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CHAPTER 3 
 

 

RIDGE REGRESSION 

 

3.1 Introduction 
 
 
 The ridge regression procedure (Hoerl and Kennard, 1970; Connife and Stone, 

1973; Jones, 1972; Smith and Golstein, 1975) is based on the matrix ( )IXX k+′ , I 

denoting the identity matrix and k being a positive scalar parameter. It is a procedure that 

can be used in “ill-condition” situations where correlations between the various predictors 

in the model cause the XX′  matrix to be close to singular. In particular, we can obtain a 

point estimate with a smaller mean square error. 

Hoerl and Kennard (1970) suggested that in order to control inflation and general 

instability associated with the least squares estimates, one can use 

                                           ( ) ( ) YXIXXβ ′+′= −1ˆ kk ;     0≥k                                      (3.1.1) 

Note that the LS estimator is a member of this family with 0=k . 

The ridge estimator, though biased, has lower mean square error than the BLUE (best 

linear unbiased estimator). Unfortunately, this mean-squared error is a function of the 

unknown parameters that we are trying to estimate. Let us denote the mean square error 

(MSE) of a biased estimator *β̂  of β  as: 

                                             ( ) ( ) ( )βββββ *** −
′

−= ˆˆˆ EMSE                                          (3.1.2) 

Since the squared Euclidean distance between *β̂  and β  is  

                                                 ( ) ( )ββββ ** −
′

−= ˆˆ2L ,                                                  (3.1.3) 
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the ( )*β̂MSE  can be interpreted as the mean squared Euclidean distance between the 

vectors *β̂  and β  (Koutsoyiannis, 1977). Thus, an estimator with low MSE will be close 

to the true parameter. 

 One property of the least squares estimator β̂  that is frequently noted in the ridge 

regression literature is (Judge et al., 1985) 

                                         ( ) ( )
k

trE
λ
σσ

2
12ˆˆ +′>′+′=′ − ββXXββββ ,                             (3.1.4) 

where kλ  is the minimum eigenvalue of XX′ . Thus, if the data are collinear, and kλ  is 

small, this implies that the expected squared length of the least squares coefficient vector 

is greater than the squared length of the true coefficient vector. In addition, the smaller 

the kλ , the greater the difference. 

 

3.2 The Reparameterized model 
 
 Let us begin with the linear regression model as given in (2.2.1). We assume that 

the data are in standardized form and compute the correlation matrix, and the correlation 

coefficients between the dependent variable and the predictors, i.e. we compute YX′ . A 

parameterization that is popular in ridge regression is the one that is based on the singular 

value decomposition of X . The matrix X  can be written as 

                                                           PQΛX 2
1

′= ,                                                   (3.2.1) 

where Q  is a ( )pT ×  matrix of the coordinates of the observations along the principal 

axes of X  standardized in the sense that IQQ =′ . The matrix Λ  is a diagonal matrix of 

eigenvalues pλλλ ≥≥≥ ...21 , that is, 
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The P  matrix is the ( )pp×  matrix of eigenvectors satisfying PPΛXX ′=′ , and IPP =′ . 

Then the regression model can be rewritten as follows: 

                                            UαXUPβPXUXβY * +=+′=+= ,                          (3.2.2) 

which defines a parameter vector βPα ′= , and XPX* = . The OLS estimate of α  is 

denoted by α̂  and is given by 

( ) ( ) βXXPXPXPYXPXPXPYXXXα 11*
1

** ˆˆ ′′′′=′′′′=
′







 ′

= −−
−

 

                            = ( ) ( ) ( ) βPXPXPXPXPβPXPXPXPXP 11 ˆˆ ′′′′′=′′′′′ −−  

                            = βP ˆ′ .                                                                                             (3.2.3) 

As we showed in chapter 1 the variance of the OLS estimator is 

( ) ( ) PPΛXXβ 1 ′=′= −− 212ˆ σσV , 

while 

( ) ( ) PPPΛPPβPα 1 ′′=′= −2ˆˆ σVV  

                                                                         = 1Λ −2σ .                                            (3.2.4) 

The elements iα̂  are called “uncorrelated components” because ( ) =α̂V 1Λ −2σ  is 

diagonal. Since the ridge estimator of α  is given by 

                                                     ( ) ( ) YXPIΛα ′′+= −1ˆ kk ,                                         (3.2.5) 

we can easily obtain the relationship 

( ) ( ) ( ) ( ) YXPkPPPΛYXIPPΛYXIXXβ ′′+′=′+′=′+′= −−− 111ˆ kkk  

                                                          = ( ) ( )kk PαYXPIΛP =′′+ −1 .                           (3.2.6) 

We can also find from the above the relationship between the ridge and the ordinary 

estimate, which is given by: 

( ) =kβ̂ ( ) ( ) βXXPIΛPYXPIΛP ˆ11 ′′+=′′+ −− kk  
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                                           = ( ) βPP∆βPΛIΛP ˆˆ1 ′=′+ −k ,                                          (3.2.7) 

where ( ) ( ) 1; −+== kdiag iiii λλδδ∆ , i = 1,…, p is a diagonal matrix of “shrinkage 

factors”. 

We must warn the user of ridge regression that the direct ridge estimators based on the 

model before standardization do not coincide with their unstandardized counterparts 

based on model (2.2.1) (Vinod, 1978). 

 

3.3 Hoerl and Kennard’s Reasoning 
 
 If B is an estimate of the vector β , the residual sums of squares is given by 

( ) ( )XBYXBY −′−=φ  

                                                         = ( )( ) ( )( )BβXβXYBβXβXY −+−
′

−+− ˆˆˆˆ  

                                                         ( ) ( ) ( ) ( )BβXXBββXYβXY −′
′

−+−
′

−= ˆˆˆˆ  

                                                         ( )Bφφ += min ,                                                     (3.3.1) 

since ( ) ( ) ( )( ) ( ) 0ˆ2ˆˆ2 =−′′−′=−
′

− − BβXXXXXIYBβXβXY 1 ; minφ  is the residual sums of 

squares of the OLS. 

