CHAPTER 3

3. Empirical Evidence from the Greek Stock Market.

A Preliminary Analysis

The data set we will analyze (we are grateful to GrStocks.com for providing the
data) is the General Index of Athens Stock Exchange (hereafter GI). There are totally
2982 observations from 31 July 1987 to 30 July 1999.

Define
Y, = log(A]
pt—l

as the continuously compounded rate of return for GI at time ¢ (t = 1,...,2981), where p,

is the daily closing price of GI. The descriptive statistics for y, are presented in Table

3.1.
Table 3.1
Summary Statistics of y,
Saéri’rzlzle Mean Median | Maximum | Minimum | Std. Dev. | Skewness | Kurtosis Jgr;qrze
2981 0.000997 | 0.00035 | 0.24227 -0.1629 | 0.020398 0.38694 16.3209 | 22114.6

The kurtosis of 16,32 if far beyond that of normal distribution that is 3. Jarque-Bera is a
test statistic for testing whether the series is normally distributed. The Jarque-Bera test
statistic measures the difference of the skewness and kurtosis of the series with those
from the normal distribution. The statistic is computed as:

JB = N—_k(sz +1(K —3)2j
6 4

where S is the skewness, K is the kurtosis, and k represents the number of estimated

coefficients used to create the series. Under the null hypothesis of a normal distribution,

the Jarque-Bera statistic is distributed as X> with 2 degrees of freedom. The null

hypothesis of normality is rejected at any critical value.
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Figures 3.1 and 3.2 plot the p, and y, respectively. The p, is an upward trending
clearly non-stationary series. On the other hand the y, is a rather stable process around

its mean 0,000997 but with non-constant variance over time. We can clearly see that
these data satisfy the observation of Mandelbrot (1963), who wrote “... large changes
tend to be followed by large changes, of either sign, and small changes tend to be
followed by small changes...” The market volatility is changing over time, which

suggests a suitable model for the data should have a time varying volatility structure.

Figure 3.1
Daily Closing Prices of Athens Stock Exchange General Index
31 July 1987 - 30 July 1999
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Figure 3.2
Continuously Compounded Daily Returns for Athens Stock
Exchange General Index
1 August 1987 - 30 July 1999
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Volatility clustering phenomenon is even more obvious when the absolute return

s are plotted through time. Figure 3.3 plots the | y,| .

Figure 3.3
Absolute Continuously Compounded Daily Returns of Athens
Stock Exchange General Index
1 August 1987 - 30 July 1999
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According to efficient financial market theory, the stock market returns
themselves contain little serial correlation (Fama (1970)). Taylor (1986) studied the
correlations of the transformed returns for 40 series and concluded that the returns

process is characterized by more correlation between absolute and squared returns than

there is between the returns themselves. Table 3.2 shows the autocorrelation of y,, yt|

and y’ for lags 1 to 100. Figure 3.4 plots the autocorrelation function of y,, yt| and y;.

Table 3.2

Autocorrelations of y,,

y,| and y;

Data lag 1 lag 2 lag 3 lag4 Lag5 lag10 Lag20 1lag40 lag70 lag 100

Vi 0.209 0.001 -0.030 -0.055 -0.018 0.012 0.039 0.010 0.007 -0.009
[y 0410 0.344 0293 0324 0.265 0.225 0.208 0.125 0.100 0.086
vy 0.221 0229 0110 0310 0123 0129 0.071  0.026  0.036 0.027
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Figure 3.4
05 - Autocorrelation function of'y, |y|, y*2
Y
0.4 - Iyl
0.3 y'2
0.2

0.1

-01 -
1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

The straight lines in Figure 3.4 show the 95% confidence interval, which is equal to
i1,96ﬁ , for the estimated sample autocorrelation if the process y, is independent and

identically distributed (hereafter i.i.d.). The 21% of the autocorrelations are outside the

95% confidence interval for an i.i.d. process. Moreover, if y, is an 1.i.d. process, then
any transformation of y, is also an i.i.d. process. This clearly does not hold for the y,,
thus, the GI return is not an 1i.i.d. process.

