit analysis for the full sample1. 

2.  From the above estimator one can estimate *γ  and hence λi. All of these estimators are consistent. 

3. The estimated value of λi may be used as a regressor in equation (5.17) fit on the selected subsample. 

These regression estimators are consistent for β and uσρ × . 

4. One can consistently estimate σu by the following procedure. Denote as uC σρ ×= , as iû  the 

residual for the ith observation obtained from step 3, and the estimator of C by Ĉ . Then, an estimator of 

uσ  is: 
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where iλ̂  and iẐ  are the estimated values of λi and Zi obtained from step 2. This estimator of σu is 

consistent.     

 

Intuitively from equation (5.17), a test on the null hypothesis C = 0 is equivalent to 

0=uvσ and represents a test for the existence of sample selectivity bias. When C = 0, no 

selection bias exists since equation (5.17) reduces to (5.15) where all individuals 

participate. Melino (1982) shows that the square of the t – statistic, t2, approximates the 

Langrange multiplier test and supports that it is the optimal test of selectivity bias. 

Moreover, by the standard large sample criteria, this test is equivalent to the likelihood 

                                                           
1 Since )l(

iD  is a continuous variable OLS method over the full sample is applied to estimate γ*. Then 
estimation of the probability that Di = 0 or Di = 1 is conducted by the Probit model.  
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ratio and Wald tests. Due to its computational simplicity, this test is also recommended 

by Heckman, Tobias and Vytlacyil (2000) as a diagnostic tool for selection bias.   

Performing this estimation procedure, Vella (1998) estimates adequately the wages of 

a sample of 2.300 females taken from the 1987 wave of the National Longitudinal Survey 

in America. However, another question is raised here. The above model specification 

assumes that participation occurs if one criterion is satisfied, e.g. if and only if the wage 

offer exceeds the asking wage of the individuals. This assumption seems to be restrictive 

in most practical situations. It is possible that more than one criterion often determine 

participation. As Heckman (1979) indicated “sample selectivity may arise in practice for 

two reasons. First, there may be self-selection by the individuals or data units being 

investigated. Second, sample selection decisions by analysts or data processors operate 

in much the same fashion as self-selection”. Unlike the experimental and matching 

procedures, modeling selection bias allows the analyst to study the same problem from 

different perspectives (different selection rules) and under different distributional 

assumptions. This aspect has been criticized sharply by Holland (1989) who considers as 

impractical the existence of the several different estimators for the different assumptions. 

This opinion is reviewed at the final paragraph of this chapter. 

Heckman, Lalonde and Smith (1999) indicate the importance of estimating the 

indirect benefits from participation to the program and propose further research on this 

field. The number of non-experimental studies in this aspect is very limited. Typical work 

is the one of Davidson and Woodbury (1993), who consider the effects of a bonus 

program on the search behavior of participants and non-participants to evaluate the 

indirect effects of the program.        

 

 

5.6   Dummy Endogenous Variable Model 

An alternative representation of the selection bias model (5.10) – (5.13) is the one 

where the primary regression equation includes a coefficient for the dummy variable 

indicating participation. Adopting Assumption 1, this model can be written as: 
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N ..., 1,i         ; =+×+= iiii uDXY θβ                                                                       (5.20) 

N ..., 1,i                      ;vZD ii
)l(

i =+= γ                                                                    (5.21) 

otherwise   D    ;D   if   D i
)l(

ii 001 == ;                                                                  (5.22) 

 

and ( ) 0,, ≠iiii ZXDuE , ( ) 0≠×= iii vvuE ρ . 

For example, consider the case of the effect of laws in the status of migrants. Let Y1i 

indicate the outcome of migrants (payments) while Di is an indicator that reflects the 

state’s population sentiment toward migrants. If sentiment for migrants is sufficiently 

favorable ( )0;)l(
iD , the state may enact antidiscrimination legislation and the presence 

of such legislation is denoted with Di = 1. In the outcome equation (5.20) both the 

presence of a law and migrants’ characteristics (Xi) affect their measured outcomes. 

Therefore both of them must be included in the regression equation. 

The dummy variable Di can be characterized as endogenous since it is correlated with 

the disturbance ui, Corr(Di, ui) ≠ 0, operated through the non zero covariance σuv, 

indicating the selective nature of the sample. For this reason this model is known as 

“dummy endogenous variable” model. This model is different from the (5.10) – (5.13) 

representation in two ways. First, Yi outcomes are observed for both participants and non-

participants and thus the model allows for a parallel estimation and comparison of their 

outcomes. Second, this model assumes a common parameter β for participants and non-

participants while the previous one do not. This feature seems to be its major limitation 

related to the previous formula. 

Again, a simple OLS procedure would lead to inconsistent estimates due to the fact 

that E(ui|vi) ≠ 0. Hausman (1978) suggested that this inconsistency could be overcome 

by: 

a) Projecting )l(
iD  onto Zi to obtain )l(

iD�  and then replacing Di with iD̂  in (5.20) and 

perform OLS regression to estimate the parameters of interest. 

b) Projecting )l(
iD  onto Zi to obtain the residuals iv̂  and then including both iv̂  and Di in 

(5.20) and perform OLS. 
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Heckman (1978) adopts an approach similar to the one described above for the 

conventional selection bias model. Under Assumption 1, parameter γ of the participation 

equation can be consistently estimated by OLS over the full sample. To this extend, the 

Generalized or Probit residuals of Gourieroux et. al. (1987) can be attained in a manner 

similar to the computation of the Mill’s ratio for both participants and non-participants: 
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Then the regression model to be identified is: 

 

iiiii vCDXY εθβ +×+×+=  

 

and parameters β, θ and C can be consistently estimated for both Di = 1 and Di = 0 by 

using least squares procedure. More interesting, this model is identified without any 

exclusion restrictions due to the nonlinearity of the generalized residual term. Also since 

the generalized residuals are independent with Zi by construction, there would not be 

collinearity between iv̂  and Zi, that is Corr( iv̂ , Zi) = 0. This zero correlation is due to the 

derivation of the generalized residual as the score for the intercept from the Probit model 

evaluated at each data point. Gourieroux et. al. (1987, page 15) show how this zero 

correlation is attained.    

 

 

5.7   Properties of the estimators 

Heckman (1979) mentions that the 2-step estimator although consistent and simpler 

than Maximum Likelihood, lacks efficiency. He refers to this inefficiency as a 

consequence of the heteroscedacity apparent from the formula: 

 

( ) ( ) ( )[ ]22
1

2
1 11 iiivvuiiiii Zv,,XVE λλρρσγλ εε −++−=×Ζ−≥  
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where )v,(Corr iiv ερε = .  The variance of iε  never exceeds 2
uσ , the population 

variance, because the term in braces is never greater than unity. Heteroscedacity is 

produced since the variance in participation status decrease with increased selection. For 

example, assuming 0≠vερ , when people shift from non-participation to participation, 

the variance in the participants the log outcomes increases while the variance in the non-

participants log outcomes decreases. It is suggested that a Generalized Least Squares 

estimator for the second step account for this heteroscedacity.  

Wales and Woodland (1980) present some evidence of the efficiency gain for the 

Maximum Likelihood against 2-step estimator. Nelson (1984) shows that by defining the 

parameter of model (5.10) – (5.13) as δ = [β′, C]′ and the corresponding variables as       

A = [Xi, λi], we can take an estimate of δ and its variance as: 

 

[ ] YAAA ′×′= −1δ̂  

                                               ( ) ( ) ( ) 112
11

ˆ −− ′×′×′= AAWAAAAV σδ                                (5.24) 

 

As the correlation between Xi and λi increases the condition of the matrix being inverted 

in (5.24) worsens and ( )δ̂V  increases too. This is precisely the situation where the Least 

Squares bias becomes large and an alternative estimator is needed. Despite all these 

cautions, virtually all empirical work involving the more complicated of the models with 

sample selection have been solved using the 2-step estimator instead of the more efficient 

but computationally difficult ML procedure. 

Heckman (1979) also reffers to the standard errors estimation of his conventional 

model. He claims that the computed standard errors for the 2-step estimator always 

underestimate the correct asymptotic standard errors and thus they can be used only as 

lower bounds in statistical inference. Greene (1981) shows the implausibility of that 

claim by proving that the conventional “incorrect” standard errors can either be larger or 

smaller than their “correct” counterparts.      

Manning, Duan and Rogers (1987) approach the problem from a rather different 

perspective. They claim that although the inverse Mill’s ratio is non linear in the single 

index (Ziγ*), the function mapping this index into the inverse Mill’s ratio is linear for 
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certain values of the index. Accordingly, simultaneous exclusion of variables from Xi and 

inclusion of them in Zi, in the first estimation step must be implemented. However, this 

tradeoff of variables is not often possible. Thus many applications constrain Xi = Zi and β 

is identified through the non-linearity in the inverse Mill’s ratio. Unless exclusion 

restrictions are invoked, the OLS procedure results to inflated second step standard errors 

and unreliable estimates of β.  

Leung and Yu (1996) do not agree with the above conclusions. Based on a result by 

Gronau (1974), suggesting that Mill’s ratio method breaks down if Zi is composed of 

mutually exclusive and exhaustive sets of dummy variables and Zi is contained in Xi, the 

authors conduct several Monte Carlo investigations, to find that Heckman 2-step 

estimator is effective under some circumstances even in the absence of exclusion 

restrictions. More specific, they suggest that although Mill’s ratio is linear over the body 

of permissible values the single index can take, it becomes non-linear at the extreme 

values of the index. Hence, even with the absence of exclusion restriction when at least 

one of the Xi’s displays sufficient variation to induce tail behavior in the inverse Mill’s 

ratio, it is likely that the data will posses values of the single index which induce non-

linearity and this assists in model identification (plausible standard errors and reliable 

estimates of β). 

 

 

5.8   Testing the Normality Assumption   

From the above analysis it is obvious that the normality assumption is very crucial for 

both the ML and the Heckman’s 2-step estimators. If normality fails, the estimates of the 

model (5.10) – (5.13) are inconsistent. This is an unattractive feature and thus it is 

essential to test the normality assumption in advance. Various tests have been proposed. 

One of them is that developed by Lee (1984), who, as later Galland and Nychka (1987), 

assumes that the density of ui and vi is not Normal and approximates it as a product of a 

normal density and a series of Hermite polynomials Hrs(ui, vi): 
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Testing for αrs = 0 with the Lagrange multiplier test, one tests for normality because 

when H0: αrs = 0 cannot be rejected then fuv = φuv. However, this test leads to complicated 

calculations of the scores. For this reason is not applicable in most practical situations.   

Chesher and Irish (1987) introduce a second normality test. They specify an extended 

censored model in which some, or even all, parameters vary independently across 

realizations and then describe a procedure that derives various diagnostic tests readily 

applicable to normal based models for censored data.  

 Under the assumption that: 
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Gourieroux et. al. (1987) derives a normality test statistic that is a simple function of the 

Generalized residuals 
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 are the generalized residual and 

the S-generalized residual, respectively. 

