
Multivariate control charts are a powerful tool in Statistical Process Control for iden-

tifying an out-of-control process. Woodall and Montgomery (1999) emphasized the need

for much more research in this area since most of the processes involve a large number of

variables that are correlated. As Jackson (1991) notes, any multivariate quality control

procedure should fulfill four conditions 1) Single answer to the question “Is the process in-

control?” 2) An overall probability for the event “Procedure diagnoses an out-of-control

state erroneously” must be specified 3) The relationship among the variables must be

taken into account and 4) Procedures should be available to answer the question “If the

process is out-of-control, what is the problem?”. The last question has proven to be

an interesting subject for many researchers in the last years. Woodall and Montgomery

(1999) state that although there is difficulty in interpreting the signals from multivariate

control charts more work is needed on data reduction methods and graphical techniques.
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In this chapter we present the available solutions for the problem of identification and

additionally we propose a new method based on principal components analysis (PCA),

for detecting the out-of-control variable, or variables, when a multivariate control chart

for individual observations signals. Section 5.2 describes the use of univariate control

charts for solving the above stated problem, whereas Section 5.3 gives the use of an

elliptical control region. In Section 5.4 a 6 2 decomposition is presented. Section 5.5

summarizes the methods based on principal components analysis. A presentation of the

new method, is given in the Section 5.6 with some interesting points and discussion on

the performance and application of the new method. Moreover, a comparative study

evaluates the performance of the proposed method in relation to the existing methods

that use PCA. Finally, graphical techniques that attempt to solve the problem under

investigation are presented in Section 5.7.

The use of & univariate control charts, gives a first evidence for which of the & variables

are responsible for an out-of-control signal. However, there are some problems in using

& univariate control charts in place of �2-Chart. These problems are that, the overall

probability of the mean plotting outside the control limits if we are in-control is not

controlled and the correlations among the variables are ignored. The problem of ignoring

the correlations among the variables cannot be solved. The problem of controlling the

overall probability of the mean plotting outside the control limits if we are in-control can

be solved by using & univariate control charts with Bonferroni limits.
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The use of Bonferroni control limits, was proposed by Alt (1985). Bonferroni control

limits can be used to investigate which of the & variables are responsible for an out-of-

control signal. Using the Bonferroni method the following control limits are established


�� = �� + �1−��2�
��
�

��� = �� �1−��2�
��
�
�

Thus, & individual control charts can be constructed, each with probability of the mean

plotting outside the control limits if we are in-control, equal to ��& and not �. However,

as Alt (1985) states, this does not imply that & univariate control charts should be used

in place of �2-Chart.

Hayter and Tsui (1994) extended the idea of Bonferroni type control limits by giving

a procedure for exact simultaneous control intervals for each of the variable means. The

control procedure operates as follows. For a known variance-covariance matrix Σ and

a chosen probability of the mean plotting outside the control limits if we are in-control

�, the experimenter first evaluates the critical point �	�� where R is the correlation

matrix obtained from Σ. Then, following any observation x
 = (�1� �2� ���� ��), the

experimenter constructs confidence intervals

(�� ���	��� �� + ���	��)

for each of the & variables. This procedure ensures that an overall probability of the

mean plotting outside the control limits if we are in-control � is achieved. The process

is considered to be in-control as long as each of these confidence intervals contains the
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respective standard value �0�. The process is considered to be out-of-control if any of these

confidence intervals does not contain the respective standard value �0�. The variable or

variables whose confidence intervals do not contain �0�, are identified as those responsible

for the out-of-control signal.

This procedure signals when

� = ��� �� �0� ��� � �	���

Hayter and Tsui (1994) give guidance and various tables for choosing the critical point

�	��.

The second method uses an elliptical control region. This method is discussed by Alt

(1985) and Jackson (1991) and can be applied only in the special case of two quality

characteristics.

The simplest case in multivariate statistics is when the vector x = �1
�2
has a bivariate

normal distribution, where �� is distributed normally with mean ��, standard deviation

��, 	= 1, 2 and C is the correlation coefficient between the two variables. In this case

an elliptical control region, can be constructed. This elliptical region is centered at

µ

0 = (�1� �2) and can be used in place of the �

2-chart. All points lying on the ellipse

would have the same value of �2. While, �2-Chart gives a signal every time the process

is out-of-control, the elliptical region is useful in indicating which variable led to the

out-of-control signal.

Therefore, a 100 (1 �)% elliptical control region can be constructed by applying

the following equation as given by Jackson (1991)

D =
1

1 C2
�1 �1
�1

2

+
�2 �2
�2

2
2C (�1 �1) (�2 �2)

�1�2
= �2

2�1−��
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A unique ellipse is defined for given values of �1� �2� �1� �2� C and �. Points on the

perimeter of the ellipse may be determined by setting �1 equal to some constant and

solving the resulting quadratic equation for �2.

Mader et al. (1996) presented the use of the elliptical control region for power supply

calibration.

2

The third method is the use of 6 2 decomposition, which is proposed by Mason, Tracy

and Young (1995,1997). The main idea of this method (MYT) is to decompose the 6 2

statistic into independent parts, each of which reflects the contribution of an individual

variable. This method is developed for the case of individual observations, but according

to the authors it can be applied also with a few modification for the case of rational

subgroups.

In this section we also present, the methodologies of Roy (1958), Murphy (1987), Do-

ganaksoy et al. (1991), Hawkins (1991, 1993), Timm (1996) and Runger and Montgomery

(1996), which are included in the MYT partitioning of 6 2.

6 2

Mason et al. (1995) presented the following interpretation method of an out-of-

control signal. The 6 2 statistic can be broken down or decomposed into & orthogonal

components. One form of the MYT decomposition is given by

6 2 = 6 21 + 6
2
2·1 + 6

2
3·1�2 + ���+ 6

2
�·1�2������−1 = 6

2
1 +

�−1


=1

6 2
·1�2�����
−1�

The first term of this decomposition, 6 21 , is an unconditional Hotelling’s 6
2 for the
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first variable of the observation vector x,

6 21 =
�1 �1

%1

2

�

where �1 and %1 is the mean and standard deviation of variable �1, respectively.

