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APPENDIX 2 

Theorems – Corollaries  

 

Identification Theorem for the Joint Distribution of Outcomes 

Let outcomes Y1 and Y0 be written as functions of observed variables X and 

unobserved variables u1 and u0 respectively: 
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where X1 (a k1-dimensional vector) and X0 (a k0-dimensional vector) are variables unique 

to g1 and g0 respectively and Xc (a kc-dimensional vector) includes variables common to 

the two functions. The variables u1 and u0 are unobserved from the point of view of the 

econometrician. The Roy model assumes that selection into the program depends only on 

the gain from the program, that is an individual participates iff: 

 

( ) ( ) 0,, 01001101 ;uuXXgXXgYY cc −+−=−=∆  

 

Assuming that F(u0, u1) denotes the joint distribution of (u0, u1), Heckman and Smith 

(1998) state the following theorem: 

 

Theorem 

Let Y1 = g1(X1,Xc) +u1 and Y0 = g0(X0,Xc) +u0. Assume 

(i) (u0, u1) ⊥ (X0, X1, Xc) 

(ii) D = 1(Y1 ≥ Y0) 

(iii)(u0, u1) absolutely continuous with Support(u0,u1) = R1 × R1 

(iv) For each fixed Xc 
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( ) 1100 X allfor   :,
0

RRXXg kc →  

( ) 0111 X allfor   :,
1

RRXXg kc →  

( )( ) 1c1100 ,X allfor   ,, XRXXXXgSupport cc =  

( )( ) 0c1011 ,X allfor   ,, XRXXXXgSupport cc =  

( ) 1c1010 ,X allfor   )(, XRXSupportXXXSupport c ==  

( ) 0c1101 ,X allfor   )(, XRXSupportXXXSupport c ==  

 

(v) The marginal distributions of u0, u1 have zero medians. 

 

Then g0, g1 and F(u0, u1) are non-parametrically identified from data on participation 

choices and outcomes. 

 

Proof: 

By assumption, we know for all (X0, X1, Xc) in the support of (X0, X1, Xc) and for all y: 

1. )),(),(Pr(),,Pr( 0001111001 uXXguXXgXXXYY ccc +≤+=≤  

2. =≤ ),,,Pr( 10011 cXXXYYyY ;  

( )000111111 ),(),(,),(Pr uXXguXXgyuXXg ccc ++≤+ ;  

3. ( )111000000100 ),(),(,),(Pr),Pr( uXXguXXgyuXXgYYyY ccc ++≤+=≥≤ ;  

Fix Xc. Let 01  and XX  be the support of X1 and X0, respectively. Using the information in 

(1), we can define sets of values (X0, X1) corresponding to contours of constant 

probability: 

A. ( )pXXXS c ,, 10  

( ) ( ) ( ){ }puXXguXXguXXguXXgxx cccc =++=++= 00011100011110 ),(),(Pr),(),(Pr:, ;;
( ) ( ){ }),(,:, 001110 cc XXglXXgXX =+=  

for some unknown constant l. 
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For any point in S we can use the information in (2) to write: 

B. ( )luuyuXXg c +≤+ 011111 ,),(Pr ;  

for all y1. Varying X1 over its full support from assumption (iv), we can find a 

compensating value X0 within the set defined by (A) so that pXXXD c == ),,1Pr( 10  is 

constant. This keeps fixed the second argument in (B). The variation in X1 produces a set 

of (y, X1) values for each value of Xc which identifies the function g1(X1, Xc) over the 

support of X, up to an unknown constant. By similar reasoning, we can identify g0(X0, Xc) 

up to an unknown constant using (3). 

Tracing out (B) for all values g1 and y identifies F(u1, u0-u1) except for a location 

parameter. Using (3) we identify F(u0, u0-u1). The location of u0 and u1 is determined by 

using the assumption that the medians of u0, u1 are zero using the marginals obtained by 

letting g0 → -∞ (in (2)) and g1 → -∞ (in (3)) respectively. (The information in (2) is 

actually all we need). With knowledge of the locations of u0, u1, we can determine the 

unknown additive constant absorbed in g1 and g0. By a standard transformation of 

variables, we obtain F(u0, u1) from either (2) or (3). Since Xc is arbitrary, this completes 

the proof because we can recover everything for all Xc. 

