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Chapter 4 

Statistical Approaches to the 

Evaluation Problem: Matching Methods 

 

 
4.1    Introduction 

The problem of selection bias is the central issue in modern microeconometric 

studies. This bias occurs from two, not necessarily mutually exclusive, reasons; selection 

on observables and selection on unobservables. The former type of selectivity implies 

that persons with specific observable characteristics tend to participate in the program. A 

straight comparison of outcomes between participants and non-participants, then, yields 

biased estimates unless specific econometric methods are applied. Such an appealing 

method is the method of Matching. 

 

 

4.2    The idea in Matching Methods  

 Matching is a widely used method of evaluation in statistics that it was first 

conducted by Fechner at 1860 in agricultural studies. In the late 1970 and early 1980, it 

was extensively applied to the evaluation of job training programs.  

Rubin (1973a), in the discussion about matching estimators, supposes that analysts 

have access to a set of conditioning variables Ti that represent attributes of participants 

and non-participants, decomposed, as shown in Chapter 2, into (Xi, Zi). In this chapter, let 

us suppose for reasons of simplicity, and without loss of generality, that Xi = Zi and thus 

use only the term Xi on all respective formulas. Matched sampling attempts to compare 

participants with “similar” non-participants with respect to the conditioning variables 
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(attributes) measured on all subjects. The contrast of participants’ outcomes (Y1i) to 

“comparable” non – participants’ outcomes (Y0i) gives the parameter of interest. Since 

matching is conducted in terms of the observable characteristics of individuals, matching 

estimators estimate consistently the causal parameters under selection on observables 

only. Rosenbaum and Rubin (1985) apply this method to data from a Danish cohort 

study. In order to evaluate the usefulness of a particular treatment, they compare the 

outcomes of a number of persons who chose to receive treatment (participants) with 

similar non-treated (non-participants) in terms of observable characteristics, such as age, 

sex and socioeconomic status. Intuitively, they assumed that treatment status among 

persons depended only on these observable characteristics. If another factor affected the 

treatment status, the analysis would not yield free from selection bias estimates.   

Intuitively, this idea is closely related to the idea of randomized experiments to the 

solution of the evaluation problem. However, treatment is not assigned by randomization 

but is received by all participants. Matching emulates randomization in the following 

way: under some conditions, matched sampling conditions on participants’ attributes Xi 

to generate a “comparison” group of non-participants. Then, a simple difference of the 

relative outcomes for each person, conditional on Xi, estimates adequately ( )1, =∆ iii DX . 

That is, due to the similarity in the characteristics of the matched individuals, we may 

compare them as if we could compare the outcomes of a single participant (Di = 1) 

observed at both states (treatment and non-treatment), simultaneously. In this sense Xi 

can be characterized as a balancing score. 

 

Definition 4.1: Balancing Score 

A balancing score, b(Xi), is a function of the observed covariates Xi such that the 

conditional distribution of Xi given b(Xi) is the same for the participants (Di = 1) and non- 

participants (Di = 0).  

 

In this framework b(Xi) = Xi is a balancing score. More interesting balancing scores are 

the particular functions of Xi, mentioned in paragraph 4.4. 
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4.3   Conditions of Matching 

Dawid (1979) provided the conditions that make the matching estimator a useful tool 

for an econometric analysis.  

 

1st condition 

(C - 1): ( ) 1)1(0   and   , 10 ≺≺ iiiiii XDPXDYY =⊥   

 

More formally, participation variable Di and response (Y1i, Y0i) are conditionally 

independent given Xii. Rosenbaum and Rubin (1983a) called condition (C - 1) strong 

ignorability2 condition for Di given the vectors of covariates Xi. Condition (C - 1) 

implies: 

)1(),1( 10 iiiiii XDPXYYDP ===  

 

so the probability of selection depends only on observed (by the researcher) 

characteristics, termed in the literature as observables.  

