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CHAPTER 1 
 
1. ARCH models 
 

1.1 Introduction 
 

A crucial assumption in many statistical models is that of constant variance. 

Lately, a family of time series models has been developed relaxing the assumption of 

constant variance through time. This family is called Autoregressive Conditional 

Heteroskedasticity (ARCH) Models and was introduced by Engle (1982). These are 

conditional mean zero, serially uncorrelated stochastic processes with non-constant 

variances conditional on past, but invariant unconditional variances. The variance of the 

dependent variable is modeled as a function of past values of the dependent variable and 

independent, or exogenous variables. Autoregressive Conditional Heteroskedasticity 

(ARCH) models are specifically designed to model and forecast conditional variances. 

They been successfully applied in macroeconomic and financial time series in order to 

model and forecast volatility. Some of the areas where the ARCH models are widely used 

are: i) portfolio risk analysis, ii) option pricing, iii) time-varying confidence intervals 

forecasting. The aim is to obtain more accurate intervals of conditional mean by 

modeling the variance of the errors.  

Our research proceeds as follows. Chapter 1 presents the most important 

regularities govern asset returns volatility and the incorporation of them in modeling both 

the conditional mean and conditional variance. The next Chapter provides the 

formulation of maximum likelihood estimators and their properties under the assumption 

of normality and under the absence of normality. In Chapter 3, we examine the dynamic 

structure of Greek Stock Market. Chapter 4 contains an empirical application of ARCH 

processes in Greek Stock Market. Chapter 5 deals with the conclusions of the research. 
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1.2 Autoregressive Conditional Heteroskedasticity Processes 
 

Consider a stochastic process of interest ( ){ }0θty  parametrized by the finite 

dimensional vector mR⊆Θ∈0θ , where 0θ  denotes the true value, with conditional 

mean  

( ) ( ) ( )t1t1tt0t yEI|yE −− ==θµ    t=1,2,… 

1−tI  denotes any information available at time 1−t  (Information Set at time 1−t ). 

Define the ( ){ }0θtu  process by  

( ){ } ( ){ }00 θµθ ttt yu −≡   t=1,2,… 

The ( ){ }0θtu  process is then defined to follow an ARCH model if the conditional mean 

equals zero, 

( )( ) 001 =− θtt uE , 

but the conditional variance varies through time, 

( ) ( )( ) ( )( )0
2

1010 θθθ ttttt uEuVarh −− == . 

 

1.2.1 Modeling the conditional variance 
 

Numerous parametric specifications for the time varying conditional variance 

have been proposed in the literature. The first model is the ARCH(q) model introduced 

by Engle (1982). The conditional variance is a linear function of the past q squared 

innovations1: 

∑
=

−+=
q

i
itit uaah

1

2
0 , 0a >0, ≥ia 0, i=1,…,q. 

In empirical applications of ARCH(q) models a long lag length and a large number of 

parameters are often needed. Thus, Bollerslev (1986) generalized the ARCH(q) model 

and introduced the General Autoregressive Conditional Heteroskedasticity GARCH(p,q) 

                                                           
1 The term "innovation" is used instead of the "residual" and expresses the unpredictable part of a financial 
series. 
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model. The conditional variance is a linear function of the past q squared innovations and 

the past p conditional variances: 
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0 β , 0a >0, ≥ia 0, i=1,…,q, 

                                        0≥jβ , j=1,…,p. 

 

       Note that the model is covariance stationary if and only if 1
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case, the unconditional variance of tu  is given by: 
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 In empirical investigations the estimate of ∑∑
==

+
p
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ia

11
β  is very close to unity. Engle 

and Bollerslev (1986) referred to a model satisfying 1
11

=+∑∑
==

p

j
j

q

i
ia β  as an integrated 

GARCH process, denoted IGARCH(p,q). Under an IGARCH process the unconditional 

variance of tu  is infinite, so neither tu  not 2
tu  satisfies the definition of a covariance 

stationary process. 

GARCH models are suitable to capture some characteristics of financial markets. 