The general form of the other terms, referred to as conditional terms, is given as

6 2
·1�2�����
−1 =
(�
 �
·1�2�����
−1)2

%2
·1�2�����
−1
� for - = 1� 2� ���� &�

where

�
·1�2�����
−1 = �
 + b



 X

(
−1)
� X

(
−1)

andX(
−1)
� is the (- 1)�� vector excluding the -�� variable, �
 is the sample mean of the

-�� variable, b
 = [S−1xxS�x] is a (- 1)�� dimensional vector estimating the regression

coefficients of the -�� variable regressed on the first (- 1) variables,

%2
·1�2�����
−1 = %
2
� S
�xS

−1
xxS�x

and

S =
Sxx S�x

S
�x %2�

�

Consequently, the 6 2
·1�2�����
−1 value is the square, of the -�� variable adjusted by the

estimates of the mean and standard deviation of the conditional distribution of �
 given

�1� �2� ���� �
−1 and its exact distribution is as follows

6 2
·1�2�����
−1
�+ 1

�
* (1� � 1) �

Thus, this statistic can be used to check whether the -�� variable is conforming to

the relationship with other variables as established by the historical data set, since the

adjusted observation is more sensitive to changes in the covariance structure.
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The ordering of the & components is not unique and the one given above represents

only one of the possible &! different ordering of these components. Each ordering generates

the same overall 6 2 value, but provides a distinct partitioning of 6 2 into & orthogonal

terms. If we exclude redundancies, there are & 2�−1 distinct components among the

& &! possible terms that should be evaluated for potential contribution to signal.

Similarly, the & unconditional 6 2 terms based on squaring a univariate � statistic can

be computed and then be compared to the appropriate * distribution. Moreover, the

distances !� = 6
2 6 2� can be computed and also be compared to the * distribution.

The following is a sequential computational scheme that has the potential of further

reducing the computations to a reasonable number when the overall 6 2 signals, as was

proposed by Mason, Tracy and Young (1997).

Step 0: Conduct a 6 2 test with a specified nominal confidence level �. If an out-of-

control condition is signaled then continue with the step 1.

Step 1: Compute the individual 6 2 statistic for every component of the x vector.

Remove variables whose observations produce a significant 6 2� . The observations on these

variables are out of individual control and it is not necessary to check how they relate to

the other observed variables. With significant variables removed we have a reduced set

of variables. Check the subvector of the remaining � variables of a signal. If you do not

receive a signal we have located the source of the problem.

Step 2: Optional: Examine the correlation structure of the reduced set of variables.

Remove any variable having a very weak correlation (0.3 or less) with all the other

variables. The contribution of a variable that falls in this category is measured by the

6 2� component.

Step 3: If a signal remains in the subvector of � variables not deleted, compute all 6 2�·


terms. Remove from the study all pairs of variables, (��� �
), that have a significant 6 2�·
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term. This indicates that something is wrong with the bivariate relationship. When this

occurs it will further reduce the set of variables under consideration. Examine all removed

variables for the cause of the signal. Compute the 6 2 terms for the remaining subvector.

If no signal is present, the source of the problem is with the bivariate relationships and

those variables that were out of individual control.

Step 4: If the subvector of the remaining variables still contains a signal, compute

all 6 2�·
�� terms. Remove any triple, (��� �
� ��), of variables that show significant results

and check the remaining subvector for a signal.

Step 5: Continue computing the higher order terms in this fashion until there are

no variables left in the reduced set. The worst case situation is that all unique terms will

have to be computed.

Generally, the 6 2 statistic associated with an observation from a multivariate prob-

lem is a function of the residuals taken from a set of linear regressions among the various

process variables. These residuals are contained in the conditional 6 2 terms of the or-

thogonal decomposition of the statistic. Mason and Young (1999) showed that a large

residual in one of these fitted models can be due to incorrect model specification. By

improving the model specification at the time that the historical data set is constructed,

it may be possible to increase the sensitivity of the 6 2 statistic to signal detection. Also,

they showed that the resulting regression residual, can be used to improve the sensitivity

of the 6 2 statistic to small but consistent process shifts, using plots that are similar to

cause-selecting charts.

The productivity of an industrial processing unit often depends on equipment that

changes over time. These changes may not be stable, and, in many cases, may appear

to occur in stages. Although changes in the process levels within each stage may appear

insignificant, they can be substantial when monitored across the various stages. Standard

process control procedures do not perform well in the presence of these step-like changes,

especially when the observations from stage to stage are correlated. Mason et al. (1996)

present an alternative control procedure for monitoring a process under these conditions,
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which is based on a double decomposition of Hotelling’s 6 2 statistic.

The method that is presented in this subsection was proposed by Doganaksoy et al.

(1991). The main idea of this method is the use of the univariate � ranking procedure

and it is based on & unconditional 6 2 terms. The statistic used is

� =
� ���$" � ���$-

%��
1

����
+ 1

�
��

�

where � ���$" is the mean of the new sample, � ���$- is the mean of the reference sample,

%�� is the estimate of the variance of the 	�� variable from the reference sample, ��$" is

the size of the new sample and ��$- is the size of the reference sample. The steps of this

algorithm are the following

Step 1: Conduct a 6 2 test with a specified nominal significance level �. If an out-

of-control condition is signalled then continue with step 2.

Step 2: For each variable calculate the smallest significance level ���. that would yield

an individual confidence interval for (����$- ����$") that contains zero, where ����$" and

����$- are the mean vectors of the populations from which the reference and new samples

are drawn, respectively. For this ���., let � be the calculated value of the univariate

� statistic for a variable and 6 (�� �) be the cumulative distribution function of the �

distribution with � degrees of freedom. Then ���. = [26 (�;��$- 1) 1].

Step 3: Plot ���. for each variable on a 0-1 scale. Note that variables with larger

���. values are the ones with relatively larger univariate � statistic values which require

closer investigation as possible being among those components which have undergone a

change. If indications of highly suspect variables are desired then continue.

Step 4: Compute the confidence interval �#/�- that yields the desired nominal
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confidence interval ���� of the Bonferroni type simultaneous confidence intervals for

����$- ����$". Here, �
#/�- = [(&+ ���� 1) �&].

Step 5: Components having ���. � �#/�- are classified as being those which are most

likely to have changed.

Furthermore, the authors give guidance for the choice of the ����.

This method is proposed by Murphy (1987). It is a subcase of the 6 2 decomposition

method, which was proposed by Mason et al. (1995) and stems from the field of discrim-

inant analysis. It uses the overall 6 2 value and compares it to a 6 2∗ value based on a

subset of variables.

The diagnostic approach is triggered by an out-of-control signal from a 6 2-Chart.