Let 00 >φ  be a fixed value for the error sum of squares. Then there exists a set of values 

of 0B  that will satisfy the relationship 0min φφφ +=  . In this set we look for the estimate 

that has the minimum length. This can be stated as minimize BB′  

                                            subject to ( ) ( ) 0
ˆˆ φ=−′

′
− βBXXβB .                                (3.3.2) 

As a Lagrangian problem this is  

minimize ( ) ( ) ( ) 



 −−′

′
−+′= 0

ˆˆ1 φβBXXβBBB kF  

where ( )k1  is the multiplier. Then 
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( ) ( ) ( )[ ] 0ˆ2212 =′−′+=
∂
∂ βXXBXXB
B

kF . 

Solving for B we obtain ( ) ( ) YXIXXβB ′+′== −1ˆ kk ; k is determined so that (3.3.2) is 

fulfilled. From (3.3.1) and the relationship ( ) ( ) βXXIXXβ ˆˆ 1 ′+′= −kk  the residual sum of 

squares ( )kβ̂  is equal to  

( ) ( )( ) ( )( )kkk βXYβXY ˆˆ −
′

−=φ  

                                                 ( )( )( ) ( )( )( )kk ββXβXYββXβXY ˆˆˆˆˆˆ −+−
′

−+−=    

                                                 ( )( ) ( )( )kk ββXXββ ˆˆˆˆ
min −′

′
−+= φ , 

which after simple calculations becomes equal to  ( ) ( ) ( )kkk βXXβ ˆˆ 12
min

−′′+φ  (Hoerl and 

Kennard, 1970). 

 

3.4 Properties of the Ridge Estimator 
 
 As shown previously, Hoerl and Kennard’s definition of the ridge estimate is 

( ) ( ) YXIXXβ ′+′= −1ˆ kk , 

with 0≥k  being the ridge parameter. Using the abbreviation ( ) 1−+′= IXXG kk  and 

XXGZ ′= kk , we can rewrite the ridge estimate as  

         ( ) βZβXXGYXGβ ˆˆˆ
kkkk =′=′= .                                   (3.4.1) 

 

In what follows, we present some properties of the ridge estimator. 

A) Let ( )ki Gξ  and ( )ki Zξ  be the eigenvalues of kG  and kZ , respectively. Then 

                                                ( ) ( )kiki += λξ 1G                                                  (3.4.2) 

                                                ( ) ( )kiiki += λλξ Z .                                              (3.4.3) 
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B) The ratio of the largest characteristic root of the design matrix ( )IXX k+′  to  

the smallest root is ( ) ( )kk p ++ λλ1 , where pλλλ ≥≥≥ ...21  are the ordered roots of 

XX′ , and is a decreasing function of k . 

C) ( )kβ̂  for 0≠k  is shorter than β̂ , i.e. 

                                                  ( )( ) ( )( ) ββββ ˆˆˆˆ ′<
′

kk .                                            (3.4.4) 

 

Recall (3.4.1) and since kZ  is symmetric positive definite the following holds (Hoerl and 

Kennard, 1970): 

( )( ) ( )( ) ( ) ββZββ ˆˆˆˆ 2
max ′≤

′
kkk ξ . 

Since ( ) ( )kk += 11max λλξ Z  then (3.4.4) is verified (Hoerl and Kennard, 1970). 

For ( )kβ̂  the residual sum of squares can be written as  

( ) ( )( ) ( )( )kkk βXYβXY ˆˆ −
′

−=φ  = ( )( ) ( )( )kk βXYXβY ˆˆ −





 ′

′
−′  =  

( )( ) ( )( ) ( )kkk βXXβXYYXβYY ˆˆˆ 





 ′

′
−′−′

′
−′ . 

From the definition of the ridge estimator we can replace the quantity XY′  above with 

( )( ) ( )IXXβ kk +′
′ˆ  so the residual sum of squares becomes 

( ) ( )( ) ( )( ) ( )( )kkkkk ββYXβYY ˆˆˆ ′
−′

′
−′=φ . 

This way the residual sum of squares can be described as the total sum of squares minus 

the “regression” sum of squares for ( )kβ̂  with a modification analogous to the squared 

length of ( )kβ̂ . 

 
Mean, bias and variance 
The mean of the ridge estimator is given by 

( )( ) ( )YXGβ EkE k ′=ˆ  

                                                                     = βZXβXG kk =′ .                                 (3.4.5) 
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Note that when k = 0 then IZ =k  and hence ( )( ) ββ =kE ˆ , but when 0≠k , ( )kβ̂  provides 

a biased estimate of β . 

The bias of the estimator ( )kβ̂  is given by ( )( ) βGβ kkkBias −=ˆ . Indeed, we know that the 

bias of an estimator *b  is defined as 

( ) ( ) βbb ** −= EBias . 

Consequently, the bias of ( )kβ̂  is 

( )( ) ( )( ) ββZβββ −=−= kkEkBias ˆˆ
 

                                                             ( ) βIXXIXX 



 −′+′= − 1k  

                                                             ( ) ( )[ ]βIXXXXIXX kk +′−′+′= −1
 

                                                              = βG kk−                                                        (3.4.6) 

or alternatively from the relationship between the ridge and the ordinary estimate (3.2.7) 

( )( ) ( )( ) βββ −= kEkBias ˆˆ  

                                                                    

( )
( )[ ]
( )[ ]
( )[ ]
( ) ( ) ( )[ ]
( ) ( ) βPIΛΛIΛP

βPIΛIΛΛIΛP

βPIΛIΛP

βPPPΛIΛP

βIPΛIΛP

ββPΛIΛP

′−−+=

′++−+=

′−+=

′−′+=

−′+=

−′+=

−

−−

−

−

−

−

kk

kkk

k

k

k

k

1

11

1

1

1

1

 

                                                                     = ( ) βPIΛP ′+− −1kk                                (3.4.7) 

Now it useful to give the squared bias (in its matrix version) 

                            ( )( ) ( )( ) ( ) ( ) PIΛPββPIΛPββ ′+′′+=
′ −− 112ˆˆ kkkkBiaskBias               (3.4.8) 

The variance-covariance matrix for the ridge regression estimators is 

( )( ) ( ) ( ) ′== kkkk ZβZβZβ ˆcovˆcovˆcov  



40 

                                                           = ( ) kkkk GZZXXZ 212 σσ =′′ − .                      (3.4.9) 