Pagan and Vella (1989) discuss the RESET normality test. Similar to Lee (1984), they 

assume that the density of ui and vi is not Normal and approximate it, as Galland and 

Nychka (1987) do, with: 
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where φuv is the bivariate normal density of ui and vi and π00 = 1. From (5.25) they obtain 

the conditional expectation of ui that expresses selection bias: 
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where fu|v is the conditional density of ui given vi, φu|v is the conditional normal density 

and b = fv / φv. Setting K = 0: 

 

( ) ( )∑ ∫ ×= −

j

j
iivuiojii vduubvuE φπ1  

                                                        ∑ +− ××=
j

j
j vb 1

0
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and therefore under the null hypothesis of normality: 

 

( ) ( ) ( ) ( )1...111 0
2

01 =×++=×+=== i
J
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as b = 1 when errors are distributed bivariate Normal because fv = φv. 

From the above, testing for j0π = 0, j = 1, …, J, is a test for normality. Amemiya (1973) 

gives expressions for ( )1=i
j

i DvE , for j = 1, 2, 3, 4. By using the recursive formula of 

Bera, Jarque and Lee (1984), finds that these are proportional to λi, ( )iiZ λγ ×− *1 , 

( )( )iiZ λγ ×+
2*2  and ( ) ( )( )iiii ZZ λγλγ ×−×−

3**33 , respectively. Hence, a test for 

normality is to add on the variables ( ) i
j

iZ λγ ×* , j = 1, 2, 3, 4 to the 2-step estimator 

(5.17) and test if they are jointly zero. 

Finally, a rather empirical but at least applicable way to test for normality in self- 

selective samples is to replace Assumption 1 with a weaker distributional assumption that 

do not impose joint normality for the error terms. Then, one can compare the results and 

if these are significally different the normality assumption is rejected. Apart from testing 

purposes, this assumption can be used to formulate a different, independent approach for 

the estimation of the parameters of a selective sample model without the restriction of the 

joint normality. In the next paragraph, we will discuss this approach. 
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5.9   Relaxation of Normality 

   An alternative, weaker assumption than Assumption 1, can be considered: 

 

Assumption 2 

The distribution of vi is known, different from Normal, and ui is a linear function of vi. 

Again the distribution of ui and vi is defined over the entire population. 

 

 In the above assumption the normality case has been excluded since it would lead to 

joint normality of ui and vi. When the distribution of vi is not normal, one cannot proceed 

with OLS method to estimate λi in the first step. Various other methods have been 

proposed. 

 

 

The method of Olsen 

Olsen (1980) assumes that vi is uniformly distributed and replaces the inverse Mill’s 

ratio with a simple transformation of the least squares residuals derived from the linear 

probability model (model that regress Di with Zi). Specifically, by assuming that vi is 

uniformly distributed in [0, 1], the regression equation of interest becomes: 

 

( ) iiii ZXY εγδβ +−+= 1  

3××= uσρδ  

 

Since γ is typically not known, one has to estimate it by a linear probability model. Then, 

the primary model to be estimated is: 

 

( ) iiii n�ZXY +−+= 1γδβ  

( ) iii �Zn εγγδ +−×−=  

 

Olsen (1980) compares this estimator with the classical Heckman’s 2-step estimator. 

He concludes that the two procedures lead to similar results under the same assumptions. 
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The apparent difference is in the conditions required to identify the effect of sample 

selection. In Heckman’s procedure the same set of regressors may be used in the 

regression and probit models without encountering perfect collinearity when using the 

Mill’s ratio correction (see Leung and Yu, 1996). On the other hand, Olsen’s correction 

requires the presence of a regressor in the linear probability model, which does not 

appear in the regression model. In order to identify the effect of sample selection one 

could include higher order powers and cross products in the linear probability model but 

exclude them from the regression equation. Although Olsen’s method seems practically 

more general than Heckman’s (1979) method, it stills limits the distribution of vi to 

Uniform (0, 1). Possibly, an alternative estimator that allowed a more general 

specification for the vi distribution would yield better results in many practical cases.   

 

 

The methods of Lee 

A more general approach to relax joint normality is proposed by Lee (1982). He 

supposes that the marginal distributions of ui and vi are specified but their joint 

distribution is not. The joint bivariate distribution of interest should allow unrestricted 

correlation between the disturbances ui and vi. Assuming that the completely specified 

marginal distribution of ui and vi are respectively F(u) and F(v), each of ui and vi can be 

transformed into a standard normal random variable N(0, 1): 

 

( ))()( 1
1* iii uFuJu −Φ==  

and 

( ))()( 1
1* iii vFvJv −Φ==  

 

Then their joint distribution is specified as: 

 

                                             ( ) [ ]ρρ );v(J),u(JB;v,uH iiii 21=                               (5.18) 
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which is the bivariate normal N(0, 0 , 1, 1, ρ) since ui and vi are transformed into standard 

Normal variables.  

Under these assumptions, Lee shows that maximizing the log-likelihood below over 

β  and γ *: 

                               ( ) ( )( ){∑
=

−=
N

i
uiii XYgDL
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* ln,,ln σβργβ  

                                                      ( ) ( )( )( )2
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where g is the density function of ui, one obtains unbiased and efficient estimates of the 

parameters of interest. 

A more interesting assumption is the one where the distribution of u is normal N(0, 1) 

and the marginal distribution of vi is known but non-normal. From the model (5.10)- 

(5.13) we see that Di = 1 if and only if γii Zv −; . Given any absolutely continuous 

distribution function F(v), the transformation J1 = Φ0
-1F(v) is a strictly increasing 

function. Therefore, we have Di = 1 if and only if ( ) ( )vJZJ *
i 11 ≺γ− . The censored 

regression model with given normal marginal distribution G(u) of ui, arbitrary marginal 

distribution F(v) of vi and the bivariate distribution (5.18) is statistically equivalent to the 

model with  

ii
)l(

i uXY += β  

( ) ii
)l(

i vZJD ′+=′ γ1  

 

where ( )ii vJv 1=′  is a standard Normal random variable and (ui, vi′) are bivariate 

normally distributed. The regression equation can be written as: 
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An estimate of γ* can be obtained by the Maximum Likelihood method where one 

employs F(v) as the distribution function for vi. Then substituting γ̂  into (5.19) we 

estimate β and C by Ordinary Least Squares (OLS).  

Finally, Lee’s (1982, 1983) work is focussed on relaxation of normality by assuming 

that the error terms (ui, vi) are jointly distributed according to the Student – td distribution. 

Since the value of the degrees of freedom, d, affects the tail behavior of the distribution 

of errors, by varying d, he produces a flexible class of models, which can depart 

significantly from the “normal” model. As Lydall (1968) said, wage data tend to be fat 

tailed due to measurements errors in earnings and hours and because wages are often 

defined by dividing earnings by hours. In such cases, a multivariate Student-td 

distribution with the appropriate degrees of freedom is possibly a better approximation of 

the error distribution than Normal. 

To see mathematically how the selection bias problem is solved in this case, let us 

assume that td(µ, m) denotes the multivariate Student – td distribution with mean µ, scale 

matrix m and variance equal to [d /(d – 2)] × m-1, where d are the degrees of freedom2. 

Then td is the standardized univariate Student – td density with mean 0 and scale 

parameter equal to 1 with Td the associated cumulative distribution function. The 

marginal distribution of vi is F(v). In order to transform it into a td density, define 

JTd(v)≡Td
-1(F(v)). Then, the regression equation, corrected for the selection bias is: 
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Alternatively, if we set  
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2 The mean exists for d > 1 and the variance exists for d > 2.  
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the regression equation takes the simpler form: 
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5.10   Instrumental Variable Estimation (IV) 

A rather new approach, developed for program evaluation applications, is the method 

of Instrumental Variables (IV). Although this method is considered from Heckman, 

LaLonde and Smith (1999) as a variant of the matching method because of the 

assumptions it poses for the identification of the various parameters, it is mentioned here 

because it explicitly makes use of structural equation models.  

Instrumental variables are those variables excluded from some equations and included 

in others, and therefore are correlated with some outcomes only through their effect on 

other variables. To make it clear, let us suppose that in a social program, persons sort into 

the program on the basis of an unobserved factor, e.g. ability. “Ability” may raise 

earnings and more able people participate, but participation may not raise the earnings of 

any given person. To evaluate such a program, an instrument Qi ∈ Zi is often sought that 

determines participation but that does not directly affect earnings and does not depend on 

“ability”. Angrist, Imbens and Rubin (1996) and Rosebaum (1996) provide a simple 

example of a relative social program. 

 

5.10.1 Definition of IV Estimator 

Take the dummy endogenous variable model of Heckman (1978). The Instrumental 

Variable method is focused on the estimation of the effect of participation status Di on 

outcomes. By means of model (5.20) – (5.22), the parameter of interest is θ. Following 

Durbin (1954), Imbens and Angrist (1994) set the theoretical background for the 

existence of instruments and the plausibility of the IV estimator. Specifically, they pose 

the following conditions: 
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Condition 5.1 (Existence of Instruments): 

 Let Qi be a random variable with ℑ be the support of Q. Define for each qi ∈ ℑ a 

random variable D(Qi) with D(qi) = 1 if an individual with instrument (characteristics) 

Qi = qi participates and zero otherwise. Now define a random variable W such that (i) for 

all wi∈ ℑ the triple (Y0, Y1, D(Wi)) is jointly independent of Qi and (ii)P(W)=E(Di |Qi=wi) 

is a non-trivial function of W. 

 

Condition 5.2 (Monotonicity): 

For all qi, wi∈ ℑ, either D(qi) ≥ D(wi) or D(qi) ≤  D(wi) for every individual. This 

condition is inserted in order to obtain adequate estimates of the IV estimator. 

 

Condition 5.3 

g(Q) is a function from the support of Q to ℜ, such that (i) either for all qi, wi ∈ ℑ, 

P(qi)≤P(wi) implies g(qi) ≤ g(wi), or, for all qi, wi ∈ ℑ, P(qi) ≤ P(wi) implies g(qi)≥g(wi); 

(ii) Cov(di, g(qi)) ≠ 0. 

 

Theorem 5.1 (Definition of the IV estimator) 

Suppose that Conditions 1, 2 and 3 are satisfied. Let Q be a discrete random variable 

with support {Q0i, Q1i, …, QKi}, ordered in such a way that if l < m then P(Ql) ≤ P(Qm). 

Then, if Cov(Di, g(Qi)) ≠ 0, the IV estimator for the effect of Di on Yi using g(Qi) as an 

instrument estimates 
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As shown, the IV estimator is defined as the ratio of sample covariances.  

The important contribution of Imbens and Angrist (1994) on the IV procedure is the 

definition of a mean parameter based on the IV framework. More specifically, under the 

above conditions and on the following: 
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Assumption 5.1 (Stable Unit Treatment Value Assumption or SUTVA): 

This assumption is defined by Rubin (1980) in terms of an IV framework. SUTVA implies 

that the potential outcomes are unrelated to the treatment status of other individuals. 

More formally, it assumes that: 

a) If Qi = Qi′, then the causal effect of instruments on Di for person i is Di(Qi) = Di(Q′) 

b) If Qi = Qi′ and Di = Di′, then the causal effect of instruments on Yi for person i is    

Yi(Qi, Di) = Yi(Qi′, Di) 

 

Assumption 5.2 (Random Assignment) 

The treatment assignment Qi is random: P(Qi = c) = P(Qi = c΄) 

 

Assumption 5.3 (Exclusion Restriction) 

Y(Qi, Di) = Y(Qi΄, Di) for all qi, qi΄ and for all di 

 

Assumption 5.4 (Nonzero Average Causal Effect of Q on D) 

The average causal effect of Qi on Di, E(Di(1) - Di(0)) ≠ 0    

 

Then, the Local Average Treatment Effect (LATE) is defined as: 

                                            

         ( ) ( )iiiiii wQYEqQYE =−= ( ) ( )[ ] ( ) ( ) ( ) ( )[ ]101 =−−×−= iiiiiiii wDqDYYEwPqP  

 

LATE is defined as the expected outcome gain for those induced to receive treatment 

through a change in the instrument from Qi = qi to Qi = wi. The variable Qi affects the 

treatment decision, since is contained in Qi in the selection equation, but does not affect 

directly the outcome Yi.    