Murphy (1987) partitioned the sample mean vector x into two subvectors x∗1 and x∗2,

where the &1 dimensional vector x∗1 is the subset of the & = &1 + &2 variables, which is

suspect for the out-of-control signal. Then

6 2� = � (x µ0)

Σ−10 (x µ0)

is the full squared distance and

6 2∗ = � (x∗1 µ01)

Σ−101 (x∗1 µ01)

is the reduced distance corresponding to the subset of the & variables that is suspect for

the out-of-control signal.

Finally, the following difference is calculated

! = 6 2� 6 2∗ �
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It is proved that, under the null hypothesis, ! follows a Chi-Square distribution with

&1 degrees of freedom and the subvector x∗1 follows a &1-dimensional distribution with

mean µ01 and variance-covariance matrix Σ01. Murphy (1987) gave a forward selection

algorithm.

The steps of this algorithm are the following; For each x = �1� ���� �� ,

Step 1: Conduct a 6 2 test with a specified nominal significance level �. If an out-

of-control condition is signalled then continue with step 2.

Step 2: Calculate the & individual 6 21 (��), equivalent to looking at & individual

charts, and calculate the & differences!�−1(	) = 6 2� 6 21 (��) . Choose the�	� (!�−1(	)) =

!�−1(�) and test this minimum difference.

If !�−1(�) is not significant then the ��� variable only requires attention.

If !�−1(�) is significant then continue with step 3.

Step 3: Calculate the & 1 differences !�−2(�� -) = 6 2� 6 22 (��� �
) , 1 �, - &

and � = -. Choose the �	� (!�−2(�� -)) = !�−2(�� %) and test this minimum difference.

If!�−2(�� %) is not significant then the ��� and the %�� variables only require attention.

If !�−2(�� %) is significant then continue with step 4.

Step 4:Similar to step 3.

Step .:Similar to steps 3,4.

Step p: If the final !�−(�−1) test is significant then all & variables will require atten-

tion.

Murphy (1987) recommends that in tests of !�−� �2
�−� a significance level in the

interval 0�1 � 0�2 be used. From a practical point of view the applicability of this

approach is severely limited when the number of quality or process variables is moderately

large.
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The method that is presented in this subsection was proposed by Chua and Mont-

gomery (1992). This method, like the method of Murphy (1987), uses the overall 6 2

value and compares it to a 6 2∗ value based on a subset of variables. It is quite similar to

Murphy’s method, but uses a backward selection algorithm (7� ). The operations of

the control scheme can be described as follows;

1) A multivariate observation is fed into the multivariate EWMA control chart.

2) If the observation is in-control, the control operation loops back to the beginning

and checks the next observation. Otherwise, it checks the number of process variables.

3) If the number of process variables is greater than five, bypass the 7� and use

the hyper-plane method directly. Otherwise, feed the observation into 7� .

4) The BSA will select the out-of-control variable set and feed it into the hyper-plane

method.

5) The hyper-plane method will generate the necessary elliptical control charts for

diagnosis.

6) Based on the diagnosis, corrective actions are then taken and the control operation

loops back to the beginning and checks for the next observation.

Chua and Montgomery (1992) describe all the needed actions for the application of

their method. The algorithm divides the & variables into two subsets of size &1 and &2,

where &1 + &2 = &. Also, the sample covariance matrix is divided into two parts with &1

and &2 variables respectively. For all the & variables the 6 2� is calculated. Similarly, for

the &1 variables the 6 2�1 is calculated. Then a difference value ! = 6
2
� 6 2�1 is calculated,

which is distributed as a Chi-Square distribution with &2 degrees of freedom.

The steps of this algorithm are the following; For each x = �1� ���� �� ,

Step 1: Conduct a 6 2 test with a specified nominal confidence level �. If an out-of-

control condition is signalled then continue with step 2.

Step 2: Perform 6 2�−1 tests and calculate the differences !�−1=6 2� -6
2
�−1. If !�−1
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is not significant then the union of variable sets for all sets which are denoted as not

significant is the new criterion. If !�−1(�) is significant then keep the criterion from step

1, denote the �	� (!�−1) = !(&) and continue to the next step.

Step 3: Perform 6 2�−2 tests and calculate the differences !�−2=6 2� -6
2
�−2. If !�−2

is not significant then the union of variable sets for all sets which are denoted as not

significant is the new criterion. If !�−2 is significant then keep the criterion from step 2,

denote the �	� (!�−2) = !(& 1) and continue to the next step.

Step 4: Similar to step 3.

Step .: Similar to step 3, 4.

Step p: Perform 6 21 tests and calculate the differences !1=6
2
� -6

2
1 . If !1 is not

significant then the union of variable sets for all sets which are denoted as not significant

is the new criterion. If !1 is significant then keep the criterion from step p-1, denote the

�	� (!1) = !(1) and continue to the next step.

Step p+1: If all the tests from steps 2 to p are significant, exit. All & variables are

out-of-control. If !(	) !(-), where 	 " -, 	 = 1� 2� ���� & 1, and - = 	+1� ���� & and the

variable set for !(	) is a subset of the variable set for !(-), then the variable set for !(	)

is the out-of-control variable set. Otherwise, increment 	 by 1 and repeat the condition

check.

The hyper-plane method is an extension of the elliptical control chart. Chua and

Montgomery (1992) present the hyper-plane method graphically. The mathematical

background of the hyper-ellipsoid method follows.

The equation for the hyper-ellipsoid control region is (x x)S−1(x x) = 6 21−�. Obvi-

ously, if the left-hand side of the equation is less than 6 21−�, the observation will be inside

the hyper-ellipsoid, and thus in-control. On the other-hand, if it is greater than 6 21−�,

the observation will be outside the hyper-ellipsoid, and thus out-of-control.

Moreover, the vector equation of a hyper-plane is d (x b) = 0, where d is the

direction vector of the hyperplane, x is the observation which lies in the hyperplane. In

order to obtain a hyperplane which has a direction vector parallel to one of the co-ordinate
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axes, it is necessary that the direction vector d be d
 = (0� 0� ���� 	� 0� 0� 0), where 	 = 1

denotes the desired co-ordinate axis. To cut the hyper-ellipsoid with the hyperplane, it

is equivalent to solve the p-1 simultaneous equations

(x x)
S−1(x x) = 6 21−�

d(x b) = 0

for 	 = 1� 2� 3� ���� &, excluding the two targeted control variables.

