
 
 

  
27

CHAPTER 4 
 

4. Modelling the Dynamic Structures of the Greek Stock 

Market: Applying an ARCH model 
 

In the following section, we estimate a model to examine several issues 

previously investigated in the economics and financial literature namely a) the relation 

between the level of market risk and required return, b) the asymmetry between positive 

and negative returns in their effects on conditional variance, c) fat tails in the conditional 

distribution of returns d) the contribution of non-trading days to volatility e) the inverse 

relation between volatility and serial correlation and f) the non-synchronous trading.  

We use the model developed by Nelson (1991), assuming an Autoregressive 

Moving Average representation for ( )thln . To allow for the possibility of non-normality 

in the conditional distribution of returns, we assume that the 
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from the Generalized Error Distribution (GED). The density of a GED random variable 

normalized to have a mean of zero and a variance of one is given by 
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The v  is a tail-thickness parameter. When 2=v , z  has a standard normal distribution. 

For 2<v , the distribution of z  has thicker tails than the normal (for 1=v , tz  has a 

double exponential distribution) and for 2>v , the distribution of z  has thinner tails than 

the normal (for ∞=v , tz  is uniformly distributed on the interval [ ]3,3− ). 

Thus, we model the log of the conditional variance as: 
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where L  is the lag operator. 

To account for the contribution of non-trading periods to market variance, we 

assume that each non-trading day contributes as much to variance as some fixed fraction 

of a trading day does. If, for example, this fraction is one tenth, than th  on a typical 

Monday would be 20 per cent higher than on a typical Tuesday.  

Thus we replace the constant term a  with: 

( )00 1ln δtt Naa ++= , 

where tN  is the number of non-trading days between trading days 1−t  and t , and 0a  

and 0δ  are parameters. Fama (1965) and French and Roll (1986) have found that non-

trading periods contribute much less than do trading periods to market variance, so we 

expect that 10 0 ≤< δ . 

To accommodate the asymmetric relation between stock returns and volatility 

changes we should use a function ( )tzg  instead of tz . The ( )tzg  must be a function of 

both the magnitude and the sign of tz . One choice, that in certain cases turns out to give 

th  well behaved moments, is to make ( )tzg  a linear combination of tz  and tz : 

( ) tttt zEzzzg −+=θ . 

Over the range ∞<< tz0 , ( )tzg  is linear with slope 1+θ , and over the range 

0≤<∞− tz , ( )tzg  is linear with slope 1−θ . Thus, ( )tzg  allows the conditional 

variance process th  to respond asymmetrically to rises and falls in stock price. 

Finally, we model the log of conditional variance as 
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The returns are modeled as: 
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where the conditional mean and variance of tu  at time t are 0 and th  respectively and 

3210 ,,, µµµµ  and 4µ  are parameters.  

The 12 −tyµ  term allows for the autocorrelation induced by discontinuous trading 

in the stocks making up an index. The th1µ  term allows the tradeoff between the 

expected returns and variance. The 13
4
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µµ  term allows for the inverse relation 

between volatility and serial correlation of returns. As we have already stated, it is 

difficult to estimate 4µ  in conjunction with 3µ  when using a gradient type of algorithm. 

For this reason, 4µ  is set to the sample variance of the series, 
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In order to maximize the likelihood functions, we use the Eviews 3.1 object LogL. The 

maximum likelihood parameter estimates were computed using the Marquardt algorithm 

as the BHHH algorithm fails to converge.  

For a given ARMA(p,q) order, the { } Tttz ,1=  and { } Ttth ,1=  sequences can be easily 

derived recursively given the data { } Ttty ,1=  and the initial values ( )1.max11 ,..., ++ qphh . Also, 

( ) ( )( )1.max11 ln,...,ln ++ qphh  were set equal to their unconditional expectations 

( )010 1ln δtNa ++ ,…, ( )( )01,max10 1ln δ++++ qpNa . This allows us to write the log likelihood 

as: 
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To select the order of the ARMA process for ( )thln , we use the Schwarz Criterion (SC) 

(Schwarz (1978)),  

( )( ) 1ln2 −+−= nnklSC , 



where k  is the number of estimated parameters, n  is the number of observations, and l  

is the value of the log likelihood function using the k  estimated parameters. The model 

with the lowest SC value is chosen as the most appropriate. Hannan (1980) showed that 

the SC provides consistent order estimation in the context of linear ARMA models. The 

asymptotic properties of the SC in the context of ARCH models are unknown. We do not 

use the Akaike Information Criterion (Akaike (1973)) as it tends to choose the model 

with the higher number of parameters. The table 4.1 lists the SC values for the various 

ARMA orders of the model1. 

 

 

Table 4.1. 
Schwarz criterion for exponential-E-GARCH(p,q) in Mean model. 

 MA order(q) 
AR order(p) 0 1 2 3 4 

0 -5.33388 -5.40385 -5.47692 -5.5028 -5.51895 
1 -5.33227 -5.61135 -5.61126 -5.61382 -5.61454 
2 -5.35678 -5.61002 -5.62066 -5.60734 -5.61569 
3 -5.33149 -5.60973 -5.61867 -5.61603 -5.61303 
4 -5.33477 -5.60905 -5.60569 -5.60204 -5.61363 

 

 

The ARMA(2,2) gives the SC lowest value. Nelson applied a similar model in 

daily returns for CRSP value weighted market index for July 1962 to December 1987 and 

selected the ARMA(2,1) order. 4.2 gives the parameters estimates, the estimated standard 

errors and the t-statistics of the Exponential E-GARCH(2,2) in Mean model: 
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1 The appendix provides the Econometric Views Code constructed to estimate the Exponential E-
GARCH(p,q) in Mean models that have been applied. 