When the strong ignorability condition holds, one can generate the marginal 

distributions of the counterfactuals: 

 

 ),0(   and   ),1( 10 iiiiii XDYFXDYF ==  

 

from the matching (comparison group) persons. From the dataset one can also retrieve: 

 

 ),1(   and   ),0( 10 iiiiii XDYFXDYF ==  

 

However, the joint distribution of ( )10 ii Y,Y , ),,( 10 iiii XDYYF  cannot be estimated without 

further restrictions.  

                                                           
2 The model is ignorable if the inequalities in the second relationship of condition (C-1) are not strict. If D 
is strongly ignorable then it is also ignorable, but the converse is not true. 
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If assumption C-1 is valid we can use non-participants to measure what participants 

would have earned had they not participated, provided we conditioned on the variables 

Xi. This is true since the independence of Y0i from the participation state given Xi, implies 

that: 

( ) ( ) 0,0,1)( 00 ==−== iiiiiii XDYEXDYEXB  

 

To ensure that this assumption has empirical content, it is also necessary to bound 

participation probability in order to make the comparison. More specifically, if for some 

Xi, P(Xi) = 0 or P(Xi) = 1, one could not use matching conditional on those Xi values to 

estimate a treatment effect. Persons with such characteristics either never receive 

treatment (thus are never observed as participants), or always receive treatment and hence 

they are never observed as non-participants, so matches from both Di = 0 and Di = 1 

distributions cannot be performed. This is exactly the idea of the 0 < P(Di = 1| Xi) < 1 

assumption. Heckman (1990a) proves the above argument in a mathematical way.   

When (C - 1) assumption is invoked, it is possible to construct the “treatment on the 

treated” parameter, ( )iii XDE ,1=∆ , or the effect of “treatment on the non-treated”, 

( )iii XDE ,0=∆  and estimate them adequately with the method of matching. 

Nevertheless, the issue of interest is the matching measures that have to be performed to 

obtain adequate estimates of the above parameters. 

 

 

4.4    Matching Measures 

Let us denote with Y1i the outcomes of participants and with Y0i the outcomes of the 

comparison group members. Furthermore, assume that I0 and I1 denote the set of indices 

for non-participants and participants, respectively. To estimate the treatment effect for 

each participant i ∈ I1, outcome Y1i is compared to Y0i of an appropriate, “similar” person 

j ∈ I0 in the non-participation state. Matches can be constructed on the basis of the 

observed individuals characteristics. The difference in those outcomes is considered as a 

program evaluation measure.  
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Although it seems simple in theory, practically it is often difficult to conduct matching 

on the basis of Xi variables. The practical difficulties vary with the situation. For 

example, Rosenbaum and Rubin (1985) are referred to a comparison of the economic 

adjustments of boys who completed high school with boys who dropped out. Starting 

with reservoirs of 671 and 523 boys relatively, the analyst ended with samples of size 23 

after matching on six major variables. This problem is mentioned by Cochran (1965) as 

the curse of dimensionality. That is, even with samples of typical size, when the 

dimension of Xi is high (that is many Xi’s coordinates) matching on Xi is very difficult. 

Therefore, more easily handled variables have to be defined in the conditioning set. 

Rosenbaum and Rubin (1983a) gave an appealing solution to this problem. They 

demonstrate that matching can be performed on “propensity score”, ( ) iii pXDP == 1 , 

instead of Xi. When condition (C - 1) is hold, then: 

 

                                              ( ) iiii pDY,Y ⊥01   and 10 ≺≺ ip                               (C′ - 1)  

 

also holds. Conditioning on ip  not only produces conditional independence but also the 

construction of the desired counterfactual conditional mean ( )iii p,DYE 10 =  requires 

only: 

( ) ( ) ( ) 001 00 ==−== iiiiiii p,DYEp,DYEpB  

 

which is implied by the independence property of (C′ - 1). 

 In this way, exact matching on ip  will tend to balance the Xi distribution in the 

participants and non-participants groups and make them comparable for further analysis. 