Alternatively, we can write (3.4.9) using the matrices P and Λ . Since 

( ) =kβ̂ ( ) βPΛIΛP ˆ1 ′+ −k , then 

( )( ) ( ) ( ) ( ) PIΛPΛXXPΛIΛPβ ′+′′+= −−− 1121ˆcov kkk σ  

                                             = ( ) ( ) PIΛΛIΛP ′++ −− 112 kkσ                                     (3.4.10) 
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3.5 Mean Squared Error Properties 
 
 We have already denoted in (3.1.2) the MSE of an estimator as the mean 

Euclidean distance between the estimator and the true value. MSE is also defined as the 

trace of the mean dispersion error matrix (Rao and Toutenburg 1999). The mean 

dispersion error matrix is  

( ) ( )( )′−−= βββββ,β ˆˆˆ EM  

                                                                ( ) ( )( ) ( ) ( )( )′−+−−+−= ββββββββ ˆˆˆˆˆˆ EEEEE  

                                                                ( ) ( ) ( )′+= βββ ˆˆˆ BiasBiasV .                             (3.5.1) 

Therefore,  

                                 ( ) ( ){ } ( )[ ] ( )[ ] ( )[ ]ββββ,ββ ˆˆˆˆˆ BiasBiasVtrMtrMSE
′

+== .                  (3.5.2) 

For instance, recalling (3.1.2) the MSE of the OLS estimator is: 

MSE= ( ) ( )( ) ( ) 122 ˆ −′== XXβ trVtrLE σ  
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                                                  = ∑
=

p

i i1

2 1
λ

σ                                                                  (3.5.3) 

where iλ  is the ith eigenvalue of XX′ . In the case of the ridge estimator we have from 

(3.4.8) and (3.4.10) the following: 

( )( ) ( )( ) ( )( ) ( )( )






 ′

+= kBiaskBiaskVtrkMSE ββββ ˆˆˆˆ  

                                                  
( ) ( )∑∑

== +
+

+
=

p

i i

i
p

i i

i

k
k

k 1
2

2
2

1
2

2

λ
β

λ
λ

σ  

or 

( )( )
( )

( )∑
=

−+′′+
+

=
p

i i

i kk
k

kMSE
1

22
2

2ˆ βIXXββ
λ
λσ  

                                                  ( ) ( )kk 21 γγ += .                                                         (3.5.4) 

Hoerl and Kennard (1970) proved that ( )k1γ  is a monotonic decreasing function of k, 

while ( )k2γ  is monotonic increasing. In addition, ( )k2γ  can be considered the square of 

a bias introduced when ( )kβ̂  is used instead of β̂  while ( )k1γ  can be shown to be the sum 

of the variances of the parameter estimates. The sum of the variances of all ( )kiβ̂ ’s is the 

sum of the diagonal elements of (3.4.10). Note that since PPΛXX ′=′  then ( )k2γ  can be 

written as 

                                                   ( )
( )∑

+
=

p

i

i

k
kk

1
2

2
2

2
λ
α

γ                                            (3.5.5) 

where βPα ′= . 

 

3.6 Existence Theorems 
 
 The main justification for ridge regression by Hoerl and Kennard is their theorem 

that there always exists a 0>k  such that ( )[ ] ( )[ ] ( )∑=<
p

iLEkLE
1

222 10 λσ , where 
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( )kL2  is the Euclidean distance between the ridge estimator and β  while ( )02L  is the 

Euclidean distance between the OLS and β . To see this from (3.5.3) (3.5.4) and (3.5.5) 

( )[ ] ( ) ( )
dk

kd
dk

kd
dk

kLdE 21
2 γγ

+=  

                                                                  
( ) ( )∑ ∑

= = +
+

+
−=

p

i

p

i i

ii

i

i

k
k

k1 1
3

2

3
2 22

λ
αλ

λ
λ

σ        (3.6.1) 

As mentioned in the previous paragraph, ( )k1γ  and ( )k2γ  are monotonically decreasing 

and increasing and thus their first derivatives are always non-positive and non-negative, 

respectively. So the result can be proved if we can show that there always exists a 0>k   

such that ( )[ ] 0
2

<
dk

kLdE . And this holds when 

                                                               2
max

2 ασ<k                                                  (3.6.2) 

where 
2

maxα  is the squared value of the larger iα . In most applications, interesting values 

of k usually lie in the range (0, 1). For standardized variables, this is always the case. 

 The difficulty in the above result is that k depends on 2σ  and β , neither of which 

is known. Thus although k  exists, we do not know whether or not we have attained a 

value for k  which provides a lower MSE than that of LS in a specific practical problem 

(Draper and Smith, 1981). 

 In Hoerl and Kennard’s existence theorem the mean square error of ( )kβ̂  has been 

compared with ( ) ( )∑
=

− =′
p

i
itr

1

212 1 λσσ XX . Banerjee and Carr (1971) suggested 

comparing it with 

                                              ( ) ( )∑ +=+′ −
p

i kktr
1

212 1 λσσ IXX ,                            (3.6.3) 
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and not to the larger quantity ( )∑
=

p

i
i

1

2 1 λσ . In order to explain their suggestion, Banerjee 

and Carr (1971) introduced (see appendix B) the augmented model: 

                                                     Uβ
I

X

Y

Y
+




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

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
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
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
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






=
















pA

X

k 21

LL ,                                     (3.6.4) 

where xY  is the original Y, AY  is a ( 1×p ) observation vector corresponding to the 

augmented part, pI  is a ( pp × ) identity matrix, and U is ( ) 1×+ pn  error vector. In 

addition, we have ( ) XβY =XE  and ( ) βY kE A = . The least squares estimate of β  in the 

augmented model is 

( ) ( )AA kk YYXIXXβ +′+′= −1ˆ  

                                                    ( ) ( ) Akkk YIXXβ 1ˆ −+′+= . 

For the augmented model, the authors have proved a corresponding “existence theorem”. 

There always exists a k > 0 such that ( )2E L k  < ( )∑
=

+
p

i
i k

1

2 1 λσ . For the proof we refer 

the interested reader to Banerjee and Carr (1971). It is interesting to note that the same 

condition for k was obtained in the augmented model, namely 2
max

2 ασ<k , where 2
maxα  

is the largest component of α .  