After the substitution, the remaining equation is a second-degree polynomial equation

with two unknown variables. In fact, the idea here is to reduce the & 1 simultaneous

equations into a second-degree polynomial equation. Then the polynomial equation is

diagonalized, so that the cross-product term is eliminated. The remaining equation is

further reduced to the standard equation of an ellipse by completing the squares. Under

normal conditions, the hyperplane method will provide &(& 1)�2 elliptical control charts.

Another method based on the 6 2 is the step-down procedure of Roy (1958). It assumes

that there is an a priori ordering among the means of the & variables and it sequentially

tests subsets using this ordering to determine the sequence. The test statistic has the

form

*
 =
6 2
 6 2
−1

1 + 6 2
−1� (� 1)
�

where the 6 2
 represents the unconditional 6
2 for the first - variables in the chosen group.

In the setting of a multivariate control chart, *
 would be the charting statistic, which

under the null has the following distribution

(�- 1) -

�- -
* (&
� �- -) �

This procedure can be considered as an alternative to the regular 6 2 chart and not
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only as supplement. Moreover, it can be shown that the enumerator of *
 is a conditional

6 2 value

6 2
 6 2
−1 = 6
·1�2�����
−1�

Another method based on the 6 2 is the step-down procedure of Timm (1996), using

Finite Intersections Tests (*E6 ). It assumes that there is an a priori ordering among the

means of the & variables and it sequentially tests subsets using this ordering to determine

the sequence.

Although 6 2 is optimal for finding a general shift in the mean vector, it is not optimal

for shifts that occur for some subset of variables, a variable a time. Timm (1996) states

that when this occurs, the optimal procedure is to utilize a finite intersection test.

A process is in-control if each hypothesis

.� : �� = �0�� 	 = 1� 2� ���� &

or equivalently the intersection of the .�

.0 :

�

�=1

.�

is simultaneously true, where �� is the mean of the 	�� variable. To test each hypothesis,

we may use the FIT procedure. To construct a FIT of .0, we may define a likelihood

ratio test statistic for each elementary hypothesis .� and determine the joint distribution

of the test statistics. Let the test statistics be defined as

�2� =
(�� �0�)

2

���
�

The joint distribution of �2� follows a non-central multivariate �
2 distribution with 1

degree of freedom. The known variance-covariance matrix Σ = �2Ω, where Ω = [&�
] is
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the correlation matrix of the accompanying multivariate normal. A multivariate quality

control process is in-control if �2� " �
2
��1−� where ' (�

2
� " �

2
��1−��.0) = 1 � and �2

��1−�

is the 1 � percentage value of the multivariate�2 distribution with 1 degree of freedom.

The process is out-of-control if����2� � �
2
��1−�, where ' (����

2
� � �

2
��1−�) = �� Since a

non-central multivariate �2 distribution with 1 degree of freedom is a special case of the

multivariate � distribution with infinite degrees of freedom, the process may alternatively

be judged as out-of-control if ' (��� 6� = �� �0� � ��� � 6
2
��1−�) = �. Hence,

' ( 6� 6 2��1−��.0) = 1 ��

The 1 � level simultaneous confidence sets are easily established for each variable

�� 6 2��1−� ��� �� �� + 6
2
��1−� ���

The process is said to be out-of-control if the confidence sets �� do not contain �0�

for 	 = 1� 2� ���� &. Timm (1996) gave a step down FIT procedure for the case that the

variance-covariance matrix Σ is unknown.

The contribution of a variable to a control signal can be measured by the minimum

value of the chi-squared statistic that can be obtained by changing a single variable.

Variables that incur large changes are important to the signal. Runger et al. (1996)

propose the following diagnostics.

Let x be the & dimensional vector of an observation, with known mean vector 0 and

known variance-covariance matrix Σ. Let e� be the unit vector in the direction of the 	��

coordinate axis. To measure the contribution of �� to �2, we determine �� to minimize

x
��e�

e
�Σ
−1e�




Σ−1 x
��e�

e
�Σ
−1e�
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The expression e
�Σ
−1e� is a scale factor that is used so that �� can be interpreted as a

measure of Euclidean distance. This is discussed further below. If �� is large relative

to the others ��’s, then a large modification to �� is required to minimize �2 and this

indicates that �� is an important contributor to �2.

Also, let

z = Σ−1�2x (5.1)

and

v� = Σ−1�2
e�

e
�Σ
−1e�

�

Then, v� is a unit vector in the direction Σ−1�2e�. Now, (5.1) can be written as

(z ��v�)

(z ��v�)

and �� is interpreted as the Euclidean distance along the unit vector v� that minimizes

�2. The value of �� that minimizes (5.1) can be determined as the slope of the regression

of z on v�. Therefore,

�� = v


�z =

e
�Σ
−1x

e
�Σ
−1e�

and obviously �� is proportional to e
�Σ
−1x.

Interestingly, �� equals the recommended control statistic to detect a shift of the

process mean along the vector e� as described by Healy (1987), Pignatiello and Runger

(1990), and Hawkins (1993). A simple multivariate control is to compare the relative

magnitudes of �2� for 	 = 1� 2� 3� ���� &. If �
2
� is large, the conclusion is that the component

measurement �� is distant from the bulk of the historical data and �� is a primarily

contributor to �2. Geometrically, �2� is the length of the orthogonal projection of the

vector z onto v�. That is

�2� = P�z �

where the orthogonal projection matrix onto the vector v� is denoted as P�. The geo-
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metric analogies are facilitated by considering Z and �� because, after transforming to

these variables, �2 is just the squared Euclidean distance of Z from the zero vector.

A second approach to the problem is the following. Consider the minimum value of

�2 that is obtained when �� is changed by ��. Define

�2
� = x

��e�

e
�Σ
−1e�




Σ−1 x
��e�

e
�Σ
−1e�

= (z ��v�)

(z ��v�)� (5.2)

Then, (5.2) can be interpreted as the residual sum of squares in a regression model.

Therefore,

�2
� = z


(I P�)z = z

z z
v�v



�z = z


z �2� � (5.3)

Thus, �� is a major contributor to �2, if the value of �2 can be substantially reduced

by a modification to ��. Consequently, if the metric !� = �
2 �2

� is large then �� is

a major contributor to �2. Since �2 = x

�
Σ−1x

�
= z
z and because of relation (5.3) we

have that !� = �
2
� therefore the metric !� is equivalent to �2� . Finally, a third approach to

develop a diagnostic is the union-intersection principle of multivariate hypothesis tests.