They elegantly capture the volatility clustering in asset returns first noted by Mandelbrot 

(1963): “… large changes tend to be followed by large changes of either sign, and small 

changes tend to be followed by small changes…”. The volatility clustering phenomenon 

is apparent when asset returns are plotted through time. Figure 1.1 plots the daily returns1 

on the English FTSE All Shares stock index from 1969 to 1997 (we are grateful to 

GrStocks.com for providing the data). 

                                                           
1 The returns are expressed in percent and are continuously compounded. 
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Figure 1.1
FTSE All Shares Daily Returns 2/1/1969 31/12/1997 
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 It is clear from visual inspection of the figure that the returns are not independent 

identically distributed through time. Volatility was clearly higher during the 1970’s than 

during the 1990’s. Large changes tend to be followed by large changes around 1975, of 

either sign, and small changes tend to be followed by small changes during the last years. 

The structure of a GARCH model imposes an important limitation. GARCH models 

assume that only the magnitude and not the positivity or negativity of innovations 

determines the feature of th  because th is a function of lagged th  and lagged 2
tu  and so is 

invariant to changes in the algebraic sign of the 2
tu ’s. 

 On the other hand, asset returns tend to be leptokurtic (heavily tailed). For 

example, the kurtosis for the daily returns on the FTSE All Shares is 13,02. Denote as 

( ) ( ) ( )000 θθθ ttt huz ≡  

the standardized process, it will have conditional mean zero and time invariant 

conditional variance unity. If the conditional distribution for tz  is furthermore assumed 

to be time invariant with finite fourth moment, then the unconditional distribution for tu  

will have fatter tails than the distribution for tz . For instance, for the ARCH(1) model 
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with conditionally normally distributed errors, ( ) ( )
( )2

1

2
1

22

4

31
13

)( a
a

uE
uE

t

t
−

−= , if 2
13a <1, 

and  ∞=)(
)(

22

4

t

t
uE

uE  otherwise; both of which exceed the normal value of three. 

 Financial markets are characterized by the so called “leverage effect”, first noted 

by Black (1976). The “leverage effect” refers to the tendency for the changes in the stock 

prices to be negatively correlated with changes in stock volatility. I.e. volatility tends to 

rise in response to “bad news” (returns lower than expected) and fall in response to “good 

news” (returns higher than expected). 

 

Exponential GARCH MODEL 

 Nelson (1991), proposed the following model for the evolution  of the conditional  

variance of tu :  
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This model is referred to as exponential GARCH, or EGARCH. In this model, th  

depends on both the magnitude and the sign of lagged residuals. The δ  parameter allows 

for the asymmetric effect. If 0=δ  then a positive surprise has the same effect on 

volatility as a negative surprise. If 01 <<− δ , a positive surprise increases volatility less 

than a negative surprise. If 1−<δ , a positive surprise actually reduces volatility while a 

negative surprise increases volatility. For 0<δ  the “leverage effect” exists. Since 

EGARCH describes the log of  th , the th  will be positive regardless of whether the jπ  

coefficients are positive. Thus, in contrast to the GARCH model, no restrictions need to 

be imposed on the model for estimation. Theorem 2.1 in Nelson (1991) implies that 

thlog , th  and tu  are all strictly stationary, provided that ∞<∑
∞

=1

2

j
jπ . We can express the 

infinite moving average representation of the model as the ratio of two finite order 

polynomials. Thus, an ARMA process provides a simpler parameterization of the form.  
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We denote it as EGARCH(p,q): 
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1 1
0 loglog βδ . 

The EGARCH model can be estimated by the maximum likelihood method by specifying 

a density for tz . Nelson proposed as density function for the standardized process 

ttt huz /≡ the generalized error distribution1 (Harvey (1981), Box and Tiao (1973)) 

normalized to have zero mean and unit variance:  

( )v

evzf
v

v

z

t

v
t

12
)( 1

2 1

Γ⋅

⋅
= +

− −

λ

λ

 

where ( )⋅Γ  denotes the gamma function, λ  is a constant given by 
( )

( )
2

1
2

3

12
1















Γ

Γ
≡

−−

v

v
v

λ  

and v  is a positive parameter governing the thickness of the tails. Note that for 2=v , the 

constant λ  is equal to 1 and the generalized error distribution reduces to the standard 

normal density. If 2<v  the density has thicker tails than the normal whereas for 2>v  it 

has thinner tails. I.e. for 1=v , tz  has a double exponential distribution whereas for 

∞=v , tz  is uniformly distributed on the interval [ ]3,3− . 