 Conniffe and Stone (1973) comment that only if the appropriate value of k is 

assumed known is the proof of Hoerl and Kennard’s existence theorem valid. What is 

important is whether the estimator with estimated k has better mean square error 

properties than least squares estimators. They also note that mean square error is not the 

only criterion that determines the quality of a particular estimator. Other criteria, such as 

that of having a tractable distribution, are also important. 

 

 

 



44 

3.7 Generalized Ridge Estimator 
 
 In Vinod and Ullah (1981) one can find the definition of a generalized ridge 

estimator (GRE) of α  (as given in (3.2.3)). It is obtained by augmenting the ith diagonal 

element of Λ  by a positive constant ik , and using the singular value decomposition of X. 

Specifically, GRE of α is given by: 

                                                  ( ) YQΛKΛα ′+= − 211
K ,                                           (3.7.1) 

where ( )ikdiag=K  is a diagonal matrix. The GRE of β  in (2.2.1) can be written as  

( ) YQΛKΛPPαb ′+== − 211
KK  

                                                    ( ) YQΛKXPXPP ′+′′= − 211  

                                                    ( ) YQΛPPPKPXPXPP ′′′+′′= − 211  

                                                    ( ) YXPPKXX ′′+′= −1 . 

Alternatively it can be written as 

                                           ( ) βPP∆YXPPKXXb ˆ1 ′=′′+′= −
K ,                                 (3.7.2) 

where ( )idiag δ=∆ , the diagonal matrix of ( ) 1−+= iiii kλλδ . 

 Guilkey and Murphy (1975) considered a modification of the GRE which they 

called “Direct Ridge Estimator” (DRE). They suggest that only the diagonal elements of 

Λ  corresponding to relatively small eigenvalues ( iλ  is defined as small if max10 λλ c
i

−<  

where maxλ  is the largest eigenvalue of XX′  and c arbitrary constant) of XX′  should be 

augmented by a ki value. This DRE will result in an estimate of β , that is less biased than 

Kb , and in cases with severe multicollinearity DRE will have a smaller MSE than the 

GRE. 

 

3.8 The Ridge Trace Plot 
 

 Hoerl and Kennard (1970) claimed that a method to select the “right” value of k is 

the ridge trace. The ridge trace is a two-dimensional plot of ( )kiβ̂  against k, where ( )kiβ̂  

is the ridge estimate of iβ  obtained using the fixed value k; it usually includes a plot of 
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( )kRSS β̂  against k. Typically, k runs through a short interval, beginning at k =0. As k 

increases, the estimates become smaller in absolute value, tending to zero as k tends to 

infinity. Hoerl and Kennard propose to choose the value where the “system” stabilizes. 

Below we present the ridge trace for the Longley data (Appendix, Part 2); the lines 

present the ridge coefficients for values of k = 0 to k =0.1 
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Figure 3.1 Ridge Trace 

Hoerl and Kennard claimed that the ridge trace is a diagnostic tool that can help the 

analyst to estimate the value of k. However, since this procedure is based on the user’s 

personal judgment it may be considered unreliable. Judge et. al. (1985) seem to doubt 

ridge trace as this “visual inspection” will lead to estimates of unknown properties. In 

addition, the ridge trace leads to a k which is a random variable and therefore the bias 
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introduced complicates the confidence intervals. They accept however, that one can learn 

from the data using the ridge trace. 

 

3.8.1 An alternative Scaling for the Ridge Trace 
 

 Vinod (1976) has choosen another scaling on the horizontal axis for the ridge 

trace called “multicollinearity allowance”, m, defined by  

                                         ( ) ∑∑
==

−=
+

−=
p

i
i

p

i ii

i p
k

pm
11

δ
λ
λ

,                                      (3.8.1) 

where kiii += λλδ , i=1,2,…, p. Note that, when 0...1 ==== pkkk , m = 0 and when 

∞=k  then m= p. Some of the advantages of the m scale are (Vinod and Ullah, 1981): 

• Finite range: In general, the k can have an infinite range ∞≤≤ k0 . For the m 

scale the range is pm ≤≤0 , which is finite. 

• Generality: The k scale ridge trace cannot be plotted for generalized ridge 

regressions when the ik ’s are distinct. In contrast, it is simple to plot an m-scale 

ridge trace for GRE. 

• More reliable stable region: When choosing k from the stable region of the ridge 

trace, one can note that k may appear to be more stable for larger k even for 

completely orthogonal data; m scale does not have this property.  

 

3.8.2 Quantification of the concept of a Stable region 
 

 As discussed above the ridge trace may appear to be more stable for larger k even 

for completely orthogonal data; this is not the case for the m scale which will not give 

greater stability at larger m. It is this property of the m scale that suggested a numerical 

measure called Index of Stability of Relative Magnitudes (ISRM), defined for m < p 



47 

                                                ( )[ ]∑ −=
i

ii SpISRM
22 1λδ ,                                      (3.8.2) 

where 
( )∑

+
==

2kdk
dmS

i

i

λ
λ

. For completely orthogonal systems ISRM is equal to zero.  

It is possible to compute ISRM for each m (< p) and choose m where ISRM is the 

smallest. Vinod notes an important advantage of ISRM, that is not stochastic. The ( )kiβ̂  

plotted in a ridge trace are stochastic and therefore k is a random variable. 

 

3.9 Selecting value of k 
 

A very important statistical challenge in ridge regression research is to determine 

the optimal value for k. In this section our aim is to bring together the methods that have 

been proposed in the literature and employed in practice for the selection of k. It will be 

assumed again that X and Y are standardized so that XX′  is in correlation form and YX′  

is the vector of correlations of the dependent variable with each explanatory variable. 

 First we present two methods that are partly based on the following optimization 

problem: Ridge estimators should minimize the residual sum of squares subject to the 

constraint that the length of the coefficient vector is something less than the least squares 

length. 