Therefore ip  can be characterized a balancing score and the following theorem is 

constituted:  
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Theorem 4.1 

 Suppose treatment assignment is strongly ignorable and b(x) is a balancing score. Then 

the expected difference in observed responses to the two treatments at b(x) is equal to the 

Average Treatment Effect at b(x), that is: 

 

( ){ } ( ){ } ( ){ }iiiiiiiii XbYYED,XbYED,XbYE 0101 01 −==−=  

 

This theorem is applicable when b(Xi) = pi (see Appendix 2, Corollary 4.1). From this 

point of view, the dimensionality problem is reduced to matching in one dimension. 

Matching on the propensity score seems to be an appealing solution.  

Heckman, Itchimura and Todd (1998) examine the above argument from a different 

perspective and produce controversial results. Since Rosenbaum and Rubin’s (1983a) 

theoretical results are based on strong ignorability conditions and ip  is assumed to be 

known rather than estimated, several limitations occur in practice where, indeed, ip  have 

to be estimated. Specifically, when comparing the efficiency of the estimators: 

 

{ } { } { } { }iiiiiiiiiiii p,DYEp,DYE   and   X,DYEX,DYE 0101 0101 =−==−=  

 

neither is proved to be more efficient than the other. Three arguments is worth 

mentioning: 

 

1. Strong ignorability conditions: Condition (C - 1) or (C′ - 1) is overly strong for the 

estimation of the mean effect of treatment on the treated or any other evaluation 

parameter. A weaker condition of the form: 

iiiiii pDYXDY ⊥⊥ 00 or       

which implies that 

 

)p,DY(E)p,DY(E   and   )X,DY(E)X,DY(E iiiiiiiiiiii 0101 0000 ======  
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it suffices to estimate ( )iiii p,DYYE 101 =− , since one can recover the counterfactual 

mean ( )iii p,DYE 10 =  from the data of non-participants. Note that condition (C′ - 1) 

does not rule out the dependence of Di on Y1i or on i∆  given ip . 

 

2. Comparing estimators when pi is known: From the perspective of bias, matching on 

ip  is better in the sense that it allows √N – consistent estimation of the Treatment on 

the Treated matching estimator for a wider class of models than in possible if 

matching is performed directly on Xi. However, from the perspective of variance of 

these estimators, the asymptotic variance of )( p
i∆  is not necessarily smaller than that 

of )( X
i∆ .  

 

3. Comparing estimators when ip  is estimated: The propensity score is usually 

estimated either parametrically or non-parametrically. In the parametric case, under 

some regularity conditions, the selection bias function for ip�  is zero. However, when 

ip  is estimated non-parametrically two problems occur. First, the curse of 

dimensionality is present. Second, the smaller bias that arose from matching on a 

known ip  no longer holds if true estimation of ip  is a d-dimensional non-parametric 

estimation problem where d > 1. As far as the asymptotic variance of the estimators 

concerns, it increases under any method of estimation of ip .  

 

At this point it is worth referring the paper of Heckman, Itchimura and Todd (1997) 

who, in an application to JTPA data, estimated the propensity score in a semi-parametric 

framework. They decomposed the conventional measure of evaluation bias into 

components. Three components are described. The first components B1 arose because of 

non-overlapping support. For some participants there are no comparable non-participants. 

The second component B2 arose from different distribution of Xi within the two 

populations. The third component B3 reflects the differences in outcomes that remain 

even after conditioning on observables or on ip , and is the well-known selection bias 
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component. Their analysis showed that the first two components are the most significant 

ones in the sense that they contribute the most to the total bias. After accounting for these 

sources, B3 is statistically insignificant different from zero. Based on the hypothesis of 

selection on observables, this evidence suggests that simply by matching on ip  or a 

different balancing score does not eliminate total bias but rather selection bias under 

some conditions. The largest sources of bias are eliminated, provided the evaluation 

parameter is estimated over a region of common support.       

