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CHAPTER 2 
 

 

THE PROBLEM OF MULTICOLLINEARITY 
 

2.1 Introduction 
 

 Regression analysis examines the relationship between a dependent variable Y 

and one or more independent variables p21 XXX ,...,, . Such an analysis assumes the use of 

a model with a specified set of independent variables. But in many cases we do not know 

exactly what variables should be included in a model. Hence, one may propose an initial 

model, often containing a large number of independent variables, and proceed with a 

statistical analysis aiming at revealing the correct model. 

The inclusion of a large number of variables in a regression model often results in 

multicollinearity. The term multicollinearity refers to high correlation among the 

independent variables. This occurs when too many variables have been put into the model 

and a number of different variables measure similar phenomena. The existence of 

multicollinearity affects the estimation of the model as well as the interpretation of the 

results. 

In this chapter we will give some preliminary material on:  

1. The general regression situation. 

2. Multicollinearity and how to detect it. 

3. Strategies for coping with collinear data. 

 

2.2 The General Regression Situation 
 

 The following definitions and proofs concerning multiple regression are based on 

Draper and Smith (1981) as well as on Rao and Toutenburg (1999). 

Suppose we have a model under consideration, which can be written in the form 
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 UXβΥ +=             (2.2.1) 

where Y is an ( )1×T  vector of observations on a random variable, X is an ( )pT ×  matrix 

of observations of the p independent variables, β  is a ( )1×p  vector of unobserved 

parameters, and U  is an ( )1×T  vector of errors. We often use the following assumptions: 

a) X is a fixed matrix of regressors (nonrandom),  

b) The rank of X is p 

c) Normality of the errors, i.e. the errors follow a normal distribution with zero mean 

vector and variance- covariance matrix Ι2σ , i.e.: ( )I0U 2,N~ σ . This assumption is 

required for tests of significance and also for the construction of confidence and 

prediction intervals. It implies that the errors are homoscedastic, i.e. ( ) 2σ=tUV  for 

all T,...,1t = , and that they are independent, i.e. ( ) 0cov =′tt ,UU  for all T,...,1tt =′≠ . 

A direct consequence from the distributional assumption for U  is that 

( )IXβY 2,N~ σ . 

 Let us now consider the least squares method which is the most common method 

of estimating the parameters of the model. Since the error U  is equal to XβY −  we shall 

estimate it with the residual which is defined as 0XβYU −=ˆ , where 0β  is an arbitrary 

choice for β . The least squares coefficient vector minimizes the sum of squared 

residuals: 

( ) ( )00 XβYXβYUU −′−=′ ˆˆ  

                                                         0000 XβXβXβYYXβYY ′′+′−′′−′=  

                                                         000 XβXβYXβ2YY ′′+′′−′=                                      (2.2.2) 

It can be determined by differentiating (2.2.2), with respect to 0β , and setting the 

resulting matrix equation equal to zero. Let β̂  be the solution, then β̂  satisfies the least 

squares normat equations 

                                                               ( ) YXβXX ′=′ ˆ .                                             (2.2.3) 
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If X is not of full rank, XX′  is singular, (2.2.3) has a set of solutions 

( ) ( )( )ωXXXXIYXXXβ ′′−+′′= −−ˆ , 

where ( )−′XX  is a generalized inverse (see Appendix A) of XX′  and ω  is an arbitrary 

vector. Then either the model should be expressed in terms of fewer parameters or 

additional restrictions on the parameters must be given or assumed. 

If the normal equations are independent, XX′  is nonsingular, and its inverse exists. In 

this case the solution of the normal equations is unique and is given by the following 

expression: 

                                                           ( ) YXXXβ 1 ′′= −ˆ .                                              (2.2.4) 

Once β  has been estimated by β̂ , we can write the residual as 

( ) ( )YHIYXXXXYβXYU 1 −=′′−=−= −ˆˆ , 

where ( ) XXXXH 1 ′′= −  and I is the identity matrix. Further, the sum of squares of 

residuals divided by T-p, 

                                                              
pT

s
−
′

=
UU ˆˆ

2 ,                                                   (2.2.5) 

can be shown to be a consistent and unbiased estimator of 2σ . The estimated regression 

is  UβXY ˆˆ +=  and since 0ˆ =′UX  the total sum of squares is 

       UUβXXβYY ˆˆˆˆ ′+′′=′                                            (2.2.6) 

where βXXβ ˆˆ ′′  is the sum of squares due to regression, and UU ˆˆ ′  is the sum of squares 

due to errors. The multiple correlation coefficient, which measures the goodness of fit, is 

then defined as 

                                                    
YY
UU

YY
βXXβ

′
′

−=
′
′′

=
ˆˆ

1
ˆˆ

2R .                                         (2.2.7) 
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2R  tends to overestimate the true value of the coefficient. The following formula, which 

gives the multiple correlation coefficient adjusted by the degrees of freedom and is 

therefore unbiased, can be used instead: 

1
1)1(1 2

adj
2

−−
−

−−=
pT

TRR . 

The least squares estimate of β , β̂ , has some well-known properties (see e.g. in Seber, 

1977): 

1. It is an estimate of β , which minimizes the residual sum of squares, irrespective of 

any distribution properties of the errors. 

2. Under the assumption of normality of the errors, β̂  is the maximum likelihood 

estimate of β .  

3. The elements of β̂  are linear functions of the observations  n21 Y,...,Y,Y , and provide 

unbiased estimates of the elements of β  which have the minimum variances, 

irrespective of any distributional properties of the errors (BLUE). 

