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APPENDIX 1 

Useful  Concepts  
 

 

Mills’ Ratio 

At 1926 Mills mentioned that “the area A of the tail of a frequency curve could be 

found approximately by the formula ( ) xRA ×= .φ , where ( ).φ  is the density function at x, 

and noted that this had appeared in approximating binomial and geometric 

probabilitiesin term of the standard Normal distribution. For a standard Normal 

distribution with cumulative distribution function Φ( . ) and density function ( ).φ , this 

becomes: 

( ) ( ) xRxx ×=Φ− φ1  

( )
( )x

xRx φ
Φ−

=⇔
1  

 

Rx is termed as Mills’ ratio and is the reciprocal of the failure rate or hazard rate. Since 

some expansions for Φ(x) involve its derivatives ( ) ( )xx φφ ′ ,  and so on, and since 

 

( ) ( ) ( ) ( ) ,...,2,1           ,1 =××−= mxxHx
dx
d

m
m

m

m

φφ  

 

where ( )xH m  is a Chebyshev–Hermite polynomial, one would expect that 

approximations to Rx frequently correspond to approximations to Φ(x) and vise versa, 

and such is indeed the case. 

Approximations for Mills’ ratio are largely derived from expansions and inequality 

bounds. Among many approximations, Kotz, Johnson and Campell (1986, Vol. 4) outline 

a common one: 
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where ( ) ( ) ( )( ),2 xbxaxxt −×+= π  

( ) ( ){ }[ ]     075,405,182,000.01,389,832,063.0193,818,307.0657,,407858.0 xxxxa −++=  

 ( ) ( ){ }[ ]3,182,030,034.0819,485,229.0265,974,650.01 xxxxb +++=  

 

If this is used as an approximation to the Mill’s ratio, the error is less than 12.5 × 10-9 for 

the range 0 ≤ x ≤ 6.38. Detailed listings of expressions and bounds for Rx, along with 

sources for tables, appear in Johnson and Kotz (1972). 

  

 

Chebyshev – Hermite Polynomial 

A Chebyshev-Hermite polynomial is formulated as a function, Hm(x) defined by the 

identity: 
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it is easy to show that Hm(x) is the coefficient of !mt m  in the expansion of )
2
1exp( 2ttx − . 

The polynomial of mth degree is defined by the formula 
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or equivalently by: 
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In terms of the standard Normal density ( )xφ , the Chebyshev-Hermite polynomial is 

represented by: 

 

( ) ( ) ( )x
dx
dxxH m

m

m
m φφ =×− )(1  

 

Also holds the reoccurence relation: 

 

                                          ( ) ( ) ..., 3, 2,m                        ),()1( 21 =−−= −− xHmxxHxH mmm  

 

The first five Chevyshev-Hermite polynomial are: 
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Draper and Tierney (1973) give expressions for Hm(x) for 0 ≤ m ≤ 27. Fisher and 

Cornish (1960) have tabulated values of Hm(xp) for 1 ≤ r ≤ 7 and 0.0005 ≤ p ≤ 0.5, where 

xp is the quantile of the standard normal distribution having a probability p in the right 

tail. 

 

 

Biserial Correlation 

Biserial correlation refers to an association between a random variable Di which 

takes only two values (for convenience 0 and 1), and a random variable Yi measured on a 

continuum. Choice of a parameter to measure such an association, and a statistic to 

estimate and test the parameter, depend on the conceptualization of the nature of the 

(Xi,Yi) population. A common form is the point biserial correlation (see Johnson and 

Kotz, 1972). 
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The point biserial correlation coefficient is probably the earliest statistical approach 

to this problem because of its close relationship both to the product-moment correlation 

coefficient and to the two sample t-test. Regarding the case where Di indicates the 

participation status and log(Yi) are the logarithic wages of the sampled persons, if it is 

assumed that the distributions of log(Yi), conditional on Di = 0 and 1, are Normal with 

different means but with a common variance, the product moment correlation coefficient, 

ρ, between Di and log(Yi) is estimated by the point biserial correlation coefficient: 

 

( ) ( ) ysyyqp 01
2

1
−××=ρ  

 

where (d1, y1), (d2, y2), …, (dn, yn) is a sample from the (Di, Yi) population, 01  and yy  are 

the mean y values of observations having Di = 1 and Di = 0, respectively; 2
ys  is the 

sample variance of Yi; and p is the proportion of the D-sample with Di = 1 (p= 1-q). 

The t-statistic may be used to test the null hypothesis that ρ = 0, where 

 

( ) [ ]( ) 2
12222

1
12

−
−××−= ρρnt  

 

and t is distributed as Student’s t with n-2 degrees of freedom. This test is equivalent to a 

two sample t-test of the null hypothesis that the mean of Yi values with Di = 1 equals that 

with Di = 0.   