Wade and Woodall (1993) consider a two step process in which the steps are not

independent. The first step of a cause-selecting control chart is to chart variable �1 (first

step of the process) and then monitor the outgoing quality�2 (second step of the process)

after adjusting for the incoming quality. This method uses a relation between �2 and

�1, where a simple regression model appears to be very useful. To be more precise, a

chart for �1 and a chart for � = �2 �2, where �2 is the estimate for �2 based on the

regression line, are used. Thus, the ��’s are independent normal random variables if �1

and �2 are normally distributed variables. If controllable assignable causes are present

in the process the distribution of ��’s shifts from normality for some values of 	.
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Hawkins (1991, 1993), as we have already mentioned, defined a set of regression-

adjusted variables in which each variable was regressed on all others. In a first approach

Hawkins defined the set of regression-adjusted variables using the vector Z = Σ−1 (X µ).

If we replace µ and Σ with their sample estimates and expanding the left-hand side of

the previous relation Hawkins showed that the -�� component of Z is equal to

�
 =
6
·1�2�����
−1�
+1�����0
%
·1�2�����
−1�
+1�����0

�

Then, �
 is the standardized residual when the -�� variable is regressed on the remaining

& 1 variables in X. This regression statistic is useful in the interpretation of a 6 2 signal

because its value is directly connected with the value of the 6 2 statistic although it is

only one of the several different conditional 6 2 values.

An additional approach presented by Hawkins is based on the decomposition of the

6 2
 statistics, using the standardized residuals from the -�� variable on the first - 1

variables. This is defined by Y = C (X µ) where C is the Cholesky lower triangular

root of Σ−1. The -�� component of vector Y is given by

)
 =
6
·1�2�����
−1
%
·1�2�����
−1

As in the first approach )
 is one of the conditional 6 2 values.

Sepuldveda and Nachlas (1997) presented a new control chart. This chart is called

the Minimax control chart because it is based on monitoring the maximum standardized

sample mean and the minimum standardized sample mean of samples taken from a

multivariate process. It is assumed that the data are normally distributed and that the

variance-covariance matrix is known and constant over time.
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Samples of size � are taken from a &-dimensional process. The process is assumed to

have sudden shifts in the mean such that the new mean �1�, 	 = 1� 2� ���� &, for the 	��

changing variable is given by �1� = �0� + 3��0� and consequently 3� = (�1� �0�)��0�.

Whenever 3� = 0, the process is said to be in-control. To decide whether the process is

in-control or not, the minimax control chart is used as a method to test in each sample

.0 : δ = 0 against .1 : δ = 0.

The principal idea behind the minimax control chart is to standardize all & means

and to monitor the maximum ��� and the minimum ��� of those standardized sample

means. Note that Timm (1996) monitors only the maximum. Let

��� = min(��)� 	 = 1� 2� 3� ���� &

��� = max(��)� 	 = 1� 2� 3� ���� &�

where

�� =
�� �0�
���� �

�

Therefore, by monitoring the maximum and the minimum standardized sample mean, an

out-of-control signal is directly connected with the corresponding out-of-control variable.

Sepuldveda and Nachlas (1997), also discussed the statistical properties and the  ��

performance of the minimax control chart.

Another method used for the identification problem is principal components analysis

(PCA). This method was first proposed by Jackson (1991) and further discussed later by

Pignatiello and Runger (1990), Kourti and MacGregor (1996). A & & symmetric, non-

singular matrix, such as the variance-covariance matrix Σ, may be reduced to a diagonal

matrix L by premultiplying and postmultiplying it by a particular orthonormal matrixU

such thatU|ΣU = L. The diagonal elements of L, @1� @2� ���� @� are the characteristic roots,
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or eigenvalues of Σ. The columns of U are the characteristic vectors, or eigenvectors of

Σ. Based on the previous result the method of PCA was developed (see e.g., Jackson

(1991)). The PCA transforms & correlated variables �1� �2� ���� �� into & new uncorrelated

ones. The main advantage of this method is the reduction of dimensionality. Since the

first two or three PCs usually explain the majority of the variability in a process, they

can be used for interpretation purposes instead of the whole set of variables.

Principal components can be used to investigate which of the & variables in a mul-

tivariate control chart are responsible for an out-of-control signal. The most common

practice is to use the first � most significant principal components, if a 6 2 control chart

gives an out-of-control signal, for further investigation.

The basic idea is that the first � principal components can be physically interpreted,

and named. Consequently, if the 6 2 chart gives an out-of-control signal and, for example,

the second principal component chart also gives an out-of-control signal, then from the

interpretation of this component, a direction to the variables which are suspect to be

out-of-control can be deduced (Jackson (1991)).

The practice just mentioned transforms and considers the variables as a set of at-

tributes. The discovery of the assignable cause of the problem, with this method, de-

mands a further knowledge of the process itself, from the practitioner. The basic problem

is that the principal components do not always have a physical interpretation.

As we already said one of the ways to use PCA in the problem under question is

to chart them. However, if the components are not easily interpreted the problem re-

mains. Tracy et al. (1995) expanded previous work and provided an interesting bivariate

setting in which the principal components have meaningful interpretations. When mon-

itoring a process with paired measurements (for example two testing laboratories) on
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a single sample, the principal components of the correlation matrix actually represent

the characteristics of interest for process control. The correlation coefficient between the

original variables is the only additional information needed to describe the condition of

the process.

Kourti and MacGregor (1996) provided a newer approach based on principal compo-

nents analysis. The 6 2 statistic is expressed in terms of normalized principal components

scores of the multinormal variables. When an out-of-control signal is received, the nor-

malized scores with high values are detected, and contribution plots are used to find

the variables responsible for the signal. A contribution plot indicates how each variable

involved in the calculation of that score contributes to it. The computation of variable

contributions showed that principal components can actually have physical interpreta-

tion. This approach is particularly applicable to large ill-conditioned data sets, due to

the use of principal components.

Let x�= (�1�� �2�� ���� ���)
| denote the observation (vector) 	 for the & variables of a

process. Assume that x� follows a &-dimensional normal distribution $�(µ0�Σ0), where

µ0 is the vector (& 1) of known means and Σ0 is the known (& &) variance-covariance

matrix. We want to keep this process under control. For this purpose we use a �2

control chart given by the formula �2
� = (x� µ0)

|Σ−10 (x� µ0). If the value of this

statistic plots above �2
��1−�we get an out-of-control signal, where �

2
��1−� is the chi-square

distribution with & degrees of freedom and � is the probability of plotting outside the

control limits if we are in-control. The next problem is to detect which variable is the

one that caused the problem.