The family of ARCH models is remarkably rich. Another route for introducing 

asymmetric effects is to set: 

( ) ( )[ ] ∑∑
=

−
=

−−
−

−−
+ +≤+>+=

p

j
jtj

q

i
titititit huuIauuIaah

11
110 00 β , 

where ( )⋅I  denotes the indicator function2. The model introduced by Zakoian (1990) is 

called Threshold ARCH or TARCH(p,q). 

Glosten, Jagannathan and Runkle (1993) introduced the GJR(p,q) model with the 

following form: 

                                                           
1 Box and Tiao call the GED the exponential power distribution. 
2 ( ) 10 =>−ituI  if 0>−itu , otherwise zero. ( ) 10 =≤−ituI  if 0≤−itu , otherwise zero. 
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( ) ∑∑
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2
0 0 βδ , 

where ( )⋅I  denotes the indicator function. The “leverage effect” is supported if 01 >δ . 

“Good news” has got an impact of ia  and “bad news” has got an impact of 1δ+ia . 

Engle (1990), proposed the Asymmetric ARCH or AARCH(p,q) model: 

( ) ∑∑
=

−
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−− +++=
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j
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11

2
0 βδ , 

where a negative value of iδ  means that positive returns increase volatility less than 

negative returns. 

Taylor (1986) modeled the conditional standard deviation function instead of conditional 

variance. Schwert (1989) modeled the conditional standard deviation as a linear function 

of lagged absolute residuals. 

 The Taylor/Schwert GARCH(p,q) model is defined as 
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Higgins and Bera (1992) introduced the Non-linear ARCH or NARCH(p,q) model: 
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Geweke (1986) and Pantula (1986) introduced the log-ARCH(p,q) model: 

( ) ( ) ( )∑∑
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Sentana (1995) introduced the Quadratic ARCH or QARCH(p,q) model of the form 
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Ding, Granger and Engle (1993) introduced the Asymmetric Power ARCH or 

APARCH(p,q) model: 
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which includes seven ARCH models as special cases1. Ding, Granger and Engle (1993) 

estimate the Standard & Poor’s 500 (hereafter S&P 500) returns by the APARCH(1,1) 

model and the estimated power 2/γ  for the conditional heteroskedasticity function is 

1.43, which is significantly different from 1 (Taylor/Schwert model) or 2 (GARCH 

model).  

 

Non-trading periods 
Information that accumulates when financial markets are closed is reflected in prices after 

the markets reopen. If, for example, information accumulates at a constant rate over 

calendar time, then the variance of returns over the period from the Friday close to the 

Monday close should be three times the variance from the Monday close to the Tuesday 

close. Fama (1965) and French and Roll (1986) have found, however, that information 

accumulates more slowly when the markets are closed than when they are open. 

Variances are higher following weekends and holidays than on other days, but not nearly 

by as much as would be expected if the news arrival rate were constant. For instance, 

using data on daily returns across all NYSE stocks from 1963 to 1982, French and Roll 

(1986) found that volatility is 70 times higher per hour on average when the market is 

open than when it is closed. Baillie and Bollerslev (1989) report qualitatively similar 

results for foreign exchange rates. 

 

1.2.2 Modeling the conditional mean 
 

The conditional mean ( ) ( )ttt yE 10 −=θµ  should be modeled in order to incorporate 

information from empirical regularities of asset returns. 

 

Non-synchronous trading 
According to efficient market theory, the stock market returns themselves contain 

little serial correlation. Moreover, when high frequency data is used, the non-synchronous 

trading in the stocks making up an index induces positive first order serial correlation in 

                                                           
1 ARCH, GARCH, Taylor/Schwert GARCH, GJR, TARCH, NARCH and logARCH 
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the return series. To control this Scholes and Williams (1977) suggested a first order 

moving average form, while Lo and Mackinlay (1988) suggested a first order 

autoregressive form. Nelson (1991) wrote “as a practical matter, there is little difference 

between an AR(1) and an MA(1) when the AR and MA coefficients are small and the 

autocorrelations at lag one are equal”.  