More schematically, Angrist, Imbens and Rubin (1996) show that LATE estimates the 

average causal effect of a specific subpopulation of persons. To see this, let us suppose 

two different choices. We define an unobserved variable (IV) that affect choices Qi. 

When Qi = 1, the individuals are induced to participate while Qi = 0 denotes inexistence 

of any induction. An individual may, under either value of Qi, participate in a program 

and thus (D(Qi) = 1) or may not and (D(Qi) = 0). The following table is enlightening:  
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Table 5.2: Causal effects of Qi on Yi, Yi(1, Di(1)) - Yi(0, Di(0)), for the population     
       of units classified by Di(0) and Di(1) 

  Di(0)  
  0 1 

DI(1) 

0 YI(1, 0) – Yi(0, 0 ) = 0 
Never – takers 

 

Yi(1, 0) – Yi(0, 1) = -[YI(1) – Yi(0)] 
Defiers 

Di(1) 1 Yi(1, 1) – Yi(0, 0) = Yi(1) – Yi(0) 
Compliers 

Yi(1, 1) – Yi(0, 1) = 0 
Always-takers 

 

According to the authors, LATE parameter is designed to estimate the average effect in 

outcomes of compliers. These individuals behave more normally that the others. They 

who encouraged to participate, do participate and they who did not encouraged, do not 

participate. Thus, LATE parameter can be formulated as: 
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Monotonicity condition and Nonzero Average Causal Effect of Qi on Di assumption 

restrict the definition of LATE to “compliers” only (key assumption). In this formulation, 

LATE takes into account the outcomes of the normally behave persons. In other words, it 

restricts evaluation in a specific, homogeneous group of people, the “compliers”, 

embedded within the Rubin’s Causal Model (see Holland, 1986). The advantages of 

embedding the IV approach in the Rubin’s Causal Model are that it clarifies the nature of 

critical assumptions needed for a causal interpretation, and moreover allows the analyst 

to consider sensitivity of the results to deviations from the “key assumption” in a 

straightforward manner.  

It is obvious that all other individuals, apart from compliers, do not behave normally. 

A simple examination of the above table shows that “Always Takers” and “Never 

Takers” have Di(1) – Di(0) = 0 and Assumption 5.4 is violated while “Defiers” have 

Di(1)–Di(0) = -1 and monotonicity condition is violated because they seem to participate 

without induction and do not participate with inducion. For these reasons, Angrist, 

Imbens and Rubin (1996) support the plausibility of their LATE parameter.  
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Regardless of the above arguments, it is not clear how LATE parameter accounts for 

selectivity bias in a non-experimental framework since it is simply expressed as a simple 

mean average. In fact, this seems to be a major limitation of this estimator that makes it 

applicable only under experimental designs where selectivity is balanced rather than 

eliminated through randomization. To that extend, Heckman (1996) reconsiders LATE 

from a different perspective to control for selection bias.     

      

5.10.2   Criticisms 

The above parameter has been subject of criticisms by several authors. Its assumptions 

and the fact that is restricted in the estimation of causal effects for only a subpopulation 

of persons are the main arguments against LATE. More specifically, Robins and 

Greenland (1996) comment that in many cases ATE parameter can be of greater public 

interest and provide a specific example from a clinical trial where almost all individuals 

are willing to take treatment independent of whether or not they induced to. In this case 

ATE estimates the average treatment effect for persons who actually receive treatment 

compared to those who do not, while LATE does not estimate adequately the average 

effect of treatment since it refers only to a specifically behave subpopulation. However, 

the authors recognize the superiority of LATE parameter in several cases because it takes 

into account the choice variable Di in the analysis. Angrist, Imbens and Rubin (1996, 

rejoinder) agree with Robins and Greenland that in some cases ATE provides more 

interesting results than LATE. They also add that IV framework allows them to compute 

informative bounds for the ATE parameter. 

   Heckman (1996) has also studied the restriction of LATE to compliers only. He 

finds LATE conditions unattractive once they clearly stated and that are based on 

unspecified and implicit behavioral assumptions. Robins and Greenland (1996) and 

Heckman (1996) stress that LATE is an average causal effect for a subpopulation that 

cannot be identified in the sense that we cannot label all individual units in the population 

as compliers and non-compliers. The latter author also disagrees in the comment of 

Angrist, Imbens and Rubin that econometricians do not clearly state their behavioral 

assumptions and adds that the literature includes many models to test the assumptions of 

LATE that are ignored by them.  
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Heckman (1996) considers weaker conditions and more general behavioral 

assumptions to identify the Effect of treatment on the treated within an instrumental 

variable framework. Neither the monotonicity nor the full independence condition 

(implied by Exclusion Restriction assumption) needed for this identification. He imposes 

the following Mean Independence conditions: 

 

( ) 0,0 =ii QXuE  

                                            ( ) ( )1,1,, =∆==∆ iiiiiii DXEDQXE                        (5.26) 

 

and restates the condition that both Qi and Xi determine Di as an assumption 

 

( ) ( )iiiii XDPQXDP 1,1 =≠=  

 

where ),1( iii QXDP =  is a nontrivial function of Qi. Then, by formulating the observed 

outcome for an individual as: 

 

( ) ( )iiiiiiiii YYDYYDYDY 01001 1 −+=−+=  

one obtains the mean observed outcome 

 

( ) ( ) ( ) ( )iiiiiiiiiiiii QXDPDQXEQXYEQXYE ,11,,,, 0 =×=∆+=   

                    ( ) ( ) ( ) ,11,0 iiiiiiii QXDPDXEXYE =×=∆+=  

 

by equation (5.26). By assuming two different instruments Qi΄ and Qi΄΄, Heckman obtains 

a LATE parameter, not restricted to compliers  

 

( ) ( ) ( )1,,1,,1, =′′−=′==∆ iiiiiiiiiii DQXYEDQXYEDXE                            

( ) ( ) ( ) ( ) ( ) ( )iiiiiiiiiiiiiiii QXDPDXEXYEQXDPDXEXYE ′′=×=∆+−′=×=∆+= ,11,,11, 00
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Thus, 

                ( ) ( ) ( )
( ) ( )iiiiii

iiiiiiii
iii QXDPQXDP

DQXYEDQXYE
DXE

′′=−′=

=′′−=′
==∆

,1,1
1,,1,,

1,                     (5.27)                     

 

This parameter evaluates the impact of the program for participants through a change 

in the instrument while accounting for selection bias, as shown by Heckman, Tobias and 

Vytlacil (2000). Angrist, Imbens and Rubin (1996, rejoinder), however, consider as 

implausible Heckman’s expression of LATE. They claim that Heckman’s key 

assumptions (mean independence) compare average outcomes for groups of individuals 

that the analyst does not know how they behave when faced up with an instrument Qi. 

Thus, these groups are constituted by completely different people and LATE parameter 

may give implausible estimates. In addition, it is argued that the weaker assumptions 

imposed by Heckman (1996) (specifically the mean independence assumption instead of 

the full independence of Angrist, Imbens and Rubin) lack in scientific (economic) 

content. Since mean independence is weaker than full independence, it is preferred to the 

latter in many situations. However, in the case of instrumental variables, when mean 

independence hold, Qi would be a valid instrument for the effect of Di on Yi but not on a 

transformation of Yi such as log(Yi). Because of such cases, the stronger assumption has 

to be preferred. Finally, it must be noted that Heckman’s pessimistic view of IV methods 

can be contrasted with the development of his views on a class of experimental 

evaluation designs with randomized eligibility. In these designs, units are randomly 

assigned an instrument Qi with Qi = 1 implying that unit i is eligible for a particular 

treatment and Qi = 0 implying that unit i is not eligible to receive treatment. Formally, 

this is a special case of LATE model with Di(0) = 0 (no defiers or always-takers), and 

hence monotonicity is automatically satisfied. 

Moffit (1996) regards IV method as the most versatile and flexible technique, 

applicable in an enormous number of disparate applications.  However, he criticizes the 

“compliers restriction” of LATE and comments that this parameter is based on untestable 

behavioral assumptions. Rosenbaum (1996) also shows the implausibility of this 

restriction in many practical situations by mentioning a clinical experiment for persons 

that suffer from Chronic Obstructive Lung Disease (COLD). At this example, it is 
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obvious that not all persons that were induced to participate, they did so.  Since even in 

this small-size experiment the conditions of AIR were not satisfied, at a larger one, like a 

training program, they would not satisfied too. In addition, it would be very difficult to 

recognize individually the persons that are actually compliers. Possibly, such an attempt 

would result in large errors. 

However, Rosenbaum (1996) agree with AIR in the fact that IV method possesses a 

significant role in many applications. In his example, when the mean effect of treatment 

on the treated (TT) is estimated according to the people that participated, the analyst 

results in overstated estimates. That is actually true because there may be people with 

specific characteristics e.g. healthier that surely participate whether induced or not and as 

healthiers they obtain greater values of outcomes. If the mean effect on outcomes were 

estimated by the means of the inducement to participate instead of the participation status 

itself, the estimate would be more sensible.   

Rosenbaum’s (1996) final comment is concerned with the lack of robustness of means 

as evaluation measures. He suggests using more robust estimators such as the Hodges-

Lehman estimator (see Appendix 1 for a description) that performs median or quantile 

regression. Angrist, Imbens and Rubin (1996, rejoinder) consider this suggestion as an 

attractive one. They state that median and mean regressions are applied equally well to 

IV problems. However, little attention has been given in such an approach in 

econometrics and further attention is deserved.  

 

5.10.3   The Local Instrumental Variable Effect 

Heckman (1997) developed an additional mean parameter based on the IV approach. 

He called this parameter Local Instrumental Variable (LIV). Heckman and Smith (1998) 

and Heckman and Vytlacil (1999, 2000a) refer LIV as an estimator of the average 

treatment effect for individuals with a given value of vi: 
 

                                          ( )iii vXEXLIV ,)( ∆=  

                                                  ( ) ( )iiiii vXuuEX ,0101 −+−= ββ  

                                                  ( ) ( )iiii vuuEX 0101 −−−= ββ                                   (5.28) 
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Evaluation of the LIV parameter at low values of vi averages the outcome gain for those 

with unobservables making them least likely to participate, while evaluation of the LIV 

parameter at high values of vi is the gain for those individuals with unobservables which 

make them most likely to participate. Since Xi is independent of vi, the LIV parameter can 

be written as: 

                                ( )( ) ( )( )
( )i

iiii
iiii QP

QPZXYE
QPZXEXLIV

∂
∂

=∆=
,,

,,)(                 (5.29) 

 

This formula gives the average effect for people who are just indifferent between 

participation or not at the given value of the instrument (i.e. for people who are 

indifferent at P(Qi) = Pi). LIV(Xi, P(Qi)) for values of Pi close to zero is the average 

effect for the individuals with unobservable characteristics that make them the most 

inclined to participate, and LIV(Xi, P(Qi))  for values of Pi close to one is the average 

treatment effect for the individuals with unobservable characteristics that make them the 

least inclined to participate. 