The typical form of a PCA model is the following: �� = (1��1+(2��2+(3��3+ ���+
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(����, where �� is the � PC, ((1�� (2�� (3�� ���� (��)| is the corresponding � eigenvector

and �1� ���� �� are the process variables. The score for vector x� in PC � is )�� =

(1��1� + (2��2� + ��� + (�����. Assuming that the process variables follow a multivariate

normal distribution the PCs are also normally distributed.

Our purpose is to use PCA, when we have an out-of-control signal in the �2 control

chart, to identify the variable or variables that are responsible. For this objective two

different methodologies are developed one for the case that the covariance matrix has

only positive correlations and the second one for the case that we have both positive and

negative ones (Maravelakis, Bersimis, Panaretos, Psarakis (2002)).

Assume that using one of the existing methods for choosing PCs (see, e.g. Jackson

(1991)), Runger and Alt (1996)) we choose � & significant PCs. The proposed method

in this case is based on ratios of the form

��� =
((�1 + (�2 + ���+ (�.)���
)1� + )2� + ���+ ).�

� (5.4)

where ��� is the 	�� value of variable ��, )
�, - = 1� ��� � is the score of the 	�� vector of

observations in the -�� PC (Bersimis (2001)). In this ratio, the numerator corresponds

to the sum of the contributions of variable �� in the first � PCs in observation (vector)

	, whereas the denominator is the sum of scores of observation (vector) 	 in the first �

PCs. Since we have assumed that the variables follow a multivariate normal distribution

the ratios are ratios of two correlated normal variables.

The rationale of this method is to compute the impact of each of the & variables on

the out-of-control signal by using its contribution to the total score. It is obvious that

the use of only the first � PCs excludes pieces of information. However, a multivariate

chart is used when there is at least moderate and usually large correlation between the

variables. Under such circumstances the first � PCs account for the largest part of the
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process variability. The main disadvantage of using PCs in process control, as reported

by many authors (see e.g., Runger and Alt (1996), Kourti and McGregor (1996)), is the

lack of physical interpretation. The proposed method eliminates much of that criticism.

Since we have a ratio of two correlated normals its distribution can be computed using

the analytical result of Hinkley (1969). Specifically, if �1� �2 are normally distributed

random variables with means ��� variances �
2
� and correlation coefficient C the distribution

function of � = �1��2 is given by the formula

* (�) = �
�1 �2�

�1�2�(�)
;
�2
�2
;
�2� C�1
�1�2�(�)

+ �
�2� �1
�1�2�(�)

;
�2
�2
;
�2� C�1
�1�2�(�)

� (5.5)

where �(�; �; ?) = 1

2+ 1− 2
∞
�

∞
�
exp �2−2 �1+12

2(1− 2) ���/ is the standard bivariate nor-

mal integral.

However, the proposed method has a correlation problem since the ratios of different

variables are interrelated. A simulation study presented in Section 5�6�4 is implemented

to test the effect on the performance of the proposed procedure. In the following we

present the method as a stepwise procedure.

Step 1. Calculate the �2 statistic for the incoming observation. If we get an

out-of-control signal continue with Step 2.

Step 2. Calculate ratios for all the variables using relation (5�4). Calculate as

many ratios for each variable as the number of observations from the beginning

of the process. If the proposed process is not used for the first time, calculate as

many ratios for each variable, as the number of observations from the last out-of-

control signal till the out-of-control signal we end up with in Step 1. Alternatively,

calculate ratios for only the (last) observation that caused the out-of-control signal

(see Section 5�6�4).

Step 3. Plot the ratios for each variable in a control chart. Compute the � and

1 � percentage points of distribution (5�5) with suitable parameters and use them
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as lower control limit (LCL) and upper control limit (UCL), respectively.

Step 4. Observe which variable, or variables, issue an out-of-control signal

Step 5. Fix the problem and continue with Step 1.

In the case where all the variables are positively correlated as Jackson (1991) indicates,

the first PC is a weighted average of all the variables. Consequently, we can use only this

PC for inferential purposes.

In this case we propose the computation of ratios of the form

�∗�� =
((�1 + (�2 + ���+ (�.)���

) 1 + ) 2 + ���+ ) .

� (5.6)

where ��� is the 	�� value of variable �� and ) 
, - = 1� ���� � is the score of the -�� PC

using, in place of each ��, their in-control values. The subscript � stands for the number

of significant principal components as in the preceding case.

These ratios are the sum of the contributions of variable �� in the first � PCs in

observation (vector) 	, divided by the sum of the in-control scores of the first � PCs.

Since the denominator of this statistic is constant we actually compute the effect of each

of the & variables on the out-of-control signal. The numerator of the ratios is normally

distributed, as already stated, whereas the denominator is just a constant. Therefore the

ratios (5�6) are normally distributed.

Since the variables are correlated the statistic proposed in (5�6) for the � different

variables may exhibit a correlation problem. As in the previous case a simulation study

is presented in Section 5�6�4 to test for the effect of the correlation on the control limits

performance of the proposed procedure. The proposed method in steps is as follows:

Step 1. Calculate the �2 statistic for the incoming observation. If we get an

out-of-control signal continue with Step 2.
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Step 2. Calculate ratios for all the variables using relation (5�6). Calculate as

many ratios for each variable as the number of observations from the beginning

of the process. If the proposed process is not used for the first time, calculate as

many ratios for each variable, as the number of observations from the last out-of-

control signal till the out-of-control signal we end up with in Step 1. Alternatively,

calculate ratios for only the (last) observation that caused the out-of-control signal

(see Section 5�6�4).

Step 3. Plot the ratios for each variable in a control chart. Compute the � and

1 � percentage points of the normal distribution with suitable parameters and

use them as LCL and UCL, respectively.

Step 4. Observe which variable, or variables, issue an out-of-control signal

Step 5. Fix the problem and continue with Step 1.

We have to mention that this procedure can not be applied when we have standardized

values since the denominator of the ratios in (5�6) equals zero.

Two examples, one for each case are presented in the sequel.