 

 

Identification Theorem for the Joint Distribution of Outcomes (generalization) 

Let ( )Iu,u,u 10  be median-zero, independently and identically distributed random 

variables with distribution ( )Iu,u,uF 10 . Assume structure (i) – (iii) of the previous 

theorem and knowledge of ( ) ( )cIcI X,X,X,DYF,X,X,X,DYF 1100 00 ==  and 

( )cI X,XDP 1= . Assume: 

 

 

a) ( ) ( ) ( ) ( )cIIcII X,X,Xu,u  or  X,X,Xu,u 1100 ⊥⊥  

b) Ig  is concave and ( )[ ] [ ]IcI uSupportX,XgSupport ⊃0  or there exists a subset T  of 

the support of ( )cI X,XX =  such that (i) for all Gg,g II ∈21 , and all Tx∈ , 
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)X(g)X(g II 21 =  and (ii) for all t in the support of Iu , there exists TX ∈  such that 

t)X(g I = . 

c) ( )   RRu,uSupport I 110 0
→=  

      ( )   RRu,uSupport I 111 0
→=  

d)                                         ( ) ckc X all for  RR:X,Xg 100 0
→  

( ) ckc X all for  RR:X,Xg 111 1
→  

( ) ckcII X all for  RR:X,Xg
I 1→  

( )( ) ccc X all for  RXX,XgSupport 100 =  

( )( ) ccc X all for  RXX,XgSupport 111 =  

( )  )X(SupportXXSupport c 00 =  

( ) )X(SupportXXSupport c 11 =  

 

Then,  

� Under (a), (b), (c) and (d), II g  and  F  are identified. If the first part of (b) is used 

Ig  is understood to be the least-concave version of the original Ig . 

� Under the first part of (a), (b), (c) and (d), ( )cX,Xg 0  and ( )Iu,uF 0  are identified 

over the supports of ( )cX,X 0  and ( )Iu,u0 , respectively. 

� Under the second part of (a), (b), (c) and (d), ( )cX,Xg 1  and ( )Iu,uF 1  are identified 

over the supports of ( )cX,X 1  and ( )Iu,u1 , respectively. 

The proof is provided in Heckman and Smith (1998). 
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Matching Corollaries 

Corollary 4.1: Pair matching on balancing scores 

Suppose treatment assignment is strongly ignorable. Further suppose that a value of a 

balancing score b(Xi) is randomly sampled from the population of units, and then one 

treated, Di = 1, unit and one control, Di = 0, unit are sampled with this value ob b(Xi). 

Then the expected difference in response to the two treatments for the units in the 

matched pair equals the average treatment effect at b(Xi). Moreover, the mean of 

matched pair differences obtained by this two-step sampling process is unbiased for the 

average treatment effect ( ) ( )ii YEYE 01 − . 

 

Corollary 4.2: Subclassification on balancing scores 

Suppose treatment assignment is strongly ignorable. Suppose further that a group of 

units is sampled using b(Xi) such that: (i) b(Xi) is constant for all units in the group, and 

(ii) at least one unit in the group received each treatment. Then, for these units, the 

expected difference in treatment means equals the average treatment effect at the value of 

b(Xi). moreover, the weighted average of such differences, that is, the directly adjusted 

difference, is unbiased for the treatment effect ( ) ( )ii YEYE 01 − , when the weights equal the 

fraction of the population at b(Xi). 

 

Corollary 4.3: Covariance adjustment on balancing scores 

Suppose treatment assignment is strongly ignorable, so that 

( ) ( ))X(bYE)X(b,tDYE itiiiti ==  for balancing score b(Xi). Further suppose that the 

conditional expectation of Yti given b(Xi) is linear: 

 

( ) 0,1)(t        )X(b)X(b,tDYE ttiiti =+== βα  

 

Then the estimator 

( ) ( ) ( )iXb���� ×−+− 0101 ββαα  
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is conditionally unbiased given b(Xi), (i = 1, …,N) for the treatment effect at b(Xi), 

namely ( ))X(bYYE iii 01 − , if t�α  and t
�β  are conditionally unbiased estimators of tα  and 

tβ , such as least squares estimators. Moreover, 

  

( ) ( ) b���� ×−+− 0101 ββαα  

 

where N)X(bb i∑= , is unbiased for the average treatment effect ( ) ( )ii YEYE 01 −  if 

the units in the study are a simple random sample from the population. 

  

       
 