1) Hoerl (1962) proposed reducing the length of the coefficient vector without 

increasing the residual sum of squares. We take  

( )( ) ( ) ( )
( ) ( ) ( )[ ] 











−
′

+
−

= − k
kk

C
k

kCk
dC

kd

kβGβ ˆˆ

22
21

2

212

φ
φφ , where ( )kφ  is the residual sum of 

squares and ( )( ) ( )kkC ββ ˆˆ2 ′
=  is the squared length of the vector. We choose the value k 

that yields the maximum value for the above derivative (Gibbons, 1981). 

 

2) McDonald and Galarneau (1975). The choice of k is made in such a way that the 

squared length of the corresponding ridge estimator equals an estimated squared 

length of β . 
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                                                         ∑
=

−−′=
p

j
jsQ

1

12ˆˆ λββ                                             (3.9.1) 

where ( ) ( )
( )1

ˆˆ
2

−−
−

′
−

=
pT

s βXYβXY . Choose k such that ( )( ) ( ) Qkk =
′
ββ ˆˆ , if Q > 0; choose 

0=k  otherwise. 

 

The next nine estimators are based on the MSE property of ridge estimators: 

3) Consider the general ridge estimator (Hoerl, Kennard and Baldwin, 1975) as given in 

(3.7.2), i.e. 

( ) YXPPKXXb ′′+′= −1
K , 

where ( )pkkkdiag ,..., 21=K . The MSE function is minimized at 22
iik ασ=  where 

βPα ′= . This optimal choice for ik  was also presented by Hoerl and Kennard (1970) and 

Goldstein and Smith (1974).  

Hoerl et al. (1975) propose the use of the harmonic mean of these ik  to obtain a single 

value, namely hk  is given by 

                                                           ββ′= 2σpkh .                                                (3.9.2) 

And using the estimates of 2σ  and β  for the calculation of (3.9.2) we obtain 

                                                        ββ ˆˆ2 ′= pskHKB .                                                (3.9.3) 

 

4) Hoerl, Kennard, Baldwin, Thisted rule (see Lin and Kmenta, 1982) 

                                                     ( ) ββ ˆˆ2 2 ′−= spkHKBM .                                         (3.9.4) 

This estimator was suggested because the Hoerl, Kennard and Baldwin (HKB) estimator 

seems to overshrink towards zero. 

 

5) Dwividi and Srivastava (1978) select k in a way similar to the one of Hoerl, Kennard 

and Baldwin by using  
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ββ ˆˆ

2

′
=

sk                                                     (3.9.5) 

 

6) The optimal value of ik  for which the MSE  of the almost unbiased generalized ridge 

regression estimator (AUGRR) proposed by Singh, Chaubey and Dwivedi (1986) is 

minimum, is given by: 
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2
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σ i

i
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.                             (3.9.6) 

In the case of the almost unbiased ordinary ridge regression estimator (AUORR) 

estimator where pkkkk ==== ...21 , we can obtain k by considering the harmonic mean 

of *
ik  in (3.9.6). It is given by 

                                   ( )( ){ }( )∑
=

++=
p

i
iii

h pk
1

212222 11 σαλασ .                             (3.9.7) 

Since (3.9.8) depends on the unknown α  and 2σ , we replace them by their OLS 

estimates. Therefore the parameter in (3.9.7) becomes 

                                 ( )( ){ }( )∑
=

++=
p

i
iiiHMO pk

1

212222 ˆˆ11ˆˆ σαλασ ,                           (3.9.8) 

where ( ) ( )
( )pT −

−
′

−
=

αXYαXY ** ˆˆˆ 2σ  and α̂  as given in (3.2.3). 

 

7) If we assume that all ik  are equal to k, then the MSE function is minimized when 

( ) ( )∑ =+− 0322 kk iii λσαλ  (Dempster, Schatzoff, and Wermuth, 1977). The 

algorithm evaluates 

( )( ) ( )∑ +− 322ˆ kskk iii λαλ , 

for values of k and selects that value of k that gives the observed minimum. 
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8) Recall the MSE of β  in (3.1.2) and the following criterion which differs by a 

constant,  

                                                         ( ) ( )ββΛββ ** −
′

− ˆˆE .                                            (3.9.9) 

Both are minimized when iik ασ 2= . Hoerl and Kennard (1970) suggested an iterative 

estimation procedure for the selection of ik  by using the OLS estimators for 2σ and iα  as 

the initial values in iik ασ 2= . Hemmerle (1975) proposed 22 ˆ iis αλ  as the initial values 

for the iteration. Hemmerle and Brantle (1978) consider the minimization of the 

estimators of (3.1.2) and (3.9.9) using optimization methods as an alternative to 

estimating the ki’s. Specifically, the value that minimizes both (3.1.2) and (3.9.9) is  





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=

+ 1ˆ,0
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ii
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s

ss

k αλ

αλαλ

λ
λ

. 

The authors also consider including a priori information about β  by constraining the 

estimates of the parameters in the linear model. They obtain the ridge estimators using 

quadratic programming methods. 

 

9) Consider the MSE of the ridge estimator as function of k, λ, α and σ , i.e. 

( )( ) ( )σλγβ ,,,ˆ αkkMSE =
( ) ( )∑∑

== +
+

+
=

p

i i

i
p

i i

i

k
k

k 1
2

2
2

1
2

2

λ
α

λ
λ

σ  

To get the best k Nordberg (1982) suggest to use “the empirical MSE-function” 

( )σλγ ˆ,ˆ,, αk  where α̂  and σ̂  are “good” estimators of α  and σ . The procedure is the 

following: 

(i) Choose a preliminary 00 ≥= kk . 

(ii) Set ( )0
ˆˆ kβPα ′= . 

(iii) Set ( )
22 0ˆ1ˆ βY X

pT
−

−
=σ , 

(iv) Compute the k-value which minimizes the function ( )σλγ ˆ,ˆ,, αk= . 
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Denote by ( )0
* kK  the k-value obtained by the above procedure with 0k  as a “start value”. 

By setting 00 =k  and by iterating the above procedure by ( )jj kKk *
1 =+ , j = 0,1,2,… 

until it “stabilizes”, i.e. until jj kk ≈+1  we can obtain good k-values. 