These arguments prove that neither matching on ip  nor matching on Xi is an optimal 

solution in the sense that they do not produce efficient estimators. However, if the 

question is what an analyst can do, in practice, in order to solve the evaluation problem 

through matching, based on the above arguments we would suggest to match on the 

probability of participation and estimate it parametrically by using an appropriate logit 

model: 

)DX(P)D(P)DX(P)D(P
)DX(P)D(P

)XD(Pp
iiiiii

iii
iii 0011

11
1

=×=+=×=

=×=
===  

 

Alternatively, one may manipulate the above equation to obtain the odds ratio: 

 

( ) 





−≡
i

i
i p

plogXq 1  

 

Either estimator can perform matching. Rosenbaum and Rubin (1985) demonstrate that 

matching in terms of ( )iXq  may be preferable in order to “avoid the compression of the 

ip  scale near 0 and 1 and, moreover, ( )iXq  is more nearly normally distributed”.   

 

 

4.5    Matching Estimators 

Generally, for each observation i in the participant sample, a weighted average of 

comparison sample observations is formed to estimate the effect of treatment to this 

observation :     
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                                                   ∑
∈

×−
0

10 0,1 ),(
Ij

jNNi YjiWY                                             (4.1) 

where ),(
10 , jiW NN  is usually a positive valued weight function, defined so that  

                                                






 ∈
=

otherwise        0

Aj if         1
),(

i

, 10
jiW NN  

and N0 and N1 denote the number of individuals in I0 and I1, respectively. Several 

matching estimators have been proposed that exploit (C - 1) or (C′ - 1). They differ in the 

weights attached to members of the comparison group and the metrics that are used to 

obtain the match. Below we review the most common ones.  

 

Nearest Available Matching on the Propensity Score. 

In this method which was studied by Rubin (1973b) a nearest-neighbor algorithm is 

applied on the propensity score. Participants and non-participants are randomly ordered. 

Then, the first participant is matched with the non-participant having the nearest q(Xi). In 

mathematical terms, denoting by i a participant and by j a non-participant define Ai such 

that only one j is selected according to the rule: 

 

                                              
{ }

( ) ( )[ ]




 −=

∈ jiN,...j

NA
i XqXqminjA

c1
                                   (4.2) 

 

The effect of treatment on the treated for each person, as this parameter has been defined 

in paragraph 2.4, is calculated as: 

 

                                ( ) ( )∑ =
×−×==∆ 1

101 01
1

11 N

i iN,Niiii Y)j,i(WY
N

)D,Xq(E              (4.3) 

 

Matched persons are removed from the list of participant and non-participant persons and 

the process is repeated for the remaining unmatched individuals. 
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Mahalanobis Metric Matching Including the Propensity Score. 

Mahalanobis metric matching has been described by Cochran and Rubin (1973). 

Again, in a non-experimental framework, participants and non-participants are randomly 

ordered. The first participant is matched with the closest non-participant in terms of the 

Mahalanobis distance: 

 

( ) ( ) ( ))X(q)X(q)X(q)X(q)X(q),X(qD ji
T

jiji −×Σ×−= −1  

 

where 1−Σ  is the sample covariance matrix of ( ))X(q)X(q ji − in the non-participant 

reservoir. A non-participant j is selected using the expression: 

 

{ }
( )





=

∈
)X(q),X(qDminjA jiN,...j

MM
i

c1
 

 

The mean effect of treatment on the treated is calculated then by (4.3). 

 

Nearest Available Mahalanobis Metric Matching Within Calipers Defined by the 

Propensity Score. 

An extension of Mahalanobis Metric Matching on ( )iXq  was developed by Althauser 

and Rubin (1971) who define that the first participant i is matched with a non-participant 

j for whom: 

                                          
{ }

( )[ ]




=

∈
c)X(q),X(qDminjA jiN,...j

MMc
i

c

≺
1

 

 

where c is a pre-specified tolerance known as caliper. As before, the mean effect of 

treatment on the treated can be estimated by equation (4.3). Cohran and Rubin (1973) 

provide a method to determine caliper’s width. In the extreme case where no matching 

results within the caliper, the analyst has to match persons with simply the closest q(Xi) in 

the sense of the Mahalanobis distance.  

Nearest available Mahalanobis metric matching within calipers defined by the 

propensity score is a combination of the two previous methods. Applications showed that 
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it is better than the first “in that it yields fewer standardized differences” while it is also 

better than the second “in controlling the difference along the propensity score” (see 

Rosenbaum and Rubin, 1985). 