It can be deduced that since ( ) 0=UE  then 

( ) ( ) ( )YXXXβ 1 EE ′′= −ˆ  

                                                               = ( ) XβXXX 1 ′′ −  

                                                               =β                                                                 (2.2.8) 

and β̂  is an unbiased estimate of β . If we further assume that the tU  are uncorrelated and 

have the same variance then ( ) nV IU 2σ=  and ( ) ( )UY VV = . Hence the variance 

covariance matrix of β̂  is given by 

( ) ( )( )YXXXβ 1 ′′= −VV ˆ  

                                                               = ( ) ( ) ( ) 1−− ′′′ XXXYXXX 1 V  

                                                               = ( ) ( )( ) 12 −− ′′′ XXXXXX 1σ  

                                                               = ( ) 12 −′XXσ .                                               (2.2.9) 
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2.3 Multicollinearity 
 
 In order to study the relationships among variables we collect data either from 

designed experiments or observational studies. It is not always possible, however, to 

carefully design controlled experiments in order to ensure that sufficient sample 

information is available. Observational studies are used instead and as the name implies, 

observe the variables and simply record them. Therefore some or most of the explanatory 

variables will be random hence the existence of high correlations among them is possible. 

In terms of multiple linear regression higly interrelated explanatory variables mean that 

we measure the same phenomenon using more than one variable. Though 

multicollinearity does not affect the goodness of fit or the goodness of prediction, it can 

be a problem if our purpose is to estimate the individual effects of each explanatory 

variable. Once multicollinearity is detected, the best and obvious solution to the problem 

is to obtain and incorporate more information. Unfortunately, the researcher is usually not 

able to do so. Other procedures have been developed instead, for instance, model 

respecification, biased estimation, and various variable selection procedures. 

Recall that one of the assumptions for the model (2.2.1) was that X is of full rank, 

i.e. 0≠′XX . This requirement says that no column of X can be written as exact linear 

combination of the other columns. If X is not of full rank, then 0=′XX , so that  a) the 

ordinary least squares (OLS) estimate ( ) YXXXβ 1 ′′= −ˆ  is not uniquely defined and b) the 

sampling variance of the estimate is infinite. However, if the columns of X are nearly 

collinear (although not exactly) then XX′  is close to zero and the least squares 

coefficients become unstable since ( ) ( ) 12ˆ −′= XXβ σV  can be too large. Multicollinearity 

among the columns can exist in varying degrees. One extreme situation is where the 

columns of X are pairwise orthogonal (that is, 0=ji XX  for all i and  j, ji ≠ ), so that 

there is a complete lack of multicollinearity; at the other extreme is the case of perfect 

linear relationship among the X’s, that is, there exist nonzero constants ic  (i = 1,…, p), 

such that 0...2211 =+++ jkkjj XcXcXc  (see e.g. Huang, 1970). 
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 In practice neither of the above extreme cases is often met. In most cases there is 

some degree of intercorrelation among the explanatory variables. It should be noted that 

multicollinearity in addition to regression analysis, is also connected to time series 

analysis. It is also quite frequent in cross-section data (Koutsoyiannis, 1977). 

We now turn to an example to illustrate our discussion of multicollinearity. 

Example: The following data set (presented by Dr. Bill W.S. Hung for the supplementary 

tutorial on Applied Econometrics, Department of Economics, Hong Kong Baptist 

University) gives the merchandise imports of goods, Gross National Product (GNP) and 

the consumer price index (CPI) for the U.S. over the period 1970-1983. 

Import Year (X1) GNP (X2) CPI (X3) 
39,866 1970 992.7 116.3 
45,579 1971 1077.6 121.3 
55,797 1972 1185.9 125.3 
70,499 1973 1326.4 133.1 

103,811 1974 1434.2 147.7 
98,185 1975 1549.2 161.2 

124,228 1976 1718.0 170.5 
151,907 1977 1918.3 181.5 
176,020 1978 2163.9 195.4 
212,028 1979 2417.8 217.4 
249,781 1980 2631.7 246.8 
265,086 1981 2957.8 272.4 
247,667 1982 3069.3 289.1 
261,312 1983 3304.8 298.4 

Table 2.1: Example Data 
 
Consider the following regression equation: Importt = β0+β 1Yeart+β 2GNPt +β 3CPIt+et. 

The correlation matrix for the predictors is given by   

 X1 X2 X3 

X1 1.000 0.987 0.978 
X2 0.987 1.000 0.996 
X3 0.978 0.996 1.000 

 
There is collinearity among the regressors which is also verifiable by the determinant for 
this table, =′XX 0.000164, which is very close to zero. 
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As a next step, we calculate 1)( −′XX , 
 

47.929 -79.686 32.476 
-79.686 259.848 -180.854 
32.476 -180.854 149.366 

 

These large numbers will give large coefficient estimates and large estimated values for 

the variance of these estimates. 

 

2.3.1 Effects of Collinearity 
 
 The principles of least squares are not invalidated by the existence of 

multicollinearity since we still obtain the best linear unbiased estimates. The fact is that 

the data will simply not allow any method to distinguish between the effects of collinear 

variables on the dependent variable. 

The consequences of collinearity in the case of several variables are: 

• High estimated variance of β̂  

The existence of multicollinearity tends to inflate the estimated variances of the 

parameter estimates, which means that the confidence intervals for the parameters will be 

wide, and thus increasing the likelihood of not rejecting a false hypothesis. Since the 

regression coefficient measures the effect of the corresponding independent variable, 

holding constant all other variables, the existence of high correlation with other 

independent variables makes the estimation of such a coefficient difficult. Inflated 

variances are quite harmful to the use of regression analysis for estimation and hypothesis 

testing. 