 

 

5.11   Calculation of Mean Parameters Using Heckman’s 2-step Procedure 

Estimation of mean gains and program impacts is a central feature in evaluation 

studies. Both statisticians and economists are focussed on this aim, although they 

approach it from different perspectives. While the former rely on randomized 

experiments or matching methods, economists rely on structural procedures based on 

Heckman’s 2-step method to estimate parametrically unbiased mean parameters such as 

TT or ATE. Economists’ approach is going to be reviewed in this paragraph. 

Intuitively, ATE, TT, LATE and LIV can be estimated only when the outcomes for 

both the participants and non-participants are observed. Thus, in the formulation of the 

selection model (5.10) – (5.13), we discriminate earnings of participants from those of 

non-participants and consider the following structural models: 
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The Normality assumption (Assumption 1) is then equivalently presented as:  
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where 
00111001 vuvuvuvuuuuu   and  , σσσσσσ === . 

 

 

The Average Treatment Effect 

It has already been mentioned that the Average Treatment Effect (ATE) does not 

answer economically interesting questions. Its simple form does not require formulating 

Heckman’s estimator in order to be represented. The Average Treatment Effect 

conditional on Xi = xi is simply expressed as: 

 

                                               ( ) ( ) ( )01 ββ −=∆= iii XXEXATE                              (5.30) 

 

Heckman’s 2-step method is primary oriented to the estimation of the rest mean 

impacts. At this paragraph we discuss how to obtain adequate estimates of the mean 

Effect of Treatment on the Treated, the Local Average Treatment Effect and the Local 

Instrumental Variable parameter. Both cases of normal and non-normal distribution for 

the error terms (ui, vi) are discussed.  
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The Effect of Treatment on the Treated (TT) 

Under the normality assumption and the formulation of Heckman’s 2-step estimator, 

the expression of the mean effect of Treatment on the Treated is: 

 

 

 

              ( )1=∆= iiii D,Z,XE)X(TT          

                           ( ) ( ) ( )
( )*

i

*
i

uui Z
Z

X
γ
γφ

σρσρββ
Φ
−

××−×+−=
01 0101                            (5.31)                           

where 10 , ,D)v,u(Corr iiDD ==ρ . 

Adopting Lee’s (1982) assumptions of ( )1,0~ Nui  and a known, non-Normal distribution 

for vi, TT estimator is expressed as:  

             

 

              ( )1== iiii D,Z,XYE)X(TT       

                           ( ) ( ) ( )[ ]
( )*

i

*
i

uui ZF
ZJ

X
γ
γφ

σρσρββ
−

××−×+−= 2
0101 01

                      (5.32) 

 

In the same way, by assuming that ( )ii vu ,  are jointly Student – td distributed, TT is 

expressed as in equation (5.19). 

 

The Local Average Treatment Effect (LATE) 

In an econometric setting, this parameter can be evaluated by Heckman’s (1979)        

2-step procedure that accounts for selectivity bias. The mean effects under normality and 

non-normality assumptions, respectively, are: 

 

        ( ) ( )( ) ( )γγ iiiiiiiii QuQXEQPQPXEXLATE ′−′′−∆=′′′∆= ≺≺,,,)(  

                         ( ) ( ) ( ) ( )
( ) ( )**

**

0101 01 γγ
γφγφσρσρββ

ii

ii
uui QQ

QQX
′′Φ−′Φ
′′−−′−

××−×+−=          (5.32) 
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and 

     ( ) ( )( ) ( )γγ iiiiiiiii QuQXEQPQPXEXLATE ′−′′−∆=′′′∆= ≺≺,,,)(  

                     ( ) ( ) ( )[ ] ( )[ ]
( ) ( )**

*
2

*
2

0101 01 γγ
γφγφσρσρββ

ii

ii
uui QFQF

QJQJX
′′−′

′′−−′−
××−×+−=    (5.33) 

 

 

The Local Instrumental Variable parameter (LIV) 

The corresponding LIV parameters are calculated as: 

 

              ( ) ( )iiii vV,XEXLIV =∆=  

                           ( ) ( )iiiii vVuuEX =−+−= 0101 ββ  

                           ( ) ( ) ( )iiiiiii vVuEvVuEX =−=+−= 0101 ββ  

                           ( ) ( ) iuui vX ××−×+−=
01 0101 σρσρββ                                         (5.34) 

 

and 

              ( ) ( )iiii vV,XEXLIV =∆=  

                           ( ) ( )iiiii vVuuEX =−+−= 0101 ββ  

                           ( ) ( ) ( )iiiiiii vVuEvVuEX =−=+−= 0101 ββ  

                           ( ) ( ) )v(JX iuui 20101 01
××−×+−= σρσρββ                                 (5.35)                                

 

Heckman and Vytlacil (1999, 2000a) explain the relationships between these 

parameters. Here it is interesting to note that the most general mean effect seems to be 

LIV and all other parameters are average values of LIV but for values of vi lying in 

different intervals.    

Heckman, Tobias and Vytlacil (2000) assess the performance of Heckman’s 2-step 

estimator and compute the mean parameters discussed here under correct and incorrect 

model specification. They obtain sampling distributions of the estimators of different 

treatment parameters using both generated normal and non-normal data from Monte 
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Carlo simulations. They show that different kinds of data, give different estimates of the 

various treatment effects. Then they provide a simple model selection procedure given 

equal number of parameters across the various models. The procedure dictates to obtain 

estimates of the selection-corrected conditional mean functions for a variety of competing 

models and then select the one that minimizes the Sum Squared Residuals (SSR). This 

approach to model selection chooses the model whose conditional mean function 

provides the best fit to the observed data (see also Amemiya, 1980). Formally, one 

chooses the model, which minimizes the criterion: 

 

( ) ( ) ( )( )[ ]∑
=

=−−=−
N

i
iiiiiiiii DZXmDDZXmDY

1

20,11,  

 

where m(Xi, Zi |Di = 1) is the estimated selection conditional mean function in the 

participation state and m(Xi, Zi |Di = 0) is the corresponding estimate of the non-

participation state. The results of the simulations showed that the performance of the 

proposed model selection improves with the sample size n and with the degree of 

selectivity in the model. Earlier, Heckman (1984) had already developed a X2 Goodness 

of Fit test for model specification. 

It is worth noting here that the present econometric literature does not test the equality 

of the above mean differences. The analysis includes only tests for the parameters 

included in each mean estimate of iY . Intuitively, under Assumption 1, a t-test for the 

equality of the selection-corrected means in each case is a plausible test statistic. 

However, either when Assumption 1 is invalid or it is doubtful whether selection bias has 

been eliminated, a t-test cannot be applied. Instead, a numerical, non-parametric method 

(e.g. bootstrap) would yield a more plausible test for the equality of the means.       

 

  

5.12   Calculation of ATE Using the Method of Bounding 

This method is considered by Manski (1989) to estimate an informative bound on 

( )ii XYE . The basic assumption invoked is that, conditional on Xi and on Di = 0, the 
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distribution of Yi is concentrated in a given interval {K0X, K1X}, where K0X ≤ K1X. In 

other words, 

     

             [ ]{ } ( ) XiiiiXiiiXXi KDZXYEKDZXKKYP 1010 0,,10,,, ≤=≤⇒==∈      (5.36) 

 

Taking the switching regression model (2.3), the mean outcome Yi of an observed person 

is: 

        ( ) ( ) ( ) ( ) ( )0,,01,,1 =×=+=×== iiiiiiiiiiii DPXZDYEDPXZDYEXYE     (5.37) 

 

Applying inequality (5.36) to (5.37) results in: 

 

( ) ( ) ( ) ( )iiiiXiiiiii XYEZDPKZDPZXDYE ≤=×+=×= 01,,1 0     

                                                  ( ) ( ) ( )iiXiiiiii ZDPKZDPZXDYE 01,,1 1 =×+=×=≤  

 

Thus the lower bound is the value that takes ( )ii XYE  if in the non-selected 

subpopulation, Yi always equals K0X. The upper bound is the value of ( )ii XYE  if all the 

non-selected Yi 's equal K1X.  

The method of bounding has not been considered extensively in the literature. Timing 

may have played a significant role. In the early 1970’s when this method was developed 

non-parametric regression analysis was just beginning to be formalized by statisticians. 

Preoccupation of researchers with the estimation of wage equations is possibly another 

reason since logYi has no obvious upper bound, although minimum wage legislation may 

enforce a lower bound. Finally, the important limitations of this method in the estimation 

of the bound have definitely played an important role. Manski (1989) refers to these 

limitations and also considers a version of the curse of dimensionality for the bounding 

estimator. 
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5.13   Semi-Parametric Methods 

5.13.1   Maximum Likelihood Estimation 

The perceived inconsistency of the Heckman’s 2-step estimator indicated Maximum 

Likelihood method as the usual alternative in parameter estimation of econometric 

applications. The sensitiveness of this method in small deviations from Assumption 1 

dictates relaxation of the ( )ii vu ,  joint normality assumption.  

The parametric methods on this subject have been described in the previous paragraph. 

They avoid the imposition of joint normality by requiring a known marginal distribution 

for the choice equation’s disturbances.  At this point we present the semi-parametric 

approach to the problem. The strategy focuses to avoidance of the distributional 

assumption for the disturbances by approximating their density function.  

 

 

Gallant and Nychka’s estimator 

Based on ERA model of Phillips (1983), Galland and Nychka (1987) employ an 

estimation strategy to approximate the true joint density for the disturbances, f(ui,vi). 

Using the selection bias model (5.10) – (5.13), the authors do not assume that the primary 

equation is linear. They proposed to take f(ui, vi) to be of the parametric form: 
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where πij denotes unknown parameters of a Hermite polynomial and δ1 and δ2 are 

parameters of interest. Integration with respect to this form of density gives us: 
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By using this formula one can approximate the log-likelihood of equation (5.14). 
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Vella (1998) indicates that the multiplication of a suitably chosen polynomial with the 

normal densities approximates well the true disturbance density. However, if another 

density, apart from normal, is more plausible a priori, it may be substituted for the 

normal. The approximation is improved for large values of K and J. Although Galand and 

Nychka (1987) provide consistency results for their procedure, they do not provide an 

analytical distributional theory. 

Since the estimate of f(ui, vi) must represent a density, some restrictions have to be 

imposed on the chosen Hermite expansion and on values of πij. For this reason the 

Hermite series is in the form of a squared polynomial and the coefficients πij are restricted 

so that the series integrate to one and has zero mean.  

The literature does not include many applications of the Maximum Likelihood method 

in a semi-parametric framework. The implementation difficulties are possibly the main 

reason for this scarcity. However, Melenberg and Van Soest (1993) use this method to 

examine the determinants of the wages of married women, while accounting for market 

work decision, using data from Netherlands. Since jointly normality for the disturbances 

was not a satisfactory approximation for such data because of the tail behavior, the 

authors do not assume a specific distribution for (ui, vi) and approach the problem by the 

semi-parametric method of Galand and Nychka (1987). 

 

5.13.2    Heckman’s 2-step Estimation 

As shown, econometric and sample selectivity models have found interesting 

applications in empirical studies. Apart from ML method, Heckman’s 2-step procedure 

has been applied extensively on evaluation of social programs. In the simplest case this 

estimator leads to adequate results by assuming that the errors are jointly normally 

distributed. Models with parametric distributions however, may be subject to 

distributional misspecifications, which might result in inconsistent estimates. Despite the 

fact that these assumptions can be relaxed by invoking weaker assumptions for the 

parametric form of the joint distribution of errors, recent research efforts focuses in an 

alternative approach. 