 

Kernel matching 

Another appealing way of matching can be derived by using kernel estimators. Kernel 

matching is an alternative method that manipulates the entire comparison sample to 

match on each participant. More specifically, instead of matching each participant with a 

specific non-participant (the closest one respectively to a measure), this method uses a 

weighted average for all non-participants as comparison units. Specifically, unlike the 

above estimators, kernel matching defines: 

 

{ }
∑

=∈

=

0

, ),(
10

iDk
ik

ij
NN K

K
jiW  

where ( )




 −=

0N

ki
ik

XXKK α  is a kernel that downweights distant observations and 

0Nα is a sequence of smoothing parameters (bandwidth) with the property that 

0lim
0

0

→
∞→ NN

α . The impact of treatment on the treated, usually estimated in a particular 

domain XS ∈ X, is: 

                                  ==∆ ),1( iii XDE








×− ∑∑
∈∈ 0
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1

10 0,1, ),()(
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jNNi
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where different values of )(
10 , iw NN  may be used to select different domains XS or to 

account for heteroscedacity in the treated sample. Heckman, Itchimura and Todd (1997) 

develop an asymptotic distribution theory for kernel-based matching estimators. This 

theory covers both the cases of a known propensity score and of an estimated one. 

Furthermore, they demonstrate that conventional functional form restrictions (exclusion 

restriction and additive separability) invoked in econometrics may improve the impact 

estimates obtained from kernel matching. Upon this finding they formalize an alternative 
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approach that is known in the literature as local-linear matching and yields smaller 

variance for the resulted matching estimator. However, its efficiency does not necessarily 

increases.  

Heckman and Smith (1998) and Heckman, Itchimura, Smith and Todd (1998) describe 

the construction procedure of a kernel estimator of the counterfactual outcome for 

participant i. Using all the comparison group observations, they run a weighted regression 

with jY0  as the dependent variable. The regression contains only an intercept term and 

the estimated intercept is the kernel estimate of the counterfactual outcome for participant 

i. 

Relatively to the nearest neighbor matching, kernel matching reduces the variance of 

the matching estimate by making use of information from additional non-participant 

observations. At the same time though, it increases the bias in small samples because the 

additional observations are more distant, in terms of participation probabilities, from the 

observations being matched.  

 

 

4.6    Other Methods 

Apart from matching, other methods have been also suggested for the construction of 

the desired counterfactual mean, ( )iii X,DYE 10 = , to solve the evaluation problem. These 

methods are briefly outlined below. 

 

 

The method of Subclassification. 

This method, referred in Cochran (1965), attempts to gain most of the advantages of 

matching with less expenditure of time. Suppose we have data-lists from a population of 

participants and from a population of non-participants, including their outcomes Y1i and 

Y0i respectively and a vector Xi of attributes for each person. Subclassification stratifies 

each population into subclasses by the values of Xi. Within a given subclass, samples of 

the same size are drawn from each population, but are not individually matched. Instead 
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for the calculation of the mean effect of treatment on the treated the usual average 

estimator is applied: 

 

                  ( ) ( ) ( ))()()(0)()()(1)()()( ,1,1,1 kikikikikikikikiki XDYEXDYEXDE =−===∆  

 

where k refers to a specific subclass. The overall mean effect of treatment on the treated 

is: 

 

                ( ) ( ) ( ))()()(0)()()(1
1

,1,11,1 kikikikikiki

N

kk
iii XDYEXDYE

N
XDE

k

=−=×==∆ ∑
=

 

 

where Nk denotes the number of subclasses. In this approach ( )iii XDE ,1=∆  is free from 

bias due to differences between means of Xi in different subclasses. Nevertheless, some 

bias may remain from variation of Xi within subclasses since subclasses will not be 

homogeneous in Xi. 

Rosenbaum and Rubin (1983a) indicate the major problem of subclassification 

according to which as the number of confounding variables increases, the number of 

subclasses grows dramatically. In other words they constitute the dimensionality problem 

for subclassification. As a solution they suggest subclassification on the propensity score 

and establish a corollary based on theorem 2, under which subclassification on ip  obtains 

an unbiased estimator (see Appendix 2, Corollary 4.2).  