Table 4.2.  
Parameters estimates for 

exp-EGARCH(2,2) in Mean model 
 Coefficient Std. Error z-Statistic Prob. 
     
α0 -8.0154 0.2537 -31.5996 0.000 
δ0 0.3777 0.0479 7.8887 0.000 
θ 0.0289 0.0426 0.6783 0.249 
∆1 1.7464 0.0490 35.6073 0.000 
∆2 -0.7488 0.0484 -15.4651 0.000 
Ψ1 0.5387 0.0428 12.5845 0.000 
Ψ2 -0.4979 0.0393 -12.6682 0.000 

µ1 2.2854 0.9667 2.3641 0.009 

µ0 -0.0003 0.0002 -1.3339 0.091 

µ2 0.1105 0.0353 3.1325 0.001 

µ3 0.2121 0.0638 3.3234 0.000 

ν 1.3908 0.0406 34.2749 0.000 

 

The estimated correlation matrix of the parameter estimates is presented in Table 4.3. 

These are computed from the inverse of the sum of the outer product of the first 

derivatives evaluated at the optimum parameter values. 

 

Table 4.3. Estimated correlation matrix for parameter estimates for 
exp-EGARCH(2,2) in Mean model (only lower triangle reported) 

 α0 δ0 θ ∆1 ∆2 Ψ1 Ψ2 µ1 µ0 µ2 µ3 ν 
α0 1            
δ0 -0.1284 1           
θ -0.0617 -0.1437            1          
∆1 -0.0774 0.0778 -0.0911 1         
∆2 0.0821 -0.0756 0.0920 -0.9999 1        
Ψ1 0.2972 0.0002 -0.0494 -0.4498 0.4504 1       
Ψ2 -0.2803 -0.0490 0.0747 0.2130 -0.2150 -0.9548 1      
µ1 -0.0807 -0.0183 0.1054 0.0050 -0.0049 -0.0843 0.0841 1     
µ0 0.0170 0.0512 0.1833 -0.0343 0.0331 0.0245 -0.0001 -0.5411 1    
µ2 0.0243 -0.0665 -0.0519 -0.0608 0.0606 0.1136 -0.1028 -0.0141 -0.0495 1   
µ3 -0.0012 0.0538 0.0250 0.0545 -0.0550 -0.0739 0.0678 -0.0142 0.0807 -0.8585 1  
ν 0.0388 0.2607 0.0660 -0.0895 0.0876 -0.1568 0.2211 0.0413 -0.0551 0.0125 -0.0397 1 

 

 

Let now examine the empirical issues raised in the previous Section. 

a) Market Risk and Expected Return: The estimated risk premium is positively 

correlated with conditional variance, with 2854.21 =µ  being statistically 



significant. This agrees with the significant positive relation between returns and 

conditional variance found by researchers using GARCH-M models (Chou (1987) 

and French, Schwert and Stambaugh (1987)), but contracts with the findings of 

Nelson (1991) who used a similar model and of other researchers not using 

GARCH models (Pagan and Hong (1988)). 

b) The asymmetric relation between returns and changes in volatility, as represented 

by θ  is insignificant. According to the leverage effect, θ  should be negative, as 

we should expect the volatility to rise (fall) when returns surprises are negative 

(positive). Episodes of high volatility should be associated with market drops. But 

looking at the plots of the daily conditional standard deviation of returns and the 

log value of the GI (Figure 4.1), we find that high volatility episodes are 

associated both with market peaks and drops. 

c) Fat Tails. It is well known that the distribution of stock returns has more weight in 

the tails than the normal distribution (much higher kurtosis than 3), and that a 

stochastic process is thick tailed if it is conditionally normal with a randomly 

changing conditional variance (like GARCH processes). In our case the model 

generates thick tails with both a randomly changing conditional variance th  and a 

thick tailed conditional distribution for tu . The estimated v  is approximately 1.39 

with a standard error of about 0.04, so the distribution of the tz  is significantly 

thicker tailed than the normal. 

d) The estimated contribution of non-trading days to conditional variance is roughly 

consistent with the results of French and Roll (1986). The estimated value of 0δ  

is about 0.38, which statistically significant, so a non-trading day contributes 

more than a third as much volatility as a trading day. 

e) The inverse relation between volatility and serial correlation for GI daily returns 

as represented by 3µ  term is statistically significant. Thus the conditional mean is 

a positive non-linear function of conditional variance. 

f) The 2µ  term equals 0.11 shows that the positive non-synchronous trading effect 

exists in the construction of the GI.  
 



 

 

 

 

 

Figure 4.1
The Log Value of the General Index of Athens Stock Exchange  and the Daily 

Conditional Standard Deviation of Returns 3/Aug/87 - 30/Jul/99 

3.5

4.5

5.5

6.5

7.5

8.5

9.5

8/3
/87

2/3
/88

8/3
/88

2/3
/89

8/3
/89

2/3
/90

8/3
/90

2/3
/91

8/3
/91

2/3
/92

8/3
/92

2/3
/93

8/3
/93

2/3
/94

8/3
/94

2/3
/95

8/3
/95

2/3
/96

8/3
/96

2/3
/97

8/3
/97

2/3
/98

8/3
/98

2/3
/99

Lo
g 

V
al

ue
s o

f G
I

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

D
ai

ly
 C

on
di

tio
na

l S
t. 

D
ev

ia
tio

n 
in

 p
er

ce
nt

The log value of the General Index
The Daily conditional Standard Deviation of Returns  

 



 
 

  
34