• High estimated variance of Ŷ  

The existence of multicollinearity tends to inflate the estimated variances of predicted 

values, that is, predictions of the response variable for sets of x values, especially when 

these values are not in the sample. The estimated variance of the predicted values is given 

by: ( ) ( ) ( ) ( ) XXXXXβXβXY 1 ′′=′== −2ˆˆˆ σVVV . Therefore, correlated X’s correspond to 

large values of ( ) 1−′XX  and inflated estimated variances for Ŷ . 
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• Unstable regression coefficients 

The parameter estimates and their standard errors become extremely sensitive to slight 

changes in the data points. 

• Wrong signs for regression coefficients 

Coefficients will have wrong signs or an implausible magnitude (e.g. in econometric 

models there are coefficients that must have positive sign. Multicollinearity may lead to a 

coefficient with negative sign). 

• Effect on specification 

Given the above, variables may be dropped from the analysis, not because they have no 

effect but simply because the sample is inadequate to isolate the effect precisely. 

 

2.4 Detecting Collinearity 
 
Many diagnostics have been proposed in the literature in order to determine whether there 

is multicollinearity among the columns of X. Some of them will be discussed and better 

illustrated through an example.  

 

2.4.1 Correlation Coefficients 
 
 A simple method for detecting multicollinearity is to calculate the correlation 

coefficients between any two of the explanatory variables. If these coefficients are greater 

than 0.80 or 0.90 then this is an indication of multicollinearity. A more elaborate rule is 

the following: if ijr  is the sample correlation coefficient between iX  and jX , 

( )( )

( ) ( )
1

22

1 1

T

ki i kj j
k

ij T T

ki i kj j
k k

X X X X
r

X X X X

=

= =

− −
=

− −

∑

∑ ∑
 

and 2R  is the multiple correlation as defined in (2.2.7) between dependent and 

independent variables, multicollinearity is said to be “harmful” if 2Rrij ≥  (Huang, 1970). 

Such simple correlation coefficients are sufficient but not necessary condition for 
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multicollinearity. In many cases there are linear dependencies, which involve more than 

two explanatory variables, that this method cannot detect (Judge et al., 1985).  

 We can extend the concept of simple correlation between independent variables to 

multiple correlation within an independent variables set. A variable iX  then, would be 

harmfully multicollinear only if its multiple correlation with other members of the 

independent variable set, 2
iR , were greater than the dependent variable’s multiple 

correlation with the entire set, 2R  (Greene, 1993). 

 

2.4.2 Calculation of XX′  
 
 A test which is most commonly used relies on the property that the determinant of 

a singular matrix is zero. Defining a small, positive test value, 0>ε , a solution is 

attempted only if the determinant based on a normalized correlation matrix is larger than 

this value, i.e. ε>′XX ; Recall that the position of such a determinant on the scale is 

10 ≤′≤ XX . The closer XX′  is to 0, the greater the severity of multicollinearity and the 

closer XX′  is to 1, the less the degree of multicollinearity. Note that, in practice XX′  is 

rarely greater than 0.1. 

Near singularity may result from strong, sample pairwise correlation between 

independent variables, or from a more complex relationship between several members of 

a set. The determinant gives no information about this interaction. 

 

2.4.3 Leamer’s Method 
 
 Leamer (in Greene, 1993) have suggested the following measure of the effect of 

multicollinearity for the jth  variable: 

( )( )
( )

211

1

2













′

−
=

−

−

∑
jj

i jij
j

XX
c

XX
, 



14 

where ( ) 1−′ jjXX  is the jj-th element of the matrix ( ) 1−′XX . This measure is the square root 

of the ratio of the variances of jβ̂  when estimated without and with the other variables. If 

jX  was uncorrelated with the other variables, jc  would be 1. Otherwise, jc  is equivalent 

to ( ) 2121 jR− , where 2
jR  is the multiple correlation of the variable jX  as dependent with 

the other members of the independent variable set as predictors. 

 

2.4.4 The Condition Index 

 
 Another way to test the degree of multicollinearity is the magnitude of the 

eigenvalues of the correlation matrix of the regressors. Large variability among the 

eigenvalues indicates a greater degree of multicollinearity. Two features of these 

eigenvalues are of interest: 

• Eigenvalues of zero indicate exact collinearities. Therefore, very small eigenvalues 

indicate near linear dependencies or high degrees of multicollinearity. 

• The square root of the ratio of the largest to the smallest eigenvalue
21

min

max








=

λ
λ

K , 

called the condition number, is a commonly employed index of the “instability” of the 

least-squares regression coefficients. A large condition number (say, 10 or more) 

indicates that relatively small changes in the data tend to produce large changes in the 

least-squares estimate. In this event, the correlation matrix of the regressors is said to 

be ill conditioned (Greene, 1993). Observe the following simple situation where we 

have a two regressors model: the condition number is  
21

2
12

2
12

21

min

max

1

1














−

+
=








=

r

r
K

λ
λ

. 

Setting K equal to 10 corresponds to =2
12r 0.9608 (Fox, 1997). 
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2.4.5 Variance Inflation Factors 
 
 A consequence of multicollinearity is the inflation of variation. For the jth 

independent variable, the variance inflation factor is defined as 

VIF = 
( )21

1

jR−
, 

2
jR  is already defined in section 2.4.3. These factors are useful in determining which 

variables may be involved in the multicollinearities. 

The sampling variance of the jth coefficient jβ̂  is  

( ) ( ) ( ) 2

2

2 11
1ˆ

jj
j STR

V
−−

=
σβ  

where 
( )

1
1

2

2

−

−
=
∑
=

T

XX
S

T

i
jij

j  is the variance of jX  and 2σ  the error variance (Fox, 1997). 