Example 1. Assume that we have a process with known covariance matrix

100

70 100

80 80 100

75 85 75 100

75 80 80 80 100

75 72 75 75 75 100
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and in-control vector of means (100� 100� 100� 100� 100� 100)|. We simulated 40 in-control

observations from a multivariate normal distribution with the preceding parameters.

Then, we simulated out-of-control ones with the same covariance matrix but now with

vector of means (100� 115� 100� 85� 100� 100)|, until we get an out-of-control signal in the

�2 test. The shift is 1�5� in the means of variables 2 and 4. We get a signal on the first

out-of-control observation and we plot each of the variables in a control chart (Figure

5�1) with the control limits from distribution (5�5) using � = 0�05. Note that we used

the average root method for simplicity and we ended up with one significant principal

component (see, e.g. Jackson (1991)). It is obvious from Figure 5.1 that the out-of-control

variables were identified and additionally the direction of the shift was also revealed.

Figure 5�1. Control charts for positive covariance matrix
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Example 2. Assume that we have a process with known covariance matrix

100

70 100

80 80 100

75 85 75 100

75 80 80 80 100

75 72 75 75 75 100

and in-control vector of means (100� 100� 100� 100� 100� 100)|. We simulated 40 in-control

observations from a multivariate normal distribution with the same parameters as in the

previous example. Then, we simulated out-of-control ones with vector of means

Figure 5�2. Control charts for positive negative covariance matrix
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(100� 115� 100� 85� 100� 100)|, the same covariance matrix till we get an out-of-control
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signal in the �2 test. The shift is again 1�5� in the means of variables 2 and 4. We plot

each of the variables in a control chart (Figure 5�2) with the control limits from a normal

distribution using � = 0�05. As in example 1, we have one significant PC using the

average root method again (see, e.g. Jackson (1991)). We have to indicate that in Figure

5�2 the ratios are standardized and the control limits are properly modified. However, it

is not necessary to do this when using this technique. From Figure 5�2, we deduce that

the out-of-control variables were identified but the direction of the shift was not.

One may observe that the ratios in both methods are interrelated. This fact may

affect the control limits of the charts. In order to examine this possible correlation we

performed a simulation study. In particular, we simulated 100000 in-control ratios from

the known covariance matrices and vector of means of the two examples and we computed

the theoretical control limits as proposed in Section 5�6�3 with � = 0�05. Then, we checked

if each ratio is in or out of these limits and recorded it. We used this information in order

to approximate the probability of plotting outside the control limits if we are in-control

of our limits and compare it with the theoretical one. The results are presented in Table

5�1.

Table 5�1. Probability of plotting outside the control limits if we are in-control

Variable 1 2 3 4 5 6

example 1 5040 5006 5007 4968 5000 5096

example 2 4941 4983 4898 4882 4906 5005

It should be noted that although the two examples are specific cases, a large number of

other cases revealed the same performance. Consequently, we may draw the conclusion

that the interrelation does not affect either of the proposed processes. However, we

have to point out that after careful examination the procedure proposed for positive
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correlations can be used only when we have positive values for the in-control means. If

a process does not have positive in-control means, which is a rare event, we may use

instead the statistic (5�6) that is not affected in any case.

Another point which has to be checked is the performance of the processes in iden-

tifying the out-of-control variables and the direction of the shift. For this purpose a

simulation study was conducted. Using the covariance matrices and the in-control means

of the examples we computed in each case the theoretical control limits. Then, we simu-

lated observations from the out-of-control mean vector used in the examples until we got

a signal from the �2 test using � = 0�05. Next, we computed the ratios for each variable

and plotted them in a chart with the corresponding control limits. We checked each ratio

if it is in or out of the control limits for every variable and recorded which variable, or

variables, have given an out-of-control signal and in which direction. We repeated the

whole process 10000 times and the results are presented in Tables 5�2 and 5�3. In the

first row of the tables (U), we have the number of times the generated ratios crossed the

UCL for each of the variables, in the second row (L) we have the corresponding number

of times the generated ratios crossed the LCL for each of the variables and in the last line

(Total) we have the number of times the generated ratios crossed UCL or LCL for each of

the variables. One may observe that in some variables there is an inconsistency, since the

sum of rows U and L does not equal the total. This happens because in one iteration we

may generate more than one observations (vectors) until we get an out-of-control signal

in the �2 test -although this test is sensitive for such shifts- and after computing the

ratios for each variable it is possible that for one variable the first ratio crosses UCL and

the second ratio crosses LCL. Therefore, we record one value in row U and one in row L

but only one in row total.
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Table 5�2. Out of control performance for example 1

Variable 1 2 3 4 5 6

U 283 9371 228 0 275 233

L 240 0 299 9429 231 245

Total 523 9371 527 9429 506 478

From Table 5�2, we observe that the statistic used is very informative since it is able

to detect the out-of-control variables with very high precision and also to identify the

direction of the shift with absolute success. This kind of behavior is similar in other

examples also, keeping in mind the limitation about the positive in-control means. Note

also that the total times the other variables gave a false signal almost coincides with the

type I error rate of the constructed limits.

Table 5�3. Out of control performance for example 2

Variable 1 2 3 4 5 6

U 364 1 357 2 366 350

L 353 4627 394 4603 357 371

Total 715 4628 748 4605 717 720

In Table 5�3, we see that the statistic used detected the out-of-control situation but

not with the same degree of success as in the previous case. Moreover, the direction

of the shift was not identified. The false alarm rate of the in-control variables is not

significantly different from the theoretical one.

We already said that the �2 test is sensitive in the sense that it gives a quick signal

when we have out-of-control observations. In order to examine the ability of the last

generated observation (the one that gives the signal on the �2 test) to identify the

shifted variable we checked their performance on the previous simulation study. The

results are displayed in Tables 5�4 and 5�5.
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Table 5�4. Out of control performance of the last observation for example 1

Variable 1 2 3 4 5 6

U 283 9370 228 0 275 233

L 240 0 299 9429 231 245

Total 523 9370 527 9429 506 478

From Table 5�4, we conclude that the performance of the statistic (5�4) is almost

totally explained by the ratios of the last observation meaning that the ratios of the

last observation are sufficient to draw a conclusion about the out-of-control variable. On

the other hand, from Table 5�5 we observe that this does not happen for the statistic

(5�6). One may argue that since the �2 test is sensitive we produce a small number of

observations in each iteration hence the performance in both cases is a result of this fact.

When we have small shifts, where we produce more observations, the last observation is

not that informative.