Semi-parametric methods have been proposed for the estimation of sample selection 

and self-selection models with discrete choice selection rules, when the analyst cannot 
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specify the distribution of errors. These methods are based on the replacement of 

Assumption 2 with a weaker statement for the disturbances: 

 

Assumption 3 (Index Restriction) 

E(ui|Zi, Di = 1) = g(vi) where g is an unknown function. 

 

Estimation of the primary model under Assumption 3 raises two difficulties. First, it is no 

longer possible to invoke distributional assumptions regarding vi to estimate γ. Therefore, 

Ordinary Least Squares method is not longer an option. Second, one cannot use a control 

function based on distributional relationships of ui and vi to estimate ( )iiii ZXDuE ,, , as 

in Assumption 2. These two problems are confronted separately with the semi-parametric 

estimation strategies described in the following subparagraph.  

 

5.13.2.1   Estimation of the Selection Model 

 Following McFadden (1973, 1975) and Manski (1975), when the binary choice 

probability model is derived from a random utility maximization model, the choice 

probability for one alternative has the form ( )[ ]γiZVF , where V(.) is a utility function, γ 

is a J × 1 vector of parameter representing the systematic component of the utility, Zi is a 

N × J vector of exogenous variables and F[.] indicates the cumulative distribution 

function of the random component of the utility. Based on this specification, Cosslett 

(1983) describes a method of estimating γ by maximizing the likelihood over γ and a 

space that contains all distribution functions without assuming any functional form for 

the distribution F. He proves that γ̂  and F̂  are consistently estimated. To this extend 

Newey (1990) provides a semi-parametric efficiency bound for the binary choice 

(selection) model.  

Matzkin (1992) indicates the possibility to identify binary choice models or binary 

threshold choice models (see Georgescu-Roegen, 1958; Lioukas, 1984) without imposing 

any parametric structure either on the systematic function of observable exogenous 

variables or on the distribution of the random term. This identification result is employed 

to develop a fully non-parametric ML estimator for both the functions of observable 
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exogenous variables and the distribution of the random term. The estimator is known to 

be strongly consistent and a 2-step procedure for its calculation is developed. 

Ahn and Powel (1993) consider a non-parametric regression estimator for the selection 

equation under the assumption that the error term vi is continuously distributed with 

support on the entire real line and is independent of Zi. Similar to Heckman (1979), the 

authors estimate the primary equation in a second step, described in the following 

paragraph. 

Itchimura (1993) constructs a semi-parametric Least Squares (SLS) estimator and a 

weighted SLS (WSLS) estimator of coefficients up to a multiplicative constant for the 

selection equation. Both estimators exhibit N1 -consistency and asymptotic normality. 

A consistent estimator of the covariance matrix is also presented. Since SLS estimation 

does not require specifying a parametric error distribution, the method allows analysts to 

focus on specifying systematic effects of an econometric model and frees them from the 

distributional worries for a broader class of models. 

Finally, Klein and Spady (1993) propose an estimator for the selection equation that 

does not make any assumptions concerning the functional form of the choice probability 

function. The estimator is shown to be consistent, asymptotically Normal and to achieve 

the semi-parametric efficiency bound of Newey (1990). Klein and Spady (1993) also 

consider a generalization of their estimator for the cases of trinary choice problems and 

ordered selection rules.   

 

5.13.2.2   Estimation of the Primary Equation 

The major difficulty on the estimation of the selection bias model (5.10) – (5.13) is the 

fact that one cannot use distributional relationships to estimate ( )1,, =iiii DZXuE . 

Without evaluating the error term, the parameters of the regression model cannot be 

estimated adequately due to selection bias problem. Many authors have studied ways to 

overcome this difficulty. All start by considering Assumption 3 and define the 

conditional expectation of the primary equation as: 

 

                                ( ) ( ) N1,...,i                 ;1,, =+== iiiiii vgXDZXYE β             (5.40) 
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In this relationship it is possible to distinguish an intercept term in Xi from an intercept in 

g(.). For simplicity reasons here we discuss the issue of approximation of function g(.). In 

a following paragraph, we explore some ways to infer about the value of the intercept. 

 

Heckman and Robb’s estimator 

The first suggestion to estimate model (5.40) semi-parametrically is found in 

Heckman and Robb (1985a) who propose a 2-step estimator. In the first step, the 

parameter γ and the propensity score ( )ii ZDP 1=  are estimated non-parametrically. In 

the second step, the function ( ) ( )1,, == iiiii DZXuEvg  is approximated through a 

Fourier expansion: 

                                             ( ) ( )∑
∞

=

′××=
1i

j
iiji Zbvg γλ                                               (5.41) 

 

where bj is the traditional vector of parameters and λi is the inverse Mill’s ratio evaluated 

at γ�Zi . Heckman and Robb (1985a) report consistent estimates for the parameters of the 

primary equation. 

 

 

Powell and Robinson’s estimators 

Powell (1987) exploits the index restriction (Assumption 3) by identifying 

observations by their value of this single index g(Ziγ). That is, if two observations, i and 

s, have similar values for the single index generating selection bias, then it is likely that 

subtracting the sth observation from the ith will eliminate selection bias. Assuming this, he 

uses the index restriction to rewrite the primary equation as: 

 

                                               ( ) N1,...,i                        ; =++= iiii vgXY εβ           (5.42) 

 

Then, the parameter β can be estimated in a number of ways. Powell (1987) eliminates 

the unobservable g(Ziγ) by differencing: 
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( ) ( ) ( )sisisi vgvgXXYY −+′−=− β  

 

and then applies the weights wis that would be close to zero whenever ui was not close 

close to us. The weighted model: 

 

( ) ( ) β′−×=−× siissiis XXwYYw  

 

effectively eliminates the index restriction g(Ziγ) and β can be consistently estimated by 

OLS. 

Robinson (1988) uses an alternative approach. With an estimate of Ziγ and 

conditioning (5.42) on vi, he obtains: 

 

                                          ( ) ( ) ( ) N1,...,i               ; =+×= iiiii vgvXEvYE β            (5.43) 

 

Then subtracting (5.43) from (5.42) and writing: 

 

                                        ( ) ( ){ } N1,...,i                  ; =+×−=− iiiiiii vXEXvYEY εβ                  

 

he estimates both ( )ii vYE  and ( )ii vXE  non-parametrically. Regressing the non-

parametric residuals ( )iii vYEY −  against ( )iii vXEX −  enables him to estimate β with 

OLS. Note that one cannot have a matrix iX  equaling a constant since then 

( )iii vXEX −  = 0 and valuable information is lost since β cannot be estimated. 

Powell’s (1987) and Robinson’s (1988) estimators are connected to each other. To see 

the connection suppose that ( )ii vYE  is estimated by kernel method with a uniform 

density as the kernel. Then, ( ) ∑
∈

− ×=
hIs

jhii YNvYE� 1 where Ih are those values of s = 1, …, 

N that have Xs within ± h/2 of Xi and Nh is their number. It is clear that: 
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                               ( ) ( ) ( )∑ ∑
∈ =

− −×=−×=−
*Is

N

s
siissihiii YYwYYNvYE�Y

1

1                     (5.44) 

 

where wis = 0 if s ∉ Ih and equals 1−
hN  if s ∈ Ih. In the same way ( )iii vXEX −  can be 

replaced by ( ) ( ) ( )∑ ∑
∈ =

− −×=−×=−
*Is

N

s
siissihiii XXwXXNvXE�X

1

1  and obtain Powell’s 

(1987) estimator. 

 

 

Ahn and Powell’s estimator 

Ahn and Powell (1993) also approach the problem of selection bias from Powell’s 

(1987) perspective. The estimation method for β is summarized in a two step-strategy. 

The first step estimates γ non-parametrically while in the second step the estimator of β is 

a weighted instrumental variable estimator of all pairwise differences yi – ys of dependent 

variable on the corresponding pairwise differences xi – xs of regressors. Differences zi – zs 

are used in instruments, these being suitable functions of the conditioning variables        

wi = Ziγ and ws = Zsγ. This estimator is given by: 
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k(.) is, again, a kernel function, h is a bandwidth and ( )ii wZZ ≡  is an instrumental 

variable defined as pq:Z ℜ→ℜ .  
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The paper gives conditions under which the proposed estimator is consistent and 

asymptotically normal. Newey and Powell (1993) consider its efficiency properties by 

calculating its semi-parametric efficiency bound under weak conditions. They result the 

estimator failed to achieve the efficiency bound of Newey (1990). 

 

Lee’s estimator 

Lee (1994) suggests estimation of equation 

 

( ) ( ) N1,...,i                 ;1,, =+== iiiiii vgXDZXYE β  

 

by instrumental variables. Lee’s model also incorporates endogenous regressors in the 

primary equation. Given the structure of the estimator he describes his procedure as semi-

parametric 2-stage Least Squares. To ensure that the estimator has desirable properties, 

Lee employs a trimming function τ(Xi). The estimator is then defined as: 

 

[ ] [ ]Y�X�)X�X�(X�Z�Z�X�)X�X�(X�Z��
LSS ′′′×′′′= −−− 111

2β  

 

where Z� , X� and Ŷ are matrices with typical elements ( ) ( )( ){ }γτ �ZZEZX iiii − , 

( ) ( )( ){ }γτ �ZXEXX iiii −  and ( ) ( )( ){ }γτ �ZYEYX iiii − , respectively. The estimator is shown 

to be asymptotically efficient. 

 

 

Donald’s estimator 

Finally, Donald (1995) considers the prototypical issue of estimation of a sample 

selection model in which heteroscedacity exists. Although heteroscedacity results in 

inconsistent estimates, it is difficult to be tackled without distributional assumptions. For 

this reason Donald develops a semi-parametric estimator where in the first stage he 

assumes that the errors ui and vi are bivariate normally distributed with covariance matrix 
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Σ with diagonal elements 2
uσ  and 2

vσ , and off-diagonal uvσ . From bivariate normality, 

the primary model can be written as: 

 

                                               iiuii XY ξλσρβ +××+′=                                          (5.45) 

 

where, as before, iλ  is the inverse Mill’s ratio evaluated at γ̂iZ  and iξ  is a 

heteroscedastic error term with mean zero and variance: 

 

( ) [ ]2
iiiuuii �ZXV λλγσρσξ +×××−=  

 

 Since λi is bounded away from 0 and ∞ (as is required for the transformed second-stage 

regression to be valid), one can transform model (5.45) into the semi-parametric 

regression form: 
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where the last term is a heteroscedastic error and uC σρ ×=  is an unknown term that 

can be eliminated with the “differencing out method”, discussed by Robinson (1988) and 

Vella (1998), as  
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In this equation, parameter β can be estimated by OLS over the differenced sample given 

that  
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The resulting estimator is proved to be consistent and asymptotically normal.   
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Despite the huge literature in the semi-parametric methods and the extreme popularity 

of the 2-steps procedures, semi-parametric methods have rarely been employed. 

Intuitively, this is partially due to the relative difficulty in the implementation and the 

estimation of the associated covariance matrices required for inference. Newey, Powell 

and Walker (1990) employ a number of 2-steps semi-parametric procedures to real data 

from married women’s hour of work that they compare with 2-step parametric models. 