The term 21
1

jR−
, indicates the impact of collinearity on the precision of the estimate jβ̂ . 

It can be interpreted as the ratio of the variance of jβ̂  to what that variance would be if 

jX  were uncorrelated with the remaining iX . The inverse of VIF (i.e 1- 2
jR ) is called 

tolerance. 

 It is better to examine the square root of the VIF than the VIF itself because the 

precision of estimation of jβ  is proportional to the standard error of jβ̂  (not its 

variance). Because of its simplicity and direct interpretation, the VIF (or its square root) 

is the principal diagnostic for desribing the sources of imprecision. There are no formal 

criteria for determining the magnitude of variance inflation factors that cause poorly 

estimated coefficients. According to some authors, multicollinearity is problematic if 

largest VIF exceeds value of 10, or if the mean VIF is much greater than 1. However, the 

latter values are rather arbitrary (Fox, 1997). A VIF equal to 10 implies that the 2
jR  is 0.9. 
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Figure 2.1 Variance inflation factor 

 

 Graphically speaking in a Venn diagram (after John Venn, an English 

mathematician), VIF is shown by many overlapping circles. In the following figure, the 

circle at the center represents the explanatory variable and all surrounding ones represent 

the independent variables. The area covered by the surrounding circles denotes the 

variance explained. In this case where too many variables are included in the model the 

explanatory variable is almost entirely covered by many inter-related X’s. While the 

variance explained is high the model is over-specified and most likely useless. 

 
Figure 2.2 Venn diagram 

 

2.4.6 Variance Decomposition Proportions 
 
 Consider again the linear model UXβY += , X is a ( )pT ×  design matrix. Now 

consider a reparameterized version by using the singular value decomposition of X. The 
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matrix can be written as PQΛX 21 ′= , where Q is a ( )pT ×  matrix such that IQQ =′  

and P′  is a ( )pp×  matrix such that IPP =′ . Thus, the variance of the OLS estimator is  

( ) ( ) PPΛXXβ 1 ′=′= −− 212ˆ σσV , 

where Λ  is a diagonal matrix whose elements are pλλλ ,...,, 21 , the eigenvalues of XX′ .  

Using this decomposition makes it possible to decompose the estimated variance of each 

regression coefficient into a sum of the data matrix X. We can express the variance of a 

single coefficient as 

( ) ∑
=

=
p

j j

kj
k

p
V

1

2
2ˆ

λ
σβ ,  

where pkj denotes the (k, j)th element of the matrix P. Consequently, the proportion of 

( )kV β̂  associated with any single eigenvalue is  

∑
=

= p

j
jkj

jkj
kj

p

p

1

2

2

λ

λ
φ . 

It is useful to view these values as in table 2.2: 

Eigenvalue ( )1̂βV  ( )2β̂V  …… ( )kV β̂  …… ( )pV β̂  

1λ  11φ  21φ  . 1kφ  . 1pφ  

2λ  12φ  22φ  . 2kφ  . 2pφ  

. . . .  .  

pλ  p1φ  p2φ  …… kpφ  …… ppφ  

Table 2.2 Variance-Decomposition Proportions 

 

The columns in the table sum to one. The presence of two or more large values of kjφ  in 

a row indicates that linear dependence associated with the corresponding eigenvalue is 
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adversely affecting the precision of the associated coefficients. Values of kjφ  greater than 

0.50 are considered large (Judge et al., 1985). 

 

2.4.7 The Farrar and Glauber Tests 
 
 Farrar and Glauber (1967) also proposed a procedure for detecting 

multicollinearity comprised of three tests. The first one examines whether collinearity is 

present, the second one determines which regressors are collinear and the third one 

determines the form of multicollinearity. Based on the assumption that X is multivariate 

normal the authors propose the following: 

 

• The chi-square test for the presence of multicollinearity 

The null hypothesis is that the X’s are orthogonal. A statistic based on the determinant 

XX′  could provide a useful first measure of the presence of multicollinearity within the 

independent variables. Bartlett (1937) obtained a transformation of XX′ , 

( ) XX′



 +−−−= ln52

6
112

* pTχ , 

that is distributed approximately as chi square with ( )12
1 −= ppν  degrees of freedom; p 

is the number of independent variables. This is the well known Bartlett’s sphericity test. 

From the sample data we obtain the empirical value 2
*χ . If this value is greater than the 

tabulated value of 2
νχ , we reject the assumption of orthogonality. 

• The F-test for the determination of collinear regressors  

The null hypothesis is that 2
iR  is equal to zero. Consider the variable iZ , which is equal 

to 21 iR−  and the new variate, 

=







−
−









−=

1
11

p
pT

Zi
iω 








−
−

− 11 2

2

p
pT

R
R

i

i . 
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The distribution of iω  is the F-distribution with T-p and p-1 degrees of freedom since 

1

2

−p
Ri  (and 

pT
Ri

−
− 21

 ) is distributed as a chi-square with p-1 (and T-p respectively) degrees 

of freedom under the null hypothesis. Since 2
iR  is the multiple correlation coefficient 

between iX  and the other members of X, iω  is the ratio of explained to unexplained 

variance. If the observed value Fi >ω , we accept that the variable iX  is multicollinear. 

• The t-test for the pattern 

To understand the form of collinearity in X, the authors use the partial correlation 

coefficients between iX  and jX , which describe the relationship of iX  and jX  when all 

other members of X are held fixed, namely pijr ..12. .  The basic hypothesis here is that 

pijr ..12. = 0. To test this hypothesis we are based in the following statistic 

pij

pij

r

pTr
t

..12.
2

..12.*

1−

−
=ν  

which is distributed as Student’s with pT −=ν  degrees of freedom. If tt >*
ν , where t 

is the theoretical value of the Student’s distribution with ν degrees of freedom, then we 

accept that the variables iX  and jX  are responsible for the multicollinearity. Therefore if 

the ith variable is detected collinear by the F-test presented above and the null hypothesis 

based on the partial correlation coefficient between iX  and jX  is rejected then we can 

conclude that the jth variable is responsible for the multicollinearity of the ith variable. 

