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CHAPTER 2 

 

2. Maximum Likelihood Estimation 
 

Suppose we are interesting in estimating the parameters of a model with GARCH(p,q) 

disturbances. Let the conditional mean be 

ttt ubxy +′=  

Here tx  denotes a vector of explanatory variables, which could include lagged values of 

y. The disturbances tu  are assumed to be:1 
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Let ( )pttqttt hhuuv −−−−=′ ,...,,,...,,1 1
22

1 , ( )pqaaa ββω ,...,,,...,, 110=′ , ( )ωθ ′′= ,b  and 

mR⊆Θ∈θ . Under normality the conditional distribution of ty  is Gaussian with mean 

bxt′   and variance th : 
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The sample log likelihood function for a sample of T observations is: 
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The first and second derivatives of the log of the conditional likelihood of the tth 

observation with respect to the variance parameters are: 

                                                           
1 1−tI  denotes any information available at time 1−t  
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The Information matrix corresponding to ω  is given as: 
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The first and second derivatives of the log of the conditional likelihood of the tth 

observation with respect to the mean parameters are: 
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The Information matrix corresponding to b  is given as: 
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The elements in the off-diagonal block in the information matrix are zero: 
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The likelihood function can be maximized numerically using the BHHH algorithm 

(Berndt et al. (1974)1). Let ( )iθ  denote the parameter estimates after the ith iteration. ( )1+iθ  

is the calculated from: 

( ) ( ) ∑∑
=

−

=

+

∂
∂









′∂

∂
∂
∂

+=
T

t

t
T

t

tt
i

ii LLL
1

1

1

1

θθθ
λθθ , 

where θ∂
∂ tL  is evaluated at ( )iθ  and iλ  is a variable step length chosen to maximize the 

likelihood function in the given direction. The maximum likelihood estimate Tθ̂  is 

strongly consistent for 0θ  and asymptotically normal with mean 0θ  and covariance 
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(Tth) BHHH iteration: 
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Note that when the outer product is near singular we may use a ridge correction in order 

to handle numerical problems and improve the convergence rate. The Marquardt 

algorithm modifies the BHHH algorithm by adding a correction matrix to the sum of the 

outer product of the gradient vectors. The Marquardt updating algorithm is given by: 
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where I  is the identity matrix and a  is a positive number (chosen by the algorithm). The 

effect of this modification is to push the parameter estimates in the direction of the 

gradient vector. The idea is that when we are far from the maximum, the local quadratic 

approximation to the function may be a poor guide to its overall shape, so we may be 

better off simply following the gradient. The correction may provide better performance 

at locations far from the optimum, and allows for computation of the direction vector in 

cases where the Hessian is near singular. 

                                                           
1 The BHHH algorithm is similar to Newton-Raphson algorithm, but replaces the negative of the Hessian  
(second derivative of the log likelihood function with respect to the vector of unknown parameters) by an 
approximation formed from the sum of the outer product of the gradient vectors for each observation’s 
contribution to the objective function. This approximation is asymptotically equivalent to the actual 
Hessian when evaluated at the parameter values, which maximize the function.  
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2.1 Maximum Likelihood Estimation under non-normality 
 

The standard ARCH models assume that the disturbances of the model when 

divided by their true conditional standard deviation are standard normal variables: 

ttt huz ≡  

However the unconditional distribution of many financial time series seems to have fatter 

tails than allowed by the Gaussian distribution. Some of this can be explained by the 

presence of ARCH model. As we have already stated, even if tz  has a normal 

distribution, the unconditional distribution of tu  is non-normal with heavier tails than a 

normal distribution. Even so, there is a fair amount of evidence that the conditional 

distribution of tu  is often non-normal as well. Thus, Bollerslev (1987) proposed that tz  is 

drawn from a t-distribution with n degrees of freedom, where n is regarded as parameter 

to be estimated by maximum likelihood. The same approach is used with other 

distributions for tz . Other distributions that have been employed are the Generalized 

Error distribution of Nelson (1991), the Normal-Poisson mixture distribution of Jorion 

(1988), the Generalized t-distribution of Bollerslev, Engle and Nelson 1994), the Power 

Exponential distribution of Baillie and Bollerslev (1989), the normal-log normal mixture 

of Hsieh (1989) and others. 

 

2.2 Quasi Maximum Likelihood Estimation 
 

Bollerslev and Wooldridge (1992) showed that the maximization of the Normal 

log likelihood function can provide consistent estimates of the parameter vector ω  even 

when the distribution of tu  in non normal, provided that 
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However, the standard errors have to be adjusted. Let Tθ̂  be the estimate that maximizes 

the normal log likelihood and let 0θ  be the true value that characterizes the linear 

representations: 
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Then even when the tz  is non normal, under certain regularity conditions: 
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The matrix S  can be consistently estimated by: 
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and the matrix D  can be consistently estimated by: 
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Standard errors for Tθ̂  that are robust to misspecification of the family of densities can 

thus be obtained from the square root of diagonal elements of 
111 ˆˆˆ −−−

TTT DSDT . 
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Recall that if the model is correctly specified so that the data were really 

generated by a Gaussian model, then DS =  and this specifies to the usual asymptotic 

variance matrix for maximum likelihood estimation: 
11 ˆ −−

TST . 