They find very little difference between the point estimates and conclude that the 

parametric procedures perform well if the conditional mean of the model is correctly 

specified. Thus, in some cases, the regression function appears to be more important than 

specifying semi-parametrically the error distribution. Heckman (1990b) also comments 

that methods simpler than the semi-parametric procedures may be robust after all. 

However, in cases where it is implausible to assume a specific density function for the 

errors, semi-parametric methods are surely essential. 

 

5.13.2.3 Identification of the Primary’s Equation Intercept 

As it was noted before, the intercept in the primary equation is difficult to be identified 

through the above semi-parametric procedures. Most of the above estimators find 

impossible to distinguish an intercept term in Xi from an intercept in g(.) since they 

absorb it into the definition of E(ui|Zi, Di = 1) = g(Zi
΄γ). However, in many cases the 

intercept has economic interest. Heckman (1990b) considers the essentiality of this term 

in the estimation of the Average Treatment Effect or the Effect of Treatment on the 

Treated. He supports that, from the above estimators, only Galland and Nychka’s (1987) 

one produces consistent estimators of the density f(ui, vi) and of the primary’s equation 

intercept because of the strong smoothness and continuity assumptions about the 

distribution of the error terms they pose. In this framework then, one may estimate the 

intercept as: 
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where Xi and β vectors are partitioned into [1: X(1)i] and [β(0): β(1)], respectively and s 

reflects a smoothing parameter. Thus, the basic idea is to get the average value of the 

deviation )(i)(i XY 11 β×−  for observations where the expected value of the errors 

approaches to zero as N goes to infinity.  

 

 

 5.14   Sample Selection Models With Alternative Censoring Rules 
Many authors have considered sample selection modeling and parameter estimation. 

Specifically, parametric models have found interesting applications in several empirical 

studies. The estimators discussed so far have been limited to a dependent variable in the 

selection equation that takes the value zero or one. In other words, so far only sample 

selection models with discrete choice rules have been reviewed.  

In practice, the selection mechanism is not limited to this simple case. Even if any 

kind of dependent variable in the selection equation can be transformed into a binary 

through some threshold, an extended (continuous) form for iD  may reveal additional 

information, not exploited otherwise. Thus, it is interesting to consider a slight 

generalization in the specification of the censoring function determining the selection.  

At this point it is worth discussing sample selection models with alternative censoring 

rules. A general representation can be: 

 

N1,...,i     ;uXY ii
)l(

i =+= β                                                                                     (5.47) 

N1,...,i      ;vZD ii
)l(

i =+= γ                                                                                     (5.48) 

( ))l(
ii DhD =                                                                                                                (5.49) 

( ))l(
iii Y,DjY =                                                                                                            (5.50) 

 

It is obvious that the only difference with the alternative model (5.10) – (5.13) is the 

generic form h(.) of the selection mechanism and the process determining the 

observability of Yi, ( ).j . Various cases of this general model are considered below.  
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5.14.1   Other Tobit Type Censoring Rules 

Tobit models refer to regression models in which the range of the dependent variable 

is constrained in some way. In economics such a model was first suggested in the 

pioneering work of Tobin (1958) who analyzed household expenditures on durable goods 

using a regression model that assumes non-negative expenditures (the dependent variable 

of his regression model). This kind of models as well as its various generalizations is 

known popularly among economists as Tobit or Tobit Type censored models because of 

their similarity to Probit models. Amemiya (1984) gives a complete description of Tobit 

models, the censoring rules that include their estimation methods and their properties. We 

are interested in Tobit censoring in terms of a selection bias model. Tobit Type-II 

censoring has already described in the previous paragraphs. Thus now, we focus attention 

to Tobit-Type III and Tobit-Type IV censoring. 

 

 

Tobit Type-III censoring Rules    

Tobit – Type III is the most commonly considered censoring type. Suppose that the 

dependent variable in the selection equation is partially observed above some threshold, 

let’s say zero. Instead of observing just the sign of )l(
iD  in the estimation process, one 

can also exploit its positive values. An example of this model is Tobin’s (1958) 

expenditure model and Heckman’s (1974) labor supply model. The choice process, 

indicated by h(.), is identified as: 

                                                     

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                                      (5.51) 

and  

                                                            ( )0;i
)l(

ii DIYY ×=                                         (5.52) 

 

where Ii is an indicator function, taking the value one if Yi is uncensored and zero 

otherwise. Note that this model differs from Type-II only in that the values of Di are 

observed when )(l
iD  is positive in this model.    
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Under Assumption 1, the appropriate way to estimate the selection equation is to 

maximize the log-likelihood function 
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over γ, β and 2
vσ  to yield consistent and asymptotically normal estimates γ̂ , β̂  and 2

vs . 

Olsen (1978b) proved the global concavity of LogL in the Tobit model. A standard 

iterative method such as Newton-Raphson always converges to a global maximum of 

logL. 

Under Heckman’s 2-step formulation, estimation of the primary equation in a Tobit 

model demands computation of the correction term: 
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that corresponds to Vella’s (1993) generalized residuals. Here, Ii = 1 when 

0;)l(
ii DD = . The parameters β and C of the primary equation 

 

iiii vCXY εβ +×+=  

 

are estimated adequately with Least Squares procedure. The only difference between this 

method and the one of Heckman’s is that the former manipulates the correction term to 

take into account the extended information in Di.    

Apart from parametric, a number of semi-parametric procedures relax the normality 

Assumption 1. To account for the selection model, Powell (1984, 1986) estimates γ semi-

parametrically, includes the corresponding residuals in the primary equation and uses 

OLS to estimate β. In an alternative approach, Itcimura (1993) develops the Semi-

parametric Generalized Least Squares Estimator (SGLS) to estimate γ.  
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Lee (1994) defines the estimator: 
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where the estimates of expectations can be obtained via kernel smoothing. To implement 

this estimator, a first step estimation of γ is conducted by a procedure described in Lee 

(1992). Under general regularity conditions, the perceived 2-steps estimator is proved to 

be consistent and asymptotically normal. Lee (1992) notes that this procedure does not 

impose any exclusion restrictions in contrast with a semi-parametric estimation of a 

discrete selection model (see Chamberlain, 1986). 

Honore, Kyriazidou and Urdy (1997) also provide two different 2-step semi-

parametric procedures of this model that are applicable under different assumptions. The 

first assumes conditional symmetry on the disturbances of (ui, vi), that is, conditional on 

(Xi, Zi) the disturbances (ui, vi) are distributed like (- ui, - vi). The second estimator is 

based on the idea of pairwise comparisons. Both of them are consistent and 

asymptotically normal under conditional symmetry and independence between the errors 

and the regressors.  

 

 

Tobit Type IV censoring 

At this point it is worth mentioning another Tobit-type selection rule that is proposed 

by Cragg (1971). Cragg assumes that observability of Yi (or equivalently participation 

decision) requires satisfaction of two censoring rules, that is: 

 

N1,...,i     ;uXY ii
)l(

i =+= β                                                                                      (5.54) 

N1,...,i      ;vZD ii
)l(

i =+= 1111 γ                                                                                   (5.55) 

N1,...,i      ;vZD ii
)l(

i =+= 2222 γ                                                                                  (5.56) 

 



 128 

where 
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( )00 21 ;; ii
)l(

ii D,DIYY ×=  

The terms (ui, vi1, vi2) are iid drawings from a trivariate normal distribution. This type of 

censored models are called Tobit-type IV or double-hurdle model and is closely related 

with censoring rules based on multiple indices that will be analyzed in a following 

paragraph. A similar idea is adopted in Deaton and Irish (1982), Blundell and Merghir 

(1987) and Blundell, Ham and Merghir (1987). The estimation procedure is reported in 

Amemiya (1984) and is slightly different from the previous.        

          

 

5.14.2 Multiple Alternatives – Ordered Censoring Rules 

Another commonly encountered censoring rule for the alternative selection bias model 

(5.47) – (5.50) is formulated by defining an ordered choice set. In this case censoring 

function h(.) generates a series of ordered outcomes through the following rule: 

  

;mDD;DD )l(
ii

)l(
ii 10  if  1   0  if  0 ≤=≤∞−= ≺≺  

)l(
iki

)l(
ii DmkD;mDmD ≺≺ 121   if    ...;   if  2 −=≤=  

where mi, i = 1, …, j-1, denotes separation points satisfying m1 < m2 < ... < mj-1. The 

outcomes Yi are ordered as: 

 

0   if   000 =+= iiii DuXY β  

1   if   111 =+= iiii DuXY β  

…                                                                                                                                 (5.58) 

kDuXY ikikiki =+=    if   β  
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where Xi affects the return to each choice (attributes), βik is the vector of parameters to be 

estimated and ui represents the vector of the unobserved error terms. This term allows for 

heterogeneous preferences, so that to affect the return to each choice differently.  

Garen (1984) exploits the ordering in the selection equation with the development of 

a continuous selection model. He considers the case where )l(
iD  is continuously observed 

(Tobit Type-III selection rule) and, under Assumption 1, suggests an appealing 

estimation procedure. He applies this procedure at data from a “return from schooling” 

study. The censoring variable )l(
iD  is the “years of schooling” and is being treated as a 

continuous variable. Obviously, this formulation exploits more information than the 

model with a binary choice variable where one defines Di = 1 if the individual takes 

schooling education and Di = 0 otherwise. 

Garen derives and estimates the model. His most interesting result, similar to Willis 

and Rosen (1979), is twofold. First, expected lifetime earnings influence the decision to 

attend college. Second, those who did not attend college would have earned less than 

measurably similar people who did attend, while those who attend college would have 

earned less as high school graduates than measurably similar people who stopped after 

high school. Willis and Rosen (1979) have called this characteristic relationship as 

“comparative advantage”.  

Vella (1993) considers the same selection rule from a different perspective. 

Analogically to the conventional selection model (5.10) – (5.13), the analyst may observe 

Y1i for a specific value of Di. Let’s say that Di takes values from 1 to k-1 according to the 

interval )l(
iD  belongs to.  Without loss of generality, Yi is observed if and only if              

mk-p ≤ )l(
iD  ≤ mk-l  ⇔  Di = 1. In this framework, relationship (5.52) is of the form: 

 

( )1=×= i
)l(

ii DIYY  

 

Vella studies a general methodology of estimating the selection model (5.47) – (5.50) 

with this selection rule, under Assumption 1. In the first step he estimates γ by Ordered 

Probit (for a description see Appendix 1) and then computes the generalized or Probit 

residuals of Pagan and Vella (1989) for each outcome: 
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and includes them in the primary equation to account for selectivity. The equation of 

interest is then: 

iiii vCXY εβ +×+=  

 

where β and C can be estimated by Ordinary Least Squares.    

To relax Assumption 1, Vella (1993) suggests capturing departures from normality in 

the disturbances ui by powering up the generalized residuals by the index Ziγ and its 

higher powers. Further discussion of this topic is given in Lee (1982).  

 

5.14.3    Multiple Alternatives-Unordered Censoring Rules (Polychotomous model)     

In many applications, ordering in outcomes is not possible. Thus, the above selection 

rule is implausible and an alternative model has to be considered. Extending the work of 

McFadden (1973) on the discrete choice models, Lee (1983) and later Dubin and 

McFadden (1984) developed two separate parametric approaches to deal with selectivity 

bias for the case where individuals are faced with more than two mutually exclusive 

alternatives and they have to choose only one.  

Suppose a simple canonical model with a single outcome and multiple alternatives. 