 

 

The method of covariance adjustment 

This method, also described in Cochran (1965), consists of conducting a regression of 

Yi outcomes on the various Xi attributes for participants and non-participants separately. 

The samples of participants and non-participants in which the regressions are performed 

may be matched or random. Then, by adjusting ( )iii X,DE 1=∆  to remove the effects of 

regression, one can compute the mean effect of treatment on the treated. Rosenbaum and 
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Rubin (1983a) provide a corollary that consecrates the covariance adjustment on a 

balancing score, like the propensity score ip  (see Appendix 2, Corollary 4.3). 

 

 

The econometric procedure of Barnow, Cain and Goldberger (1980) 

This method produces a regression estimator that exploits condition (C – 1) in a linear 

regression setting. It assumes that Y0i is linearly related to observables Xi and an 

unobservable u0i, so that: 

( ) ( )iiiiiii XDuEXXDYE ,1,1 00 =+== β  

 

so that ( ) ( )iiiii XuEX,DuE 00 0 ==  is linear under Xi. Controlling for Xi via linear 

regression allows one to identify ( )iii X,DYE 00 =  and thus, from the conditional 

independence assumption, ( )iii X,DYE 10 = . In this way the desired counterfactual mean 

is obtained.  

Heckman, LaLonde and Smith (1999) describe the above method. They explain that 

its advantage lies on the parsimonious usage of the available data and therefore 

constitutes an alternative to matching on the propensity score. However, its major 

limitation is that it discards a major advantage of the matching methods because it forces 

the investigator to make arbitrary assumptions about functional forms of estimating 

equations. Moreover, in practice, users of this method do not impose a common support 

condition in generating the estimates obtained from the method. When the distribution of 

Xi is different in (Di = 0) and (Di = 1) samples, the comparability is only achieved by 

imposing linearity and extrapolating over different regions. 

It is obvious, finally, that this last procedure is closely related to the covariance 

adjustment method in that they both use regression of Yi’s on Xi’s to cope with the 

evaluation problem. Although it seems that they share the major limitation of arbitrary 

functional assumptions, they differ in an important point. Covariance adjustment method 

does not impose the linear relationship of Yi on Xi. As Rubin (1979) comments the 

response variable Yi (outcome) may be regressed nonlinearly on Xi or sophisticated 
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Bayesian and empirical Bayesian methods can be performed over a variety of nonlinear 

models for the response surfaces.           

 

 

4.7    Identification of the Impact Distribution 

In the context of an evaluation study, estimation of the distribution of outcomes is of 

great importance for the analyst. However, the inability to observe simultaneously Y0i and 

Y1i for each person does not allow us to gain insight on several useful features and 

different interpretations of the program impacts. This limitation is also present in 

matching methods. 

Similarly to the randomized social experiments, matching can easily evaluate the 

marginal distribution of outcomes ( )iii X,DYF 111 =  and ( )iii X,DYF 000 =  from the 

available data. Though, estimation of the joint distribution of outcomes ( )iiii XD,Y,YF 01  

is not a simple task. 

A common feature of experimentation and matching is the set of assumptions 

imposed for the identification of ( )iiii XD,Y,YF 01 . Specifically, by assuming the common 

effect model for the matched persons, one can easily derive the joint distribution of 

outcomes, as described in paragraph 3.7.1. Yet, in the more general case of 

heterogeneous preferences, the experimental bounding approach can be adapted to 

matching. To obtain informative bounds, one has to assume the same dependence across 

the different quantiles of Y0 and Y1 for the matched persons.  