 

10) As already shown the GRE is given by ( ) YQΛKΛα ′+= − 211
K . Minimizing the MSE 

of the GRE term-by-term i.e., minimizing the diagonal elements of the mean squared 

error matrix 

                                         ( )∑
=

+
p

i
iii k

1

22 λλσ ( )∑ ++
p

iiii kk
1

222 λα                          (3.9.9) 

with respect to ik  yields the optimum value 

                                                     ( ) ( )pik
i

opti ,...,2,12

2

==
α
σ .                                   (3.9.10) 

Hoerl and Kennard suggested to start with i
i

kS ˆ
ˆ 2

2

=
β

 where iβ̂  is the ith element of the 

least squares estimator and 2S  is an unbiased estimator of 2σ . 

Replacing ik  in K by ik̂  to form K̂  and substituting it in place of K in (3.9.9) leads to an 

adaptive estimator of α  (Dwivedi et al., 1980): ( ) YXKΛα ′
+=

− *1ˆ
ad . 

 

11) Obenchain (see Gibbons, 1981) considers a family of two-parameter estimators 

( ) ( )[ ] ( ) YXXXIXXβ ′′+′= −−+− qq kqk
11* , . For q = 0 we obtain the ridge estimator. In 

order to obtain the minimum mean squared error we choose q so as to maximize 
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where YXPΛ ′′= − 21r . The parameter k is then chosen so as to minimize 

( ) ( ) σξξξσπ ~/~2ln~ renL ′−′+= , where ( ) ( )[ ] 211 iiii rsign δδξ −= , ( )q
iii kλλλδ +=  
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and ( )[ ] ( ){ } 1212 42~ −
′++′= ξξσ rnr . Goldstein and Smith (1974) have considered an 

equivalent two-parameter estimator where the parameter m=1-q is an integer. 

 

Next we consider Bayesian approaches to the selection of k. 

12) Lindley and Smith (1972) showed that if ( )IXβY 2,~ σN  and the prior for β  is 

( )I2,0 βσN , then ( )kβ̂  is the Bayes estimator where 2

2

βσ
σ

=k . Since 2σ , the residual 

regression variance, and 2
βσ , the variance of the regression coefficients are usually 

both unknown we should estimate them and calculate k  as follows: 

                                                                2

2

βs
s

kLS = .                                                  (3.9.11) 

 

13) Lawless and Wang (1976) also adopt a Bayesian approach and estimate the variance 

ratio by  

                                                             LWk =
∑ 2

2

ˆ ii

ps
αλ

                                              (3.9.12) 

 

14) Dempster, Schatzoff, and Wermuth (1977) in a large simulation study suggested an 

estimator RIDGM, which is motivated by the Bayesian interpretation and is similar to 

the McDonald-Galarneau estimator. Given ( )Iα 2,0~ ωN  it follows that 

                                                   ( ) ( )[ ] 2

1

22 ~11ˆ p

p

i
ii k χλσα∑

=

+                                 (3.9.13) 

where 22 ωσ=k . Replacing 2σ  by 2s  and using the fact that ( ) pE p =2χ , i.e. 

                                                  ( ) ( )[ ] pks
p

i
ii =+∑

=1

22 11ˆ λα .                                    (3.9.14) 

The authors propose to use that value of k that satisfies (3.9.14). 

 

Finally, two more approaches are given below: 
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15) Consider the relation of the ridge estimator with the LS estimator. Based on (3.2.5) 

and (3.7.2) respectively one can easily obtain: 

( ) ( ) YXPIΛα 1 ′′+= −kkˆ  

                                                             ( ) βXXPIΛ 1 ˆ′′+= −k  

                                                             ( ) αXPXPIΛ 1 ˆ′′+= −k  

                                                             ( ) ( ) αΛIαPPPΛPIΛ 111 ˆˆ −−− +=′′+= kk           (3.9.15) 

Hocking et al. (1976) introduce a class of biased estimators of the coefficients in the 

linear regression model defined by 

                                                                    αBα ˆ~ = .                                                  (3.9.16) 

B is a diagonal matrix with diagonal components given by ∑
=

=
p

i
iib

1
γ , where iγ  are to be 

determined. Comparing the ridge estimator as given in (3.9.15) with the general estimator 

given in (3.9.16) yields the relation  

( ) 111 −−+= ii kb λ  

or equivalently, 

                                                          ( ) iii bbk −= 1λ .                                              (3.9.17) 

If we specify ib  using, for instance, the shrinkage estimator then k can be obtained as a 

mean of the values in (3.9.17) or as a least squares determination. Specifically,  

                                                 ( )∑
=

− −=
p

i
iii bbpk

1

1 1λ ,                                           (3.9.18) 

or 

                                       ( ) ( )∑∑
==

−−=
p

i
ii

p

i
iii bbbbk

1

22

1

11λ .                                    (3.9.19) 

The authors suggest a special case of (3.9.19) namely,  
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16) Golub et al. (1979) consider the generalized-cross validation (GCV) method for 

choosing the value of k in ridge regression. Specifically, k is the value that minimizes 

( )nkV  where  

( ) ( )( ) ( )( )
2

2 11




 −−= nktr
n

nkI
n

nkV AIYA  

and  

( ) ( ) XIXXXA 1 ′+′= −knk  

The authors point out that since this method does not require the estimation of 2σ  it can 

be used when n-p is small or when np ≥ .  

 

Table 3.1 summarizes the different criteria. 
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aa Criterion Function to minimize-maximize Reference 

 

1  Choose k that yields the observed maximum of  

( )( ) ( ) ( )
( ) ( ) ( )[ ] 











−
′

+
−

= − k
kk

C
k

kCk
dC

kd

kβGβ ˆˆ

22
21

2

212

φ
φφ  

Hoerl, 1962 (in Gibbons, 

1981) 

2  Choose k such that 

( )( ) ( ) ==
′

Qkk ββ ˆˆ ∑
=

−−′
p

j
js

1

12ˆˆ λββ , if Q > 0; choose k 

= 0 otherwise 

McDonald and 

Galarneau (1975) 

3 ββ ˆˆ2 ′= pskHKB   Hoerl, Kennard and 

Baldwin (1975) 

4 ( ) ββ ˆˆ2 2 ′−= spkHKBM   Hoerl, Kennard, 

Baldwin, Thisted (in Lin 

and Kmenta, 1982) 

5 

ββ ˆˆ

2

′
=

skDS  
 Dwividi and Srivastava 

(1978) 

6 ( )( ){ }( )∑
=

++=
p

i
iiiHMO pk

1

212222 ˆˆ11ˆˆ σαλασ

 

 Singh, Chaubey and 

Dwivedi (1986) 
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7  Choose k such that ( )( ) ( )∑ +− 322ˆ kskk iii λαλ  

is minimum 

Dempster, Schatzoff, 

and Wermuth (1977) 

8 
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 Hemmerle and Brantle 

(1978) 

9  Choose k by minimising 

( )( ) ( )σλγ ,,,ˆ αβ kkMSE =

( ) ( )∑∑
== +

+
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=
p

i i

i
p

i i

i

k
k

k 1
2

2
2

1
2

2

λ
α

λ
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σ using an 

algorithm which gives values to k then to α  and σ . 