Ding et al. (1993) examine the autocorrelation of | y,|df0r positive d where y, is

the S&P500 daily continuously compounded return. They found that all the power
transformations of the absolute returns have significant positive autocorrelations at least
up to lag 100, which supports the claim that the stock returns have long-term memory.
They also found that the autocorrelations are a smooth function of d. Monte Carlo
studies show that the ARCH models with appropriate parameters can produce the special

correlation patterns of the S&P 500 return series. We examine the sample

autocorrelations of the transformed absolute GI returns |yt|d for various positive d .

d

2

Table 3.3 shows the Corr{y,|",[y,..|") for d=0.1,0.2,03,05,07, 1,12, 15,17, 2, 3

Vir
and lags 1 to 100.
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Table 3.3

d
5

d) ford=0.1,0.2,0.3,0.5,0.7, 1, 1.2, 1.5, 1.7, 2, 3 and lags 1 to 100

Corr([yt

Viwe

D 0.1 0.2 0.3 0.5 0.7 1 1.2 1.5 1.7 2 3

lag 1 0.289 0.328 0.354 0.391 0411 0410 0.390 0.337 0.292 0.221 0.061
lag 2 0.257 0.295 0.316 0.341 0.351 0.344 0.329 0.296 0.270 0.229 0.111
lag 3 0.240 0.271 0.289 0.311 0316 0.293 0.262 0.204 0.164 0.110 0.021
lag 4 0.212 0.252 0.275 0.304 0.318 0.324 0.322 0.317 0.315 0.310 0.265
lag 5 0.213 0.245 0.262 0.282 0.284 0.265 0.240 0.196 0.165 0.123 0.038
lag10 | 0.147 0.174 0.192 0.216 0.227 0.225 0.214 0.187 0.165 0.129 0.043
lag20 | 0.144 0.172 0.190 0.214 0.222 0.208 0.186 0.142 0.112 0.071 0.009
lag40 | 0.140 0.156 0.163 0.164 0.153 0.125 0.102 0.067 0.048 0.026 0.001
lag70 | 0.084 0.100 0.109 0.116 0.114 0.100 0.087 0.066 0.053 0.036 0.008
lag 100 | 0.084 0.091 0.095 0.099 0.098 0.086 0.074 0.054 0.042 0.027 0.005

Figure 3.5 plots the auto-correlogram of |yt|d from lag 1 to 100 for 4 = 0.1, 0.2, 0.3, 0.5

in Figure 3.5.1, ford=10.7, 1, 1.2 in Figure 3.5.2 and for d = 1.5, 1.7, 2 in Figure 3.5.3.

Figure 3.5.1
Autocorrelation of [y|*d ford = 0.1, 0.2, 0.3, 0.5
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Figure 3.5.2
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Figure 3.5.3
Autocorrelation of [y|*d for d =1.5, 1.7, 2
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The autocorrelations decrease fast in the first trading days and then decrease very slowly.
A very interesting finding from the Table 3.3 is that the autocorrelations has the largest

value for d=1 and then decrease monotonically. Figure 3.6 shows a 3 dimensional plot

d
5

of Corr “). Figures 37.1, 3.7.2, 3.7.3 and 3.7.4 give the plots of
Vi g g p

yt+’L’

d
9

“)att=1,2,5, 10.

Corr([y[ Vi

Figure 6

Autocorrelation of |3.!|'I| for d=1,...,5 and lag 1 to 100
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It is clear from these figures that the autocorrelation function is a smooth function of d.

For each t there is a unique point d” between 0.4 and 0.8 such that Coer V,

reaches its maximum at this point, Corr(l V,

d*
™,

d
5

')

d) for each d.

yH—‘L’

d*)> Corr(|y1|d ,

yl+‘l7 yH‘c

Also, for each t there is a unique point d' between 2 and 3 such that when d < d’ the

d

2

Corr(l Vil oV

convex function of d .

Figure 3.7.1 Autocorrelation of [y|d atlag 1

d) is a concave function and when d >d' the Corr(lyt

d

2

dy .
)ISEL

yt+‘r

Figure 3.7.2 Autocorrelation of |y|*d atlag 2
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Figure 3.7.3 Autocorrelation of |y|d atlag 5 0.25 Figure 3.7.4 Autocorrelation of |y|*d atlag 10
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The GI returns exhibits almost identical pattern to S&P 500 returns, thus the returns of

the Greek Stock Market are characterized by long-term memory pattern.
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