 These tests have been greatly criticized. Robert Wichers (1975) claims that the 

third test, where the authors use the partial-correlation coefficients pijr ..12. , is ineffective 

while O’Hagan and McCabe (1974) quote, “Farrar and Glauber have made a fundamental 

mistake in interpreting their diagnostics.” 
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2.4.8 The Sum of 1−
iλ  

 One easy way of assessing the degree of multicollinearity is to investigate the 

eigenvalues pλλλ >>> ...21  and eigenvectors of the matrix XX′ . In an orthogonal 

system 

p
p

i
i

p

i
i == ∑∑

=

−

= 1

1*

1

* λλ , 

where *
iλ  correspond to the p eigenvalues of the correlation matrix IR =* . Thus for a 

sample-based correlation matrix R with eigenvalues iλ , i = 1,2,…, p, we can compare  

p   vs   ∑
=

−
p

i
i

1

1λ . 

Large values of ∑
=

−
p

i
i

1

1λ  would indicate severe collinearity (Dillon and Goldstein, 1984). 

 

2.5 Example 
 

 We will now provide an example to illustrate the use of the above defined 

diagnostics. The data were presented in Longley (1967) and have been used by many 

authors to present multicollinearity related topics. The data set (Appendix, part 2) 

contains one dependent variable, the number of people employed (in thousands) yearly 

from 1947 to 1962 and six explanatory variables namely: 

1) Gross National Product (GNP) implicit price deflator (1954=100),  

2) GNP (in millions of dollars),  

3) Unemployed (in thousands),  

4) Armed forces (in thousands),  

5) No institutionalized polulation 14 years of age and over (in thousands), and  

6) Year.  

This regression is known to be highly collinear. 
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Parameter estimates 

 Parameter 
Estimate 

Std. Error Standardized
Estimate

t value p-value 

Intercept -3,482,259 890420 0 -3.91 0.0036

GNP 
deflator 

15.06187 84.91493 0.04628 0.18 0.8631

GNP -0.03582 0.03349 -1.01375 -1.07 0.3127

Unemployed -2.02023 0.48840 -0.53754 -4.14 0.0025

Armed 
forces 

-1.03323 0.21427 -0.20474 -4.82 0.0009

Population -0.05110 0.22607 -0.10122 -0.23 0.8262

Year 1829.15146 455.4785 2.47966 4.02 0.0030
 Multiple R-squared: 0.9955 

Table 2.3: The values of the regression coefficients and the p-values 

 

We note that some predictors (e.g. population) have large p-values though we would 

expect them to be significant. If we check the correlation matrix below we will find 

several large pairwise correlations. 

 GNP 
deflator 

GNP Unemployed Armed 
forces 

Population Year 

GNP deflator 
Sig. (2-tailed) 

1.000 
. 

 

GNP 
Sig. (2-tailed)

0.992 
.000 

1.000
.

 

Unemployed 
Sig. (2-tailed)

0.621 
.010 

0.604 
.013

1.000 
.

 

Armed forces 
Sig. (2-tailed)

0.465 

.070 

0.446 
.083

-0.177 
.511

1.000 
.

 

Population 
Sig. (2-tailed)

0.979 
.000 

0.991 
.000

0.687 
.003

0.364 
.165

1.000 
. 

Year 
Sig. (2-tailed)

0.991 
.000 

0.995 
.000

0.668 
.005

0.417 
.108

0.994 
.000 

1.000 
.

Table 2.4: The correlation matrix of the predictors 
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In what follows, let us calculate some of the multicollinearity diagnostics presented in 

section 2.4. Specifically, the variance inflation factors, the coefficients of 

determination 2
iR , and Leamer’s measure. 

The predictors VIF 2
iR Leamer’s ic

GNP deflator 135.532 0.993 0.086

GNP 1788.513 0.999 0.024

Unemployed 33.619 0.970 0.173

Armed forces 3.589 0.721 0.528

Population 399.151 0.997 0.050

Year 758.981 0.998 0.036

Table 2.5: The multicollinearity diagnostics 
 

The variance inflation factors are large, namely 399.151 for “population”, 758.981 for 

“year” and up to 1788.513 for the “GNP” regressor.  Considering that the VIF for the 

orthogonal predictors is 1 we see that there is considerable variance inflation. Consider 

next 2
iR , the multiple correlation of the variable Xi as dependent with the other members 

of the independent variable set as predictors. These values vary from 0.721 to 0.999 

suggesting that GNP for instance is well explained by the remaining independent 

variables. Next we present the eigenvalues and the variance decomposition proportions 

                                                           Variance Proportions 
Dimension Eigenvalue (Constant) GNP 

deflator 
GNP Unemployed Armed  

Forces 
Population Year 

1 6.861 .00 .00 .00 .00 .00 .00 .00 

2 .008 .00 .00 .00 .01 .09 .00 .00 

3 .046 .00 .00 .00 .00 .06 .00 .00 

4 .000 .00 .00 .00 .06 .43 .00 .00 

5 .002 .00 .46 .02 .01 .12 .01 .00 

6 .000 .00 .50 .33 .23 .00 .83 .00 

7 .000 1.00 .04 .65 .69 .30 .16 1.00

Table 2.6: Eigenvalues and variance proportions 
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The eigenvalues vary from 6.8614 to 0.00000000366, while the condition number -
21

000376.0
6814.6







=K = 43,275- is quite large. Two more diagnostics are the determinant of 

the correlation matrix and the sum of 1−
iλ . The values are XX′ = 710157.0 −×  , which is 

very close to zero and ∑ −1
iλ =3119.4, which is very large. 