 

 

Fourier Transformation 

Fourier series are used in the analysis of generally a periodic function into its 

constituent sine waves of different frequencies and amplitudes. The series is: 

 

( )∑ ×+×+ nxbnx nn sincos
2
1

0 αα  
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where the coefficients are chosen so that the series converges to the function of interest, 

f; these coefficients (the Fourier coefficients) are given by: 

( )

( )∫

∫
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for n = 1, 2, 3, … 

A method of calculating the Fourier transform of a set of observations y0, y1, …, yn, 

i.e. calculating d(ωp) given by: 
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can be operated in the following way: 

� Let n = rs where r and s are integers. Let t = rt1 + t0, t = 0, 1, 2, …, n-1; t1 = 0, 1, 2, 

…, s-1; t0 = 0, 1, 2, …, r-1. Further let p = sp1 + p0, ; p1 = 0, 1, 2, …, s-1; p0 = 0, 1, 

2, …, r-1. The Fourier transformation (Fast Fourier Transformation) can be written 

as: 
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Calculation of ( )00 ,tpa  requires only s2 operations, and d(ωp) only rs2. The 

evaluation of d(ωp) reduces to the evaluation of ( )00 ,tpa  which is itself a Fourier 

transform. Following the same procedure, the computation of ( )00 ,tpa  can be reduced in 

a similar way. The procedures can be repeated until a single term is reached. 
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Hodges – Lehmann Estimator 

Hodges and Lehmann (1963) first proposed an important technique for deriving a 

point estimator for a parameter θ from a test statistic that is distribution-free under an 

appropriate null hypothesis about θ. The idea in the one-sample location setting is as 

follows. 

Let X1, X2, …, Xn be a random sample from a continuous distribution with cumulative 

density function (c.d.f.) F(x-θ), where F(.) is the c.d.f. for a distribution that is symmetric 

about 0. Let V(X1, X2, …, Xn) be a test statistic for testing H0: θ = 0 against H1: θ > 0 that 

satisfies the following three conditions: 

 

1. H0: θ = 0 is rejected for large values of V(X1, X2, …, Xn). 

2. V(x1 + h, x2 + h, …, xn + h) is a non-decreasing function of h for each (x1, x2, …, xn). 

3. When H0: θ = 0 is true, the distribution of V(X1, X2, …, Xn) is symmetric about some 

value ξ for every continuous distribution F(.) that is symmetric about zero. 

 

For such a setting Hodges-Lehmann estimator of θ is motivated in the following way. The 

random variables X1-θ, …, Xn-θ are independent, and each has the same distribution that 

is symmetric about zero. Thus, it would be desirable for an estimator of θ, say θ̂ , to 

posses the property that the variables θθ ˆ,...,ˆ
1 −− nXX  “look as close as possible” to 

being symmetrically distributed about 0. In order to define better the criterion “look as 

close as possible” let V(X1, X2, …, Xn) enter to  the problem. Since V(X1, X2, …, Xn) is 

used to test H0: θ = 0, one intuitive way to evaluate this “closeness” property would be to 

choose θ̂  so that V( θθ ˆ,...,ˆ
1 −− nXX ) assumes a value as near as possible to the median 

of the null H0: θ = 0 distribution of V(X1, X2, …, Xn). In view of condition (3), this implies 

that one chooses θ̂  so that V( θθ ˆ,...,ˆ
1 −− nXX ) is as close as possible to ξ, the point of 

symmetry for the null distribution of V(X1, X2, …, Xn); that is, so that θθ ˆ,...,ˆ
1 −− nXX  

“look as close as possible” to being symmetrically distributed about 0, when viewed 

through the V(X1, X2, …, Xn) statistic. 
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Formally, the Hodges – Lehmann estimator for θ based on V(X1, X2, …, Xn) satisfying 

(1), (2) and (3) is given by: 

 

( )
2

,...,ˆˆ
***

1
θθθθ +

== nXX  

 

where ( ) ( ){ }ξθθθθθ ;−−== nn XXVXX ,...,:sup,..., 11
**  

           ( ) ( ){ }ξθθθθθ ≺−−== nn XXVXX ,...,:inf,..., 11
****  

 

Randles and Wolfe (1979) and Draper and Smith (1994) describe other robust 

estimators, namely the Least Absolute Deviation estimators (L1 estimators), the M-

estimators, the Least Median of Squares estimators (LMS) and the robust estimators with 

Ranked Residuals (rreg). 

 

 

Ordered Probit Model 

There are circumstances where response is measured by a variable that can be 

placed in rank order, but cannot be assigned a quantitative value. Estimation of the 

probability for this ordinal variable to fall in category j, given a vector of attributes X, 

cannot be performed by a conventional Probit model because it does not exploit the 

ranking information and thus produces misleading estimates. As a result an alternative 

method has to be considered. 

Ordered Probit model is described to be the appropriate tool for such kind of 

analysis. Given an ordinal variable Y and an explanatory variable X = x, let us denote 

with )x(pij  the probability that the Y outcome of the ith person falls in category j, where 

.)x(pc

j ij 1
1

=∑ =
 When c = 2 the Ordered Probit model can be written as: 

 

( ) Χ+=Φ− βα)x(p1
1  
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For a further description of this model, the reader is referred in Johnson and Kotz (1986, 

Vol 6) and in the web address “http:// www.indiana.edu/~statmath/stat/all/cat/2b2.html”. 

In the case where Y is an ordinal dependent variable in a linear regression, rankits of 

Ipsen and Jerne (1944) can be used to estimate the corresponding model.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 