Let us say that each individual is faced up with M alternatives k = 1, …, M, k ∈ A. For 

each of N observations (individuals), assume that the observed outcome for each k 

alternative, Yk, is modeled as: 

                                                              ikkikik uXY += β                                            (5.60) 

 

The choice model is specified as: 

                                                            ikkik
)l(

ik vZD += γ                                             (5.61) 
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A different parameter vector for each outcome characterizes this model that is known in 

the literature as polychotomous selection model. The variables Xik and Zik are distinct 

vectors of observed characteristics and assumed to be exogenous. The unobserved 

variables (uik, vik) are independently and identically distributed (iid) across k alternatives 

with support ℜM+1, continuous cumulative distribution function (cdf) F and continuous 

probability density function (pdf) f. The marginal cdf’s of ui and vi respectively are F(ui) 

and F(vi) with corresponding pdf’s f(ui) and f(vi).  

 

Lee’s (1983) approach 

For the selection model (5.60) and (5.61), Lee recasts the selection rule (5.48) to 

assume that an alternative s is chosen if and only if: 

 

                                                        )l(
ik,M,...,k

)l(
is DmaxD

sk  1 ≠=
;                                             (5.60) 

 

Then, closely to Vella (1993), he defines a polychotomous variable I to indicate a specific 

alternative and a binary variable Di. In terms of I and Di, s alternative is chosen under the 

following rule: 

                                          siss ZvsI γ−=⇔= ;   ifonly  and if    1D is                    (5.61) 

 

where is
)l(

ik,M,...,ks Dmaxv ε−≡
≠= sk  1

 

Although the selection rule seems well defined now, one observes that in equation (5.61) 

sv  are not independently and identically distributed (iid). Applying translation method an 

iid transformation for vi’s is constructed. Suppose that Jv is some continuous univariate 

cdf. Then the transformed vi is: 

                                                  ( )[ ]{ }iiv
tr
i DMaxHJv 1−=                                            (5.62) 

 

where ( )iii vZFH += γ . The joint distribution of ( )tr
ii v,u  is then: 

 

                                                  ( ) ( )[ ]{ }ivi
tr
ii vFJ,uJv,uF 1−=                                       (5.63) 
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To estimate the primary equation, Lee (1983) limits his analysis to the special case 

discussed by McFadden (1973) where the stochastic part tr
iv  of the selection equation 

(5.59) is assumed to be iid Gumbel (Extreme Value – I) distributed: 

 

                                                ( ) ( )ik
trtr

ik eexpvvP −=≤                                   (5.64) 

As shown by McFadden (1973) and Domencich and McFadden (1975), in this case the 

selection probabilities are computed from: 
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And the distribution function of vs is given by: 
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This is the Multinomial Logit model (MNL) of McFadden (1973). Application of the 

Multinomial model for estimation of selection probabilities as well as of parameter γ is 

the result of the comparison of several latent variables as indicated by formula (5.60). On 

the contrary, in the simple case of ordered outcomes where a single latent variable was 

responsible for the observed outcome, the structure of the model is simpler and the 

appropriate estimation procedure is Ordered Probit.    

Under Multinomial Logit estimation, by assuming that the marginal distribution of uik 

is standard normal N(0, 1) and denoting tr
iv  = Jv = Φ-1 [F(vi)], the 2-step procedure 

requires estimation of: 

                                   ( )[ ] ( ) ikikikkkukkikik n�ZF�ZJXY ++= γγφρσβ 2                     (5.67) 

 

where σuk = √Var(uk), kρ  is the correlation coefficient between uj and tr
kv  and γ̂  is 

obtained by the Multinomial Logit model. OLS procedure provides adequate estimates of 

kβ  and kukkC ρσ ×= . 
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 Dubin and McFadden’s (1984) approach 

The selection rule of the model (5.59) – (5.60) implies that an alternative s is chosen 

when: 

 

Ds = 1 ⇔ D*
s > 0 ⇔ Zsγ + vs > Zkγ + vk ⇔ 

                Zsγ – Zkγ > vk – vs, for k = 1, …M and k ≠ s                                               (5.68) 

 

This formulation considers polychotomous choice model as a model with M – 1 binary 

decision rules with partial observations. In order to estimate the parameters of the 

regression model, one has to correct for the selectivity bias due to that causes E(ui|vi) ≠ 0. 

In this case the correction is expressed as: 

      

                                 ( ) ( ) ( )∫ ∫∞− ∞−
××== 11 c c

iiik
i

iikh
m dvvfu...

vF
vuEλ                           (5.69) 

 

Almost all applications of this approach have modeled F(vi) as multinomial logit. In this 

case the expectations in (5.68) has a closed-form expressions. Specifically, the parameter 

γ of the choice model is estimated then by Logit model. However, any distribution for 

which the expectations in (5.68) exist is admissible, including Multivariate Normal. In 

this case γ would be estimated simply by a Probit model.  

To obtain an estimate of β, the corresponding model is: 

   

                                               ikikkkikik nCXY +×+= λβ                                           (5.70) 

 

In Dubin and McFadden (DM) approach, one has to estimate first the parameter γ by 

using, more often, the conditional logit model. Then, substituting γ with the estimate γ̂  

estimate β and Cj from (5.69) by Least Squares method. This procedure is repeated for 

each variable Yk. Maddala (1983, pages 275 – 278) compares the above two approaches 

and results that the second approach (DM) is more cumbersome. For this reason Lee’s 

method has become popular in applied research with polychotomous selection models. 

On the other hand, we have to mention that Lee’s approach, although simpler, is less 
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robust than DM method since the latter allows for extra parameter flexibility in 

describing selectivity patterns. Schmertmann (1994) shows that the inexistence of a 

restrictive assumption such as (5.62) in DM estimator leads to better estimates of β and γ. 

 

5.14.4   Censoring Rules Based on Multiple Indices 

There are several practical instances where selectivity occurs in terms of several 

sources, rather than just one, as considered until now. This case must be separated from 

the ones described on the ordered and unordered selection rules where one could observe 

or not Yi according to some value of )l(
iD . Here, observability of Yi depends on two or 

more criteria and thus a specific decision and the amount of Yi are not so intimately 

related. This case is described by model (5.54) – (5.56). An illustrative example is 

provided in Maddala (1983).  

Let us assume the simple case where the observability of Yi depends on the value of 
)l(

iD1  and )l(
iD2 . Two crucial features are posed here: 

F1.   Whether the selection model is a joint decision or a sequential decision model. The 

first supposes that )l(
iD1  and )l(

iD2  are defined over the entire set of observations. 

The second restricts the analyst to define )l(
iD2  only for that individuals with    

)l(
iD1 > 0. 

F2.   Whether choices are partially or completely observed. In the first case, one observes 

iD1  and iD2  separately, while in the second he observes directly a combination of 

these two indices =iD )l(
iD1  × )l(

iD2 . 

Most of the papers referred to that kind of censoring proceed to the estimation of the 

corresponding selection model under Assumption 1. However, the generalization made 

by Lee (1982, 1983) is straightforward.  

Estimation of the selection bias model under the different specifications stated (F1 

and F2) is described in Poirier (1980) who works with a joint decision model with partial 

observability, Abowd and Farber (1982) that examine a sequential decision model with 

partial observability and Maddala (1983) who considers a bivariate joint probit model 

with complete observability.  
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Estimation of the primary equation of a selective model under sequential decision and 

complete observability is not referred to the literature. In fact selection bias analysis 

under this framework is more complex than it seems theoretically. If one specifies the 

distribution of )l(
iD2  and estimate γ2 only for those with iD1  = 1 by the Probit method, he 

has the opportunity to examine the self-selection behavior in the second stage where 

people decide whether to participate ( )l(
iD2  > 0) or not ( )l(

iD2  ≤ 0). However, it is not clear 

how one examines the self-selection behavior in both stages. 

The case of multiple indices censoring seems to be plausible in practical situations 

where several factors may affect participation decision in terms of a social program. For 

example, returns from schooling is usually not only determined by the years of schooling 

of each person but also from other factors like: 

9 A college committee decision to accept an applicant for college education, or 

9 Financial difficulties of the student that, after acceptance, may force him to resign 

from the program.  

A returns from schooling study without taking into account these important factors 

may lead in rather misleading results since selectivity is not determined only by one 

factor. On the other hand, a multiple indices approach requires a great amount of data for 

the additional information needed to evaluate the multiple factors and examine their 

affection to outcomes. Intuitively, rich data raise the financial and time costs of the 

evaluation study.  

 

5.14.5   Other Types of Censoring 

Until now, we have focused on two-equation models where the dependent variable in 

the selection equation is censored and in primary equation is continuous. Various 

combinations of the above rules would yield different types of censoring. Here, we 

introduce the case where the selection equation includes a continuous dependent variable 

and the primary equation a censored dependent variable.  

In this framework, the general model can be written as: 
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N,...,i         ;uXY ii
)l(

i 1=+= β                                                                                   (5.71) 

N,...,i            ;vZD iii 1=+= γ                                                                                   (5.72) 

( ))l(
ii YlY =                                                                                                                    (5.73) 

( )ii DhY =                                                                                                                     (5.74) 

 

Smith and Blundell (1986) consider Tobit type-III censoring for variable Yi. Rivers and 

Vuong (1988) study this model under binary censoring (conventional model). In either 

type of censoring single ML estimation of (5.71) will produce inconsistent estimates for β 

due to the endogeneity of Di. Thus, alternative methods have to be considered.  

Vella (1992) examines the above model when the primary equation has a binary 

outcome variable and the selection equation has a dependent variable that is partially 

observed (Tobit Type-III censoring). He estimates the Tobit residuals for the subsample 

corresponding to 0;iD  which simply take the form γ�ZDv� iii −=  where the hats 

denote the Tobit estimates. Then, he estimates the primary equation by Probit over the 

subset, satisfying 0;iD  while including iv  as an explanatory variable. Vella (1998) 

also describes the conditional Maximum Likelihood estimation steps in terms of 

Heckman’s (1978) endogenous variable model by firstly employing the bivariate 

normality assumption for the error terms of equations (5.71) and (5.72). Under 

Assumption 1: 

1. Rewrite (5.71) as iiii
)l(

i v�CDXY δθβ +++=  

2. Obtain OLS estimates of γ from (5.72) and compute the residuals ,ZDv� iii γ−=  

2. Estimate iiii
)l(

i v�CDXY 1δθβ +++=  by Maximum Likelihood where 

( )iiii v�vC −×+= δδ1  is normally distributes with zero mean. The normality is 

retained as iv� is a linear transformation of normally distributed random variables. 

Although these are some general steps to proceed in the case where alternative censoring 

rules are considered, there are several other types of censored models that can be 

estimated, depending on the form of ( ).l  in (5.73), provided they require normality. 

Extension of the relative theory to non-normal case is not referred in the present 

literature.     
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5.15   The E.M. Algorithm Approach 

So far, it has been stated that the evaluation problem is a missing data problem. All 

approaches attempt to solve it by estimating, or better by replacing, the missing 

information using matching methods, randomized experiments or other econometric 

methods. 

An alternative statistical approach that unites a variety of approaches in econometrics 

and statistics replaces missing data, or functions of missing data, with expectations of the 

lost information computed with respect to the available data. This technique applies the 

Expectation-Maximization Algorithm or else EM algorithm of Dempster, Laird and Rubin 

(1977). 