We can also calculate the tests proposed by Farrar and Glauber. The chi-square statistic 

that measures the presence and severity of multicollinearity is 2
*χ = 218.56. This value is 

greater than the tabulated value of =2
15χ 25 so we reject the assumption of orthogonality. 

Continuing with Farrar and Glauber’s tests we find: all iω  are greater than =5,10F 4.74 

and most of *t  are greater than =10t 2.24 that is, there is multicollinearity.  

*t  statistic for the pattern                        iω  test for 
localization GNP 

deflator
GNP Unemployed Armed 

forces 
Population

GNP 
deflator 

269.065  

GNP 3575.027 24.228  

Unemployed 65.238 2.503 2.398  

Armed 
forces 

5.178 1.660 1.578 -0.570  

Population 796.302 15.248 23.531 2.986 1.237 

Year 1515.961 23.610 32.409 2.841 1.452 28.624

Table 2.7: Farrar and Glauber’s diagnostics for localization and pattern 
 

 

2.6 Remedial Measures 
 

2.6.1 Model Respecification 
 

One approach to the problem of multicollinearity is to respecify the model. Perhaps it 

may be useful to implement multivariate techniques to study the structure of 

multicollinearity and consequently to provide a better understanding of the regression 
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relationships. One such multivariate method is principal components, developed in the 

early part of the 20th century. 

Principal component analysis is a multivariate technique that attempts to describe 

interrelationships among a set of variables. Starting with a set of observed values on a set 

of p  variables, the method uses linear transformations to create a new set of variables, 

called the principal components, which have the following properties: 

• The principal component variables, or simply the components, are jointly 

uncorrelated.  

• The first principal component has the largest variance of any linear function of 

the original variables. The second component has the second largest variance, and so 

on. 

 

We shall describe the method briefly following Jackson (1991): 

The principal components of the p  standardized regressors are a new set of p  variables 

derived from X by a linear transformation: XAW = , where A is the ( )pp ×  

transformation matrix. The transformation A is selected so that the columns of W are 

orthogonal-that is, the principal components are uncorrelated. In addition, A is 

constructed so that the first component accounts for maximum variance in the X’s; the 

second for maximum variance under the constraint that it is orthogonal to the first; and so 

on. The principal components therefore partition the variance of the X’s.  

The transformation matrix A contains (by columns) normalized eigenvectors of the 

correlation matrix of the regressors XRXX =′ . The columns of A are ordered by their 

corresponding eigenvalues: the first column corresponds to the eigenvector of the largest 

eigenvalue, and the last column to the smallest. The eigenvalue jλ  associated with the jth 

component represents the variance attributable to that component. If there are perfect 

collinearities in X, then some eigenvalues of XR  will be 0, and there will be fewer than 

p  principal commponents, the number of components corresponding to 

rank( X )=rank( XR ). 
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As we showed earlier the jVIF  is equal to ( )211 jR− . It can also be shown that the jVIF  

is the diagonal entry of 1
XR−  and since  

1
XR− = AAΛ 1 ′− , 

where =Λ ( )pdiag λλ ,...,1  is the matrix of eigenvalues of XR , the jVIF  can be expressed 

as function of the eigenvalues of XR  and the principal components, i.e.: 

                                                       =jVIF ∑
=

p

i i

jiA

1

2

λ
.                                                    (2.6.1) 

Thus, it is only the small eigenvalues that contribute to large sampling variance, but only 

for those regressors that have large coefficients associated with the corresponding “short” 

principal components. 

 Principal components analysis is considered a remedy for multicollinearity since 

we can calculate one or several principal components on the set of collinear variables and 

use the components in the regression instead of the original variables. A possible 

problem, though, is a possible lack of interpretability of the transformed set of variables. 

 

2.6.2 Variable Selection 
 
 When a number of variables in a regression analysis do not appear to contribute 

significantly to the predictive power of the model, or when the regressors are highly 

correlated, it is natural to try to find a suitable subset of important or useful variables. An 

optimum subset model is one that, for a given number of variables, produces the 

minimum error sum of squares, or, equivalently, the maximum 2R . The only way to 

ensure finding optimum subsets is to examine all possible subsets. Fortunately, high-

speed computing capabilities make such a procedure feasible for models with a moderate 

number of variables. 

When the examination of the R-square values does not reveal any obvious choices for 

selecting the most useful model, we can use instead a number of other statistics. Among 

these, the most frequently used is the pC  statistic, proposed by Mallows (see Fox, 1997). 

This statistic is a measure of total squared error for a subset model containing p  
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independent variables. The total squared error is a measure of the error variance plus the 

bias introduced by not including important variables in a model. It may, therefore, 

indicate whether variable selection is deleting too many variables. The pC  statistic has 

the following form: 

pC = ( ) ( ) 12 +−− pT
MSE

pSSE  

where MSE  is the error mean square for the full model, ( )pSSE  is the error sum of 

squares for the subset model containing p  independent variables (not including the 

intercept), and T is the total sample size. It is recommended that pC  be plotted against 

p , and further select that subset size where the minimum pC  first approaches ( p +1), 

starting from the full model in order to derive the best model. 

A number of other statistics are available to assist in choosing subset models. 

Some are relatively obvious, such as the residual mean square or standard deviations, 

while others are related to 2R , with some providing adjustments for degrees of freedom. 