 

Risk return tradeoff 
Many theories in finance are dealt with the tradeoff between the expected returns 

and variance, or the covariance among the returns. According to the Capital Asset Pricing 

Model (CAPM) the excess returns1 on all risky assets are proportional to the non-

diversifiable risk as measured by the covariances with the market portfolio. 

The CAMP in its traditional form is as follows: 

( ) ( )[ ] 2
m

im
fmfi RRERRE
σ
σ

−+= . 

The expected rate of return on i  asset ( )iRE  is equal to the risk free rate of return fR  

plus a risk premium. The risk premium is the price of risk multiplied by the quantity of 

risk. The price of risk is the difference between the expected rate of return on the market 

portfolio and the risk free rate of return. The quantity of risk is often called beta and is: 

( )
( )m

mi

m

im
i RVar

RRCov ,
2 ==

σ
σ

β . 

The CAPM is based on the Capital Market Line (CML). The CML is the linear efficient 

set2, which is the same for all the investors under the assumption they have homogeneous 

beliefs. The equation for the CML is: 

 

( ) ( )[ ]
( ) ( )p

m

fm
fp R

R
RRE

RRE σ
σ

−
+= . 

                                                           
1 Asset return minus the risk free interest rate. As an approximation to the risk free interest rate we usually 
use the three month Treasury Bill return.  
2 The efficient set is the set of mean-variance choices from the investment opportunity set where for a given 
variance no other investment opportunity offers a higher mean return. 



 
 

  
10

The expected return for an efficient portfolio p  of assets, ( )pRE , is equal to the risk free 

rate of return, fR , plus a slope, 
( )[ ]
( )m

fm

R
RRE

σ

−
, times the variance of returns on the 

efficient portfolio p . Thus, the CML provides a simple linear relationship between the 

risk and return for efficient portfolios of assets.1 Merton (1973) in Intertemporal Capital 

Asset Pricing Theory showed that the expected excess return on the market portfolio is 

linear in its conditional variance. 

 The ARCH in mean or ARCH-M model, introduced by Engle et al. (1987), was 

designed to capture such relationships. In the ARCH-M model the conditional mean is an 

explicit function of the conditional variance: 

( ) ( )[ ]θθθµ ,tt hg= , 

where the derivative of the ( ).,.g  function with respect to the first element is non-zero. 

The most commonly employed specifications of the ARCH-M model postulate a linear 

relationship in th  or 2/1
th , e.g. ( )[ ] tt hhg 10, µµθθ += . A positive as well as a negative 

relationship between risk and return could be consistent with the financial theory. We 

expect a positive relationship if we assume a rational risk averse investor who requires a 

larger risk premium during times the payoff of the security is riskier. But we expect a 

negative relationship under the assumption that during relatively riskier periods the 

investors may want to save more. In applied researches, there is evidence for both 

relationships. French, Schwert and Stambaugh (1987) found positive risk return tradeoff 

for the excess returns on the Standard & Poor’s composite portfolio although statistically 

significant not in all the periods. Bollerslev, Engle and Nelson (1994) found positive, not 

always statistically significant, relationship for the returns on Dow Jones, Standard 90 

and S&P 500. Nelson (1991) found negative but insignificant relationship for the excess 

returns on the CRSP (Center for Research in Security Prices) value weighted market 

index.  

 

Volatility and Serial Correlation 
LeBaron (1992) found a strong inverse relation between volatility and serial correlation  
                                                           
1 For more information about CAPM, CML and efficient portfolios see Copeland and Weston (1992). 
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for Standard & Poor’s, CRSP value weighted index, Dow Jones and IBM returns. He 

introduced the Exponential Autoregressive GARCH model or EXP-GARCH in which the 

conditional mean is a non-linear function of conditional variance: 

( ) 12
3

−

−

= t

h

t ye
t

µµθµ , 

As LeBaron stated, it is difficult to estimate 3µ  in conjunction with 2µ  when using a 

gradient type of algorithm. For this reason, 2µ  is set to the sample variance of the series. 

LeBaron found that 2µ  is significantly negative and remarkably robust to the choice of 

sample period, market index, measurement interval and volatility measure. 
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