Nordberg (1982) 

 

10 For the general ridge regression estimator 

i
i

kS ˆ
ˆ 2

2

=
β

, where 2S  is an unbiased 

estimator of 2σ  

 Hoerl and Kennard (in 

Dwivedi et al., 1980) 

11  For the two-parameter 

estimator ( ) ( )[ ] ( ) YXXXIXXβ ′′+′= −−+− qq kqk
11* , , 

choose q so as to maximize 

( ) ( )[ ] ( ) ( )( )[ ]
21

122)1( ∑∑∑ −−= q
ii

q
ii rrqC λλ , 

Obenchain (in Gibbons, 

1981) 

 

 

 

(continued from previous page) 
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choose k so as to minimize  

( ) ( ) σξξξσπ ~/~2ln~ renL ′−′+=  

12 22
βssk =   Lindley and Smith 

(1972) 

 

13 ∑= 22 ˆ iipsk αλ   Lawless and Wang 

(1976) 

 

14  
k is obtained by solving ( ) ( )[ ] pks

p

i
ii =+∑

=1

22 11ˆ λα  
Dempster, Schatzoff, 

and Wermuth (1977) 

15 
∑∑
==

=
p

i
ii

p

i
iik

1

424

1

222 σλασλα  
 Hocking,Speed and 

Lynn (1976) 

16  k is the value that minimizes ( )nkV , 

( ) ( )( ) ( )( )
2

2 11




 −−= nktr
n

nkI
n

nkV AIYA  

 

Golub, Heath and 

Wahba (1979) 

Table 3.1: Selection Criteria 

(continued from previous page) 
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3.10 Illustration to Real Data 
In order to illustrate the use of ridge regression we applied the method to a real data set. 

3.10.1  Bodyfat data 

 The data are the percentage of body fat determined by underwater weighing and 

various body circumference measurements for 252 men. The dependent variable (Y) is 

the PERCENT BODY FAT (from Siri’s equation). The data were obtained from StatLib 

(Dataset Archive) and were submitted by Dr. A. Garth Fisher. More details about the data 

can be found in http://lib.stat. cmu.edu /datasets/ bodyfat. 

The independent variables (matrix X) are  

• AGE(years)  

• WEIGHT(lbs)  

• HEIGHT(inches) 

• NECK CIRCUMFERENCE(cm) 

• CHEST CIRCUMFERENCE(cm) 

• THIGH CIRCUMFERENCE(cm) 

• FOREARM CIRCUMFERENCE(cm) 

 Note: This data set included another 7 explanatory variables, which were left out 

for reasons of convenience and efficient data presentation. 

Accurate measurement of body fat is inconvenient or costly so it is desirable to have easy 

methods of estimating body fat that are not inconvenient or costly. Eventually, we wish to 

produce a regression equation which will predict percentage body fat in terms of 

anatomical measurements. 

 

3.10.2   Data analysis 
The regression model is: UXβY += . We wish to examine the inclusion of correlated 

variables to our model in order to illustrate collinearity diagnostics and the ridge 

regression solution. As one can see from the next scatterplot matrix (containing all the 

scatterplots of one variable against another) some of the explanatory variables are highly 

correlated.  
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Figure 3.2: Correlation matrix 

 
Checking the correlation coefficients as well we find several large pairwise correlations. 

For example, the correlation between chest circumference and weight is 0.894 which is 

rather large. In addition, we check whether 2Rrij ≥  where 2R  = 0.5894. This holds in 7 

cases (denoted with bold, italics in Table 3.2) so we can say that multicollinearity is 

present. 

 Age Weight 
lbs 

Height 
in 

Neck cm Chestcm Thigh 
cm 

Forearm 
cm 

Age 
Sig. (2-tailed) 

1.000 
. 

 

Weightlbs 
Sig. (2-tailed) 

-0.013 
.840 

1.000
.

 

Heightin 
Sig. (2-tailed) 

-0.172 
.006 

0.308
.000

1.000
.

 

Neckcm 
Sig. (2-tailed) 

0.114 
.072 

0.831
.000

0.254
.000

1.000
.

 

Chestcm 
Sig. (2-tailed) 

0.176 
.005 

0.894
.000

0.135
.032

0.785
.000

1.000
.

 

Thighcm 
Sig. (2-tailed) 

-0.200 
.001 

0.869
.000 

0.148
.018

0.696
.000

0.730
.000

1.000 
. 

Forearmcm 
Sig. (2-tailed) 

-0.085 
.178 

0.630
.000

0.229
.000

0.624
.000

0.580
.000

0.567 
.000 

1.000
.

Table 3.2: Correlation coefficients of the predictors 
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Then the least squares estimates obtained by fitting the regression model are calculated 

and given below: 

Parameter estimates 
 Parameter 

Estimate 
Std. Error Standardized

Estimate 
t value p-value 

Intercept -30.808 14.769 -2.086 0.038

Age 0.175 0.033 0.264 5.287 0.000

Weightlbs 0.011 0.046 0.036 0.223 0.824

Heightin -0.293 0.114 -0.128 -2.572 0.011

Neckcm -0.744 0.270 -0.216 -2.751 0.006

Chestcm 0.555 0.107 0.559 5.168 0.000

Thighcm 0.537 0.155 0.337 3.457 0.001

Forearmcm 0.041 0.229 0.010 0.179 0.858
Multiple R-squared: 0.5894 

Table 3.3: The values of the regression coefficients and the p-values 
 

Only two predictor coefficient estimates (weightlbs and forearmcm) have large p-values 

i.e. they are not significant.  