Subset techniques have the advantage of revealing alternative, nearly equivalent models, 

and thus avoid the misleading appearance of producing a uniquely “correct” result. 

Popular alternatives to the guaranteed optimum subset selection are the stepwise 

procedures that add or delete variables one at a time until, by some criterion based on 2R , 

a reasonable stopping point is reached. These selection methods do not guarantee finding 

optimum subsets, but they work quite well in many cases and are especially useful for 

models with many variables. Such selection methods are: 

Backward selection; Starts with a full regression equation that includes all the 

independent variables. The 2R  induced from deleting each independent variable, or the 

partial F test value for each independent variable treated as though it were the last 

variable to enter the regression equation, is calculated. The lowest partial F test value 

(which corresponds to the variable that contributes least to the fit of the model) is 

compared with a predetermined critical tabulated F-value. If this partial F value is 

smaller than the tabulated F -value we delete it and examine the regression with the 

remaining independent variables. The procedure stops when all coefficients remaining in 
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the model are statistically significant. Note, that the decision rule is irreversible; once a 

variable has been deleted, it is deleted permanently. 

Forward selection: The process begins with the inclusion of the variable with the 

largest correlation with the dependent variable. Next, variables are entered according to 

their squared partial correlation controlling for those variables already in the model. The 

process continues until no variable considered for addition to the model provides a 

reduction in sum of squares considered statistically significant at the predetermined level. 

An important feature of this method is that once a variable has been selected, it stays in 

the model. 

Stepwise selection: It begins similarly to forward selection but differs in that the 

decision to include a predictor is not irreversible.  

For more information see Dillon and Goldstein (1984). A technical objection to stepwise 

methods is that they can fail to return the optimal subset of regressors of a given size. 

In applying variable selection, it is essential to keep in mind the following: Variable 

selection is a good strategy when the variables are orthogonal or nearly so. On the 

contrary when the variables are highly correlated or include curvilinear effects of other 

variables this is not a promising method. In these cases biased estimation has proven to 

be a good solution as it is better to use a part of all the variables than all of some variables 

and none of the remaining ones. 

 

2.6.3 Biased Estimation 
 
Another approach to deal with collinear data is biased estimation. Least-squares 

estimators provide unbiased estimates of parameters. The essential idea here is to trade a 

small amount of bias in the coefficient estimates for a substantial reduction in coefficient 

sampling variance. The precision of a biased estimate, called the mean squared error, is 

the square of the bias plus the variance. The hoped-for result is a smaller mean-squared 

error of estimation of the β ’s than is provided by the least-squares estimates. 
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Ridge regression  

The most common biased estimation method is ridge regression. Hoerl and Kennard 

(1970) proved that it is always possible to choose a positive value of a constant, namely 

the ridge constant, so that the mean-squared error of the ridge estimator is less than the 

mean-squared error of the least-squares estimator. Their equation of the ridge estimate is  

                                                ( ) ( ) ,ˆ 1 YXIXXβ ′+′= −kk                                              (2.6.2) 

where 0≥k  is the nonstochastic quantity called the ridge constant, ( ( ) ββ =0ˆ  is the 

ordinary LS estimator) and I is the identity matrix.  

The arbitrary selection of a “ridge constant” in ridge regression controls the extent to 

which ridge estimates differ from the least-squares estimates: the larger the ridge 

constant, the greater the bias and the smaller the variance of the ridge estimator. The vital 

issue therefore is to find a value of k  for which the trade-off of bias against variance is 

favorable. In other words, ridging can be viewed as a compromise between fitting the 

data as well as possible, while not allowing any one coefficient to get very large. 

Unfortunately, to pick the optimal ridge constant generally requires knowledge about the 

unknown β ’s that we are trying to estimate (Fox, 1997). 

 A number of methods have been proposed for selecting the constant k . One very 

popular method is to compute ridge regression estimates for a set of values of k starting 

with k = 0 (the unbiased estimate) and to plot these coefficients against k (Ridge Trace). 

As the value of k increases from zero, the coefficients involved in multicollinearities 

change rapidly. However, as k increases further, these coefficients change more slowly. 

The selection of k is done by examining such a plot and choosing that value of k where 

the coefficients settle down. We will present analytically ridge regression in the next 

chapter. 

 

Shrinkage estimators 

Shrinkage estimators are of the form 

                                                              ββ ˆˆ sSH =                                                     (2.6.3) 
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where 10 ≤≤ s  is a deterministically or stochastically chosen constant. The only known 

shrinkage estimator (SH) with a stochastically chosen value of s possessing any optimal 

properties is the estimator due to James and Stein (see Gunst and Mason, 1977). Provided 

3≥p  and IXX =′ , the SH estimator is given by (2.6.3) with 

                                                  





















′
′

−=
ββ
UU
ˆˆ
ˆˆ

1,0max cs                                            (2.6.4) 

where ( ) ( )2220 +−<< νpc , UU ˆˆ ′  is the residual sum of squares using β̂  to predict the 

response and ν  is the number of degrees of freedom on which UU ˆˆ ′  is based. The 

estimator SHβ̂  with s given by (2.6.4) has smaller MSE than LS. Moreover, the 

MSE( SHβ̂ ) is minimized for s given by (2.6.4) if ( ) )2(2 +−= νpc . 

The drawbacks of SH are the requirements that 3≥p  and IXX =′ ; and as Gunst and 

Mason comment this eliminates most of the cases met in practice.  

 

Generalized inverse estimators (Marquardt, 1970) 

Since the matrix XX′  is singular, an option is to invert it by means of a generalized 

inverse. Let the diagonalized matrix be denoted D, with ordered diagonal elements 

pλλλ ≥≥≥ ...21  and the eigenvector matrix that transforms XX′  into D be denoted S.  