In addition, since matching is based on observed information on sampled individuals, 

it can be stated that participants’ statements about ex-post expectations of the program 

impacts is useful in determining the joint distribution of outcomes. Participants have 

information not available to external program evaluators on issues such as certain 

components of the cost of program participation or the value of outcomes by participant 

relative to their cost. Participants’ self-reports, in most cases, lead to more informative 

data about Y0i and Y1i and as a result to a better estimation of the joint distribution of 

outcomes.       
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4.8    Discussion on Matching  

Matching is a widely used method of evaluation. It is based on the idea of contrasting 

the outcomes of program participants, Y1i, with the outcomes of “comparable” non-

participants, Y0i. In this way it can be thought as a substitute for experiments. By aligning 

the distribution of observed characteristics on the Di = 0 population with that in the Di =1 

population, matching mimics the basic feature of the randomized data. The only 

difference is that, unlike randomization procedures, it uses econometric methods to 

produce a comparable group of non-participants, termed as comparison group.  

Several important authors have studied the method of matching either theoretically or 

practically. Cochran and Rubin (1973) summarize the work on the efficacy of univariate 

pair matching procedures. Rubin (1979) applies matching techniques at data from a 

Monte Carlo simulation. He studies the nearest available pair matching and the nearest 

available pair matching based on Mahalanobis distance and compares these approaches. 

He points out that if the distributions of Xi diverge widely, none of the above methods can 

be trusted to remove all, or nearly all, the bias. Rosenbaum and Rubin (1983a) suggest a 

solution that removes substantial selection bias. That is matching on ip  instead of Xi. 

However, as Heckman, Itchimura and Todd (1998) mention this is effective only when 

ip  is known or at least estimated parametrically. In both situations, though, the variance 

as a choice criterion between matching on Xi or ip  indicates that “nothing is absolutely 

true”. 

 Rosenbaum and Rubin (1983a, 1985) develop a theory of matching methods and use 

real data from a Danish cohort to support it. They mention that in many cases is 

unprofitable to conduct experiments instead of matching since the costs of experiments 

are high. Matching can give adequate results free from selection bias in a smaller cost.  

  On the other hand, Heckman and Smith (1998) argue that the major limitation of 

non-experimental matching compared to randomized experiments is that the latter 

guarantees that: 

( ) ( )0111 ===== r,DXSupportr,DXSupport iiii  
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while in the former this is not always satisfied. The inability to find comparable 

comparison group members for program participants is a major source of bias for the 

matching estimator.   

Heckman, Itchimura and Todd (1997) outline the main problems an analyst is faced 

with when applying matching methods:   

• Matching on measured characteristics available on a typical non-experimental study 

is not guaranteed to produce a truly comparable group of non-participants like 

experiments do. Even if strong assumptions are invoked, these assumptions will be 

inconsistent with many economic models of program participation in which agents 

select into the program on the basis of unmeasured components of outcomes 

unobserved by the researcher. 

• Even if a valid comparison group can be found, the distribution theory for the 

matching estimator remains to be established for continuously distributed matching 

variables Xi. 

• Matching cannot be applied in the situation where the selection occurs on 

unobservables. 

• Matching is a data-hungry method. With a large number of conditioning variables, it 

is easy to have many cells without matches. This makes the method impractical or 

dependent on the use of arbitrary sorting schemes to select hierarchies of matching 

variables. 

 

Despite those pessimistic comments, matching has been applied extensively by 

statisticians and economists who, in several situations, have produced plausible and 

interesting results. An illustrative example is the work of Barron, Black and Loewenstein 

(1989) who analyze data of workers’ payments under different amounts of on-the-job 

training. They find that workers pay part of their on-the-job training costs by accepting a 

lower starting wage and waiting for a higher future wage after the completion of the 

training. However, the relationship “higher trainings usually means lower starting wage” 

that resulted earlier studies of human capital, is not verified. The authors have also found 

that in more demanding positions, employers spend more time per applicant during the 
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screening process and, on the average, they see more candidates. Finally, they concluded 

that wage growth and productivity growth are positively related to on-the-job training. 

Barron, Berger and Black (1997) also conduct matching methods in order to compare 

various measures of on-the-job training. They establish that informal training is more 

often applied than formal training. Moreover, informal training is measured as accurately 

as formal one while the effect of training is found to be underestimated in several studies 

due to measurement errors. 
 

      
 
 