Table 5�5. Out of control performance of the last observation for example 2

Variable 1 2 3 4 5 6

U 333 1 316 2 324 315

L 312 4279 343 4251 310 333

Total 645 4280 659 4253 634 648

The proposed procedures are valid under the assumption of known variance-covariance

matrix. However, this is not a case usually met in practice. Tracy et al. (1992) exam-

ined the performance of multivariate control charts for individual observations when the

covariance matrix is known and unknown. They showed that the test statistics used in

either case perform the same for a number of observations that depends on the variables

involved. This number of observations is small enough, for instance when we have five

variables we need 100 observations (vectors) for the two statistics to give a close number.
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As Woodall and Montgomery (1999) note in today’s industry we have huge data sets

therefore such a number of observations should not be a problem. From this number of

observations we estimate the mean vector and the covariance matrix used in our process.

Although the control limits computed using the procedures developed in subsections

5.6.1 and 5.6.2 will not be exact under the estimation process, we expect them to have a

satisfactory performance if we use the required number of observations.

As we already stated in section 5.5, the competitive methods that use principal com-

ponents for the specific problem are Jackson’s (1991), Tracy et al.’s (1995) and Kourti

and MacGregor’s (1996). Kourti and MacGregor (1996) provide an improved method in

relation to Jackson’s (1991) and Tracy et al. (1995) have the disadvantage that their

method is applied to a bivariate case. Therefore, the rival of the proposed method is the

one by Kourti and MacGregor (1996).

In order to check the performance of the two antagonistic methods we perform a

simulation study. We apply the method of Kourti and MacGregor (1996) in the data

of examples 1 and 2 of Section 5.6.3. As Kourti and MacGregor (1996) propose, we

use Bonferroni limits on the normalized scores and we calculate the contributions of the

variables with the same sign as the score, since contributions of the opposite sign does

not add anything to the score, in fact they make it smaller. In the paper of Kourti and

MacGregor (1996) there is not a specific rule on how to decide whether a contribution

is significant or not. Since in the two examples of Section 5.6.3 we have two variables

shifted, we choose to record the first and the second larger contributions in each iteration

of the simulation study if they exist. The simulation study was conducted 10000 times in

order to have a credible estimate of the ability of Kourti and MacGregor’s (1996) method

to identify the out-of-control variables. In Tables 5�6 and 5�7 we have the results of this

simulation for examples 1 and 2 respectively.
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Table 5�6. Performance of Kourti and MacGregor’s method for example 1

Variable 1 2 3 4 5 6

Largest contribution 2 5204 16 4717 0 0

Second largest contribution 1511 2864 1865 3655 30 10

Total 1513 8068 1881 8372 30 12

Table 5�7. Performance of Kourti and MacGregor’s method for example 2

Variable 1 2 3 4 5 6

Largest contribution 23 191 10 2 51 2

Second largest contribution 64 63 47 74 19 12

Total 87 254 57 76 70 14

From the results in Table 5�6 for Example 1, we observe that the method of Kourti

and MacGregor does not succeed in identifying the out-of-control variables as many times

as our proposed method does (see Tables 5�2 and 5�4). Moreover, the inherent inability of

the method to point if there is an upward or a downward shift is also present. Things are

even worse in Table 5�7 for example 2. Specifically, the method of Kourti and MacGregor

leads to recordable contributions very rarely, a fact that may lead the practitioner to

assume that the signal on the multivariate chart is due to the probability of plotting

outside the control limits if we are in-control. The ability of the new method to operate

more effectively is obvious (see Tables 5�3 and 5�5).

The charts proposed in Sections 5.6.1 and 5.6.2 are Shewhart type. Therefore, they

have the ability to identify large shifts quickly but they are not that good for small shifts.

An alternative way to plot these statistics is as a Cumulative Sum (CUSUM) chart. The
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definition of the CUSUM chart for detecting upward shifts is

�+0 = 0

�+� = max(0� �+�−1 + (��� �))�

where ��� is the ��� observation of variable �� and � is called the reference value. The

corresponding CUSUM chart for detecting downward shifts is

�−0 = 0

�−� = max(0� �−�−1 + (� ���))�

In the usual concept of CUSUM charts we evaluate an optimal value of � depending

on the distributional assumption (see Hawkins (1992) and Hawkins and Olwell (1998)).

This value of � is used along with the value �, which is the control limit, to characterize

the ARL performance of a CUSUM chart. In our case the application of this theory

for CUSUM charts is cumbersome due to the underlying distribution. However, we

can use the previously defined statistics for upward and downward shifts as a graphical

technique solely. The only quantity remaining unknown is the value � we have to use.

A straightforward selection for � is to use in each case of statistics (5�4) and (5�6) their

in-control counterparts. Specifically, for statistic (5�4) we use in place of each ��� its in-

control value both in the numerator and the denominator. A similar action takes place

in statistic (5�6) but only in the numerator this time.

To study the performance of these statistics in practice we applied them to the exam-

ples of Section 5�6�3. We used the same 40 in-control observations but now we generated

out-of-control ones with the same covariance matrix as in Section 5�6�3, and vector of

means (100� 105� 100� 95� 100� 100)|, in both examples until we get an out-of-control sig-

nal in the �2 test. The shift is 0�5� in the means of variables 2 and 4. In example

1, we simulated 12 observations till the out-of-control signal and 14 in example 2. We

computed the CUSUM values for the 52 and 54 values for all six variables in examples 1
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and 2 respectively, and we plotted them in the chart given in Figure 5�3.

Figure 5�3. Control charts for CUSUM values
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From Figure 5�3 we easily deduce that the charts give a clear indication of the out-

of-control variables in both examples. As in the Shewhart type charts of Section 5�6�3,

the statistic (5�4) used in example 1 detected also the direction of the shift something

that did not happen with statistic (5�6) in example 2. We have to mention here that the

effectiveness of the CUSUM as a graphical device for shifts less than 0�5� is questionable.

However, it is an easily interpreted method that can give an indication.

Summarizing, we note that the charts proposed are an easily applied alternative to

most of the existing methods since the computational effort is diminished. Furthermore,

we try to give an answer to the problem under a control charting perspective giving

operational control limits or design strategies that are not difficult for a practitioner to

apply.
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Fuchs and Benjamini (1994) presented a method (multivariate profile chart) for simul-

taneous control of a process and interpretation of an out-of-control signal. The multivari-

ate profile chart (MP chart) is a scatterplot with