Thus, 

DXSXS =′′  

where ISS =′ . Then 

( ) .SSDXX 11 ′=′ −−  

Suppose XX′  is of rank r, so that the last ( )rp −  ordered elements of D are zero (or 

nearly so; if XX′  is only “nearly singular”). Partition S as follows: 

( )rpr −= SSS :  

where rS  is ( )rp× ; rp−S  is ( )( )rpp −×  and then partition D as 

















=

−rp

r

D

D
D

M

LLL

M

0

0
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where rD  is ( )rr × ; rp−D  is ( ) ( )( )rprp −×− . 

Now, by assumption, rp−D  is zero, so that 1−
−rpD = 0 by definition. Thus, the inverse 

becomes 

                                                         ′=′ −+
rrrr SDSXX 1)( .                                          (2.6.5) 

A class of generalized inverse regression estimators is defined by 

                                                          YXXX(β ′′= ++
r)ˆ .                                             (2.6.6) 

In general, there is an “optimum” value for r for any problem, but it is desirable to 

examine the generalized inverse solution for a range of admissible values for r (see Rao, 

C.R. and Toutenburg, H. 1999) 

 

2.6.4 Prior Information about the Regression Coefficients 
 
 Another approach to estimation with collinear data is to introduce additional prior 

information that reduces the ambiguity produced by collinearity. In a Bayesian 

framework the incorporation of prior information is achieved as usual by the use of a 

prior density function upon the parameter vector β . For the Bayesian, a singular or near-

singular XX′  matrix causes no special problems. The difficulty that Bayesians have 

when the data are collinear is that the posterior distribution becomes very sensitive to 

changes in the prior distribution (Judge et al., 1985). 

 

2.6.5 Partial Least Squares 
 
 Partial Least Squares (PLS) is a method for constructing predictive models when 

the variables are too many and highly collinear (Tobias, 1999). Like principal component 

analysis, the basic idea of PLS is to extract several latent factors and responses from a 

large number of observed variables. More specifically, the aim is to predict the response 

by a model that is based on linear transformations of the explanatory variables. The 

regression models are of the following type  

                                              ,...ˆ
22110 ppZZZY ββββ ++++=                               (2.6.7) 
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where the iZ  are linear combinations of the explanatory variables kXXX ,...,, 21  such that 

the sample correlation coefficient for any pair ji ZZ ,  ji ≠  is 0. The simple consequence 

of this feature is that parameters kβ  in equation (2.6.7) may be estimated by simple 

univariate regressions of  Y against kZ  (Rao and Toutenburg, 1999). It is important to 

note that in PLS the emphasis is on prediction rather than explaining the underlying 

relationships between the variables. Note also that unlike an ordinary least squares 

regression, PLS can accept multiple dependent variables.  

 

 

2.7 Multicollinearity with Stochastic Regressors 
 
 Consider the linear regression model with stochastic regressors 

UXβY += , 

where Y is a ( )1×T  vector of observations, X is now a ( )pT ×  stochastic matrix, β  is a 

( )1×p  vector of unknown parameters, and U is a ( )1×T  vector of errors that is 

distributed independently of X  so that ( ) 0=XUE  and ( ) IXUU 2σ=′E . 

 First, we could analyze the sample design as if X  were nonstochastic with all 

results conditional on the values of the sample actually drawn. Multicollinearity can then 

be properly analyzed as a feature of the sample, not the population. This is usually the 

approach followed. 

 On the other hand, if we are willing to assume that the iX are normally and 

independently distributed, the tests of Farrar and Glauber are available and confidence 

statements can be made. Wichers (see Farrar and Glauber, 1976) proposes a modification 

of the Farrar and Glauber tests designed to identify the nature of the linear dependencies. 

Alternatively, we may test hypotheses about the characteristic roots, which are now 

themselves stochastic. Note that we are not testing for the singularity or nonsingularity of 

X, for if exact linear constraints were obeyed in the population, the sample would obey 

those constraints with probability one and XX′  would be singular. Thus, we are testing 
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only whether or not there is little independent variation within a set of explanatory 

variables. 

 Given the assumption of the stochastic regressor model, the search for improved 

estimators becomes difficult. Although little has been done in this area some sampling 

experiments indicate that the Stein-like estimators may do well when the covariance 

matrix is estimated rather than known. Consider the situation where Y and X are jointly 

normal. Under this model and if the loss function is the mean square error of prediction, 

an estimator was found that dominates the usual maximum likelihood estimator (Judge et 

al., 1985). 

 

2.8 Multicollinearity and Prediction 

 In general, regression models are used for the related purposes of description and 

estimation, i.e. the description of the relationship between Y and X and the accurate 

estimation of the value of individual coefficients, or the purpose of prediction, i.e. the 

prediction of the value of the dependent variable in a future period. 

 Multicollinearity is a problem if we are using regression for description or 

estimation. When multicollinearity is present one cannot examine the individual effects 

of each explanatory variable. If the purpose is the estimation of individual coefficients, 

either the inclusion or the exclusion of intercorrelated variables will not help, because the 

estimates in both cases will most probably be imprecise. In this case the only real 

improvement in the estimate is to use additional information, for example extraneous 

estimates, larger samples, and so on. 

 If the purpose of the estimation is to predict the values of the dependent variable, 

then we may include the intercorrelated variables and ignore the problems of 

multicollinearity, provided that we are certain that the same pattern of intercorrelation of 

the explanatory variables will continue in the period of prediction (Koutsoyiannis, 1977). 

This is because multicollinearity will not affect the forecasts of a model but only the 

weights of the explanatory variables in the model. 

 