To decide for multicollinearity we calculate some diagnostics (see next table): 

 
The predictors VIF 2

iR Leamer’s ic  

Age 1.482 0.325 0.822 

Weightlbs 15.292 0.935 0.256 

Heightin 1.474 0.322 0.824 

Neckcm 3.668 0.727 0.522 

Chestcm 6.960 0.856 0.379 

Thighcm 5.644 0.823 0.421 

Forearmcm 1.817 0.445 0.742 

Table 3.4: The multicollinearity diagnostics 
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                                                       Variance Proportions 
Dimension Eigenvalue (Constant) AGE WEIGHT HEIGHT NECK CHEST THIGH FOREARM 

1 7.906 .00 .00 .00 .00 .00 .00 .00 .00 

2 .070 .00 .61 .00 .00 .00 .00 .00 .00 

3 .017 .01 .04 .06 .02 .00 .00 .00 .00 

4 .003 .00 .00 .04 .31 .00 .00 .01 .48 

5 .002 .03 .00 .04 .09 .00 .01 .27 .37 

6 .001 .01 .34 .01 .06 .06 .38 .27 .10 

7 .001 .01 .01 .00 .03 .87 .18 .00 .05 

8 .000 .95 .01 .84 .49 .07 .43 .44 .00 

Table 3.5: Eigenvalues and variance proportions 

A variable iX  is harmfully multicollinear only if its multiple correlation with other 

members of the independent variable set, 2
iR , is greater than the dependent variable’s 

multiple correlation with the entire set, 2R  (Greene, 1993). This is the case in four cases 

as we can see from Table 3.4. We can reach the same conclusion using Leamer’s 

diagnostic which is small for the same cases. The VIF for weightlbs is 15.292 which is 

quite large. 

Calculating the condition number we find 36.385,26
0003.0

7.90631 2121

min

max =







=








=

λ
λ

K  

which is rather large, while small eigenvalues (i.e. 0.002) indicate near linear 

dependencies. Another diagnostic is the determinant of the correlation matrix XX′  = 

0.0038. The closer XX′  is to 0, the greater the severity of multicollinearity. Finally the 

sum of 1−
iλ = 6,273.9487. Recall that in an orthogonal system it would be 7. 

 Since our data suffer from multicollinearity we will try to implement ridge 

regression. To this aim we calculate k by four methods. 

a) Hoerl and Kennard: ( ) 008.0ˆmax 22 == iHK sk α , where 2s  is the estimate of the 

variance and α̂  the least square estimate (see (2.2.4)). 

b) Hoerl Kennard and Baldwin: 021.0
ˆˆ

2

=
′

=
αα

pskHKB  
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c) Lawless and Wang: 020.0
ˆ 2

2

==
∑ ii

LW
psk
αλ

 

d) Vinod’s ISRM: 44.0=ISRMk  

Ridge Regression Results 
 Ridge Estimate Std. Error Standardized Ridge Estimate

Intercept -22.978 6.321
Age 0.120 0.019 0.181
Weightlbs 0.046 0.006 0.160
Heightin -0.285 0.068 -0.125
Neckcm 0.037 0.099 0.011
Chestcm 0.270 0.026 0.272
Thighcm 0.281 0.043 0.176
Forearmcm 0.116 0.128 0.028

Table 3.6: Ridge estimates 

Observing the Ridge Trace we note that when 44.0=ISRMk  the coefficients stabilize. So 

in Table 3.6 we give the ridge estimates using the k obtained by minimizing the Index of 

Stability of Relative Magnitudes (ISRM). 
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Figure 3.3: The Ridge Trace 
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3.11 A Critical View of Ridge Regression 
 

 There are a lot of controversies in the literature about the success of ridge 

regression. Some authors are in favour of using ridge regression while others greatly 

criticize it stating that it is not “always” better than least squares. 

 According to Draper and Van Nostrand (1979) ridge regression is a technique that 

enables one to assume prior information of a specific kind. So ridge regression is an 

appropriate multicollinearity remedy in case we consider a Bayesian formulation or in 

case of a restricted least squares formulation. In any other circumstances, they claim that 

ridge regression should not be used. They doubt the value of ridge regression, since they 

find that it is favored over least squares only when the ridge estimators are close to the 

least squares values. Marquardt and Snee (1975) express the same opinion with Draper 

and Van Nostrand stating that ridge regression is reasonable under a Bayesian 

interpretation. They also comment that since in correlation form regression coefficients 

rarely exceed three, one can consider bounded priors.  

 Recalling the fact that the ridge estimator is just the OLS estimator biased by 

( )( )kii +λλ , Pagel (1981) points out that since this fraction declines with iλ , ridge 

applies the greatest shrinkage, and thus reduces the variability most, for the coefficients 

associated with small eigenvalues. However, it is not always right to treat the coefficients 

of small eigenvalues as less “important” than those of large eigenvalues. Small 

eigenvalues may derive from the fact that the data are inadequate for the estimation of the 

model parameters; or from a misspecification of the model. Ridge regression ignores such 

problems and tries to obtain the regression estimates. 

 Gunst and Mason (1977), in their evaluation on five estimators of the regression 

coefficients (least squares (LS), principal components (PC), ridge regression (RR), latent 

root (LR) and a shrunken estimator (SH)), concluded that the PC and LR estimators 

appeared to offer the best opportunity for large decrease in MSE over LS for the 

multicollinear data, while ridge regression and SH performed well for the near-

orthogonal data. 

 Many simulations have been performed to compare ridge regression estimates to 

least squares estimates, in a mean square error sense. Pagel (1981) notes that based on 
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Monte Carlo studies, ridge regression reliably reduces the mean squared error of the 

estimated coefficients under conditions of multicollinearity and low signal to noise ratios. 

However, these simulations must be viewed with caution. Draper and Van Nostrand 

(1979) claim that these simulations involve restrictions on the parameter values (the 

situations where ridge regression is the appropriate technique theoretically). Opponents of 

ridge regression also cite inconsistent findings among studies and criticize the modeling 

of fixed length of the regression coefficient vectors in many simulations. 