The E step of the algorithm is the one that replaces the missing data, (Y1i | Di = 0) or 

(Y0i | Di = 1), that is the missing information that has to be estimated. By assuming 

parametric functional forms for distributions of unobservables and parametric functional 

forms for behavioral functions the E step replaces the missing data or functions of them 

with its expectations. Then, the M step replaces the functions of missing data by their 

expectations and maximizes the complete data likelihood. Using parameters generated in 

M step, E step is repeated until the algorithm converges to a unique set of parameter 

values. Schematically, E.M. algorithm proceeds as follows: 

 

Figure 5.2: Description of the EM Algorithm 

The E step: Given the current value θ(t) of the parameter vector, the E step computes the expected value of 

the complete data log-likelihood, given the observed data and the current parameters, which is called the 

“objective function”: 

 

( )( ) ( ) ( )( )∫ ×= mtomt dYYYfYlQ θθθθ ,,  

                                                      ( ) ( ){ }toYYlE θθ ,=  

The M step: This step determines θ(t+1), that is the parameter vector maximizing the log-likelihood of the 

complete data (i.e. the complete data log-likelihood). Formally, θ(t+1) satisfies: 

( ) ( )( ) ( )( )ttt QQ θθθθ ≥+1  

One iterates between the E and M steps until the algorithm converges. 
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Under some conditions, specified by McLachlan and Krishnan (1997), the algorithm 

converges to a stationary point, which however, may not be the maximum of the 

likelihood function. This constitutes the problem of local maxima of the EM algorithm. 

In any case, when E.M. converges, estimates of the parameters are obtained. Heckman 

(1990a) provides a complete illustration of this method. Amemiya (1984) enables this 

method to censored Tobit regression models. 

Molenberghs, Bijnens and Shaw (1997) mention that the major drawbacks of the E.M. 

algorithm are its typically slow rate of convergence and the inability to provide 

automatically precision estimates. In the light of these observations, Newton-Raphson 

(N-R) algorithm may be better than the E.M. However, as Meilijson (1989) notes, the 

E.M. algorithm may be more beneficial than N-R in some cases since the latter exhibits a 

tendency to converge to values outside the allowable parameter space. Louis (1982) and 

Meng and Rubin (1991) proposed alternative methods to overcome the limitations of the 

E.M. algorithm.      

 

 

5.16   Identification of the Distribution of Impacts 

As it has been stressed, evaluation of a social program is not limited to estimation of 

structural models and mean parameters. Knowledge of the distribution of outcomes is 

also of great economic interest. Various features of this distribution can be estimated in 

order to attain a complete picture of the benefits from program participation.  

To this extend, Heckman (1990a) provides a theorem for identification of the joint 

distribution of outcomes. Provided that sufficient variation in individuals’ attributes 

exists and that participation is based solely on outcome maximization, he demonstrates 

that ( )iii XDYF 00 , , ( )iii XDYF 11 ,  and ( )ii uuF 10 ,  can be identified non-parametrically, 

but the joint distribution ( )iiii XDYYF 110 ,,  cannot. No arbitrary parametric structure on 

the outcome equations or on the distribution of the unobservables generating outcomes 

needs to be imposed. The relative theorem and its proof are provided in Appendix 2, 

along with a useful generalization of Heckman and Smith (1998). To identify the full 
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joint distribution of outcomes through bounding, the assumption of same dependence 

across quantiles of DiY  have to be adopted. 

 

  

5.17   Discussion on the Non-Experimental Methods 

Similar to experimental estimators, econometric estimators have also been the subject 

of criticisms for many years. Each approach has advantages over the alternative and this 

created a continuous juxtaposition between the experimenters (e.g. Burtless, Holland, 

LaLonde, Rosenbaum, Rubin), which are mainly statisticians, and the econometricians 

(e.g. Heckman, Itchimura, Robb, Smith). Several papers have been based on this subject. 

Here, we provide some discussion on the non-experimental estimators, reviewed in this 

dissertation. 

  

Effectiveness of econometric estimators 

 Several applications have been conducted to compare the effectiveness of the 

experimental against the non-experimental methods. LaLonde’s (1986) and Fraker and 

Maynard’s (1987) ones are the most usually referred to in the literature. These studies are 

witnessed to have a strong influence in promoting the use of experiments to evaluate 

social programs in general, and employment and training programs in particular. The 

relative authors use an experimental evaluation of the National Supported Work 

Demonstration (NSW) as a benchmark against which to compare non-experimental 

estimates. The NSW experimental treatment group is employed in conjunction with 

matching comparison groups to estimate the impact of training. Several commonly used 

non-experimental estimators are then considered and a wide variety of impact estimates 

are obtained, most of which differ substantially from the corresponding experimental 

estimates. Based on these results the authors claim that only experiments provide correct 

estimates since they are based on the indisputable free from bias method of 

randomization. Thus, econometric estimators cannot entirely eliminate selection bias. 

Heckman, LaLonde and Smith (1999) characterize LaLonde (1986) influential study 

as misunderstood. Once analysts define bias clearly, compare comparable people, take 



 140 

into account the unemployment histories of the trainees and comparison group 

individuals, administer them the same questionnaire and place them in the same local 

labor market, much of these bias in using non-experimental estimators is attenuated. It is 

also suggested shifting the emphasis in program evaluation away from specifying 

econometric methods for selection bias and toward more careful construction and 

weighting of comparison groups.  

Experimenters also argue that apart from the academic interest, there is also practical-

policy interest in choosing a particular estimator (experimental or non-experimental). 

LaLonde (1986) produced several non-experimental estimators and then conducted a 

limited set of model selection tests that failed to eliminate the models that produce this 

variability. This failure led him stressing the inexistence of a way to choose among 

competing non-experimental estimators. On the contrary, experiments produce a 

consensus, that is one estimate rather than the bewildering array of econometric 

estimates. This statement constitutes the main criticism against econometric methods of 

evaluation.  

Heckman and Hotz (1989) reanalyze the data and demonstrate that experimental 

claims are somewhat exaggerated. The authors of the pessimistic studies did not perform 

standard model specification tests, reviewed in Heckman and Hotz (1989). When these 

tests are performed, they eliminate all but the non-experimental models that produce the 

inference obtained by experiments. But even when the analyst cannot result in a single 

number (estimator), this does not mean that experiments have to be preferred to 

econometric methods. Heckman and Smith (1995) indicate that appearance of a 

consensus view is a consequence of only one interpretation of the data being given. 

Intuitively, this seems to limit the evaluation analysis.     

Burtless and Orr (1986) criticize an assumption of the econometric methods, that once 

valid estimates from a program are produced these estimates are also valid for all similar 

programs. They claim that it is very dangerous to generalize from the effects of a 

particular combination of education, employment and training services to another. 

Moreover, they consider that it is unclear how one could extrapolate the estimated effects 

of an existing program to a completely new program. Following these well-founded 

statements of the authors, econometricians can similarly argue on the superiority of non-
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experimental method. Since experiments usually produce only one estimate without 

invoking any distributional assumptions, it seems dangerous to generalize this estimate in 

special situations where some specific assumptions have to be considered.  

 

Non-response Bias, Hawthorne Effects and Limited Duration Bias  

Burtless and Orr (1986) claim that several of the experimental limitations also occur in 

econometric studies. Non-response bias and Hawthorne effects can also occur in non-

experimental methods. Specifically, Hawthorne effects are referred to be more serious in 

non-experimental evaluations while Limited duration bias is proven to be present in the 

non-experimental demonstration of CETA program (1973).  

Although these disadvantages may occur in both evaluation methods it is unlikely that 

they have more severe effects in econometric methods. Intuitively, in an experimental 

setting, where participants are informed of being subjects of study, the behavior is 

naturally affected. As for non-response bias, Burtless and Orr (1986) do not mention a 

convincing reason to support the advantage of experiments on this subject.  

 

Choice of a Specific Non-Experimental Estimator 

Holland (1989) indicates that causal inference in nonrandomized studies requires more 

data and more assumptions than in randomized ones. The latter argument constitutes one 

of the main strengths of experiments, namely the absence of distributional assumptions 

for an adequate analysis. He also supports that econometric methods produce a variety of 

estimators from where it is difficult to choose the most appropriate one and the usual 

strategy of the econometricians is to look over the “menu” of estimators, select the 

assumptions that make the most sense for the non-experimental setting at hand and then 

obtain the corresponding estimate. Instead of this naïve approach they could perform a 

sensitivity analysis (see Rosenbaum and Rubin, 1983a) to display the sensitivity of a 

particular estimator on (a) the distribution of ui, (b) the dependence on ui of the 

conditional distribution of Di, given ui and the other covariates, and on (c) the 

dependence on ui of the conditional distribution of Yi, given ui and the other covariates. 

Heckman and Hotz (1989, rejoinder) support that econometric literature has not 

ignored the issues (a) – (c) addressed by sensitivity analysis. Heckman and Robb (1985a) 
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approach all of these issues by assuming different functions for the error terms ui and 

different estimators. They also claim that sensitivity analysis must not be considered as 

an essential tool in evaluation studies. Sensitivity analysis creates the illusion to the 

unwary that robust results are produced under plausible behavioral assumptions. 

However, this kind of analysis is a logical and computational impossibility, because the 

infinite number of possible assumptions that might be made relative to the available data. 

Instead of this, econometrics literature has focused on the identification of participants’ 

impacts with alternative configuration of data and under alternative plausible identifying 

restrictions. 

 

Cost of econometric methods 

Burtless (1995) characterizes experimentation as a very expensive evaluation method. 

Experiments usually consume a great deal of real resources, especially in comparison 

with econometric analysis of existing data sources. However, this is not always true. As a 

convincing argument we pose that collection of high quality data entails great financial 

costs. Existing general survey data, which are inexpensively obtained, often contain 

either too few participants or non-participants, or contain too little information on 

individuals’ characteristics. This information is, naturally, important for conducting better 

non-experimental evaluations and is usually obtained only by collecting costly new 

survey data.  

 

Estimation of the conditional means 

An apparent advantage of non-experimental methods over experimental ones is that 

the latter can estimate only one mean impact (e.g. effect of treatment on the treated), 

given one randomization is implemented. Estimation of additional mean parameters on a 

study can be conducted only by econometric methods that increase the overall cost of the 

study.  

Furthermore, it is known that, by design, social experiments balance the bias between 

treatment and control group and eliminate them by the subtraction in estimating the TT 

parameter. Suppose that an analyst has the following structural models of treatment and 

control group persons: 
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( ) ( )iiiiiiiii ZXDuEXgZXDYE ,,1)(,,1 00000 =+==  

( ) ( )iiiiiiiii ZXDuEXgZXDYE ,,1)(,,1 111111 =+==  

 

Social experiments does not allow to separately identify the structure of g0(Xi) and g1(Xi) 

from the conditional error terms since bias and dependence between iu  and iv  are not 

eliminated, causing E(ui|vi) ≠ 0. Specific assumptions have to be invoked for this 

identification, posed only by econometric methods.  

 

At this point it is worth indicating that, as Heckman, Smith and Clements (1997) has 

proven, selectivity is neither the main nor the only type of bias in evaluation studies. 

Particularly, an alternative kind of bias, not encountered in the present thesis, arises due 

to measurement errors in the binary variable Di when misclassification in the states Di= 0 

and Di = 1 occurs. Skinner (1998) proposes a number of alternative estimators to reduce 

misclassification bias that considers of great importance. Based on the measurement 

error model of Chua and Fuller (1987) he suggests inference procedures to adjust for 

measurement errors.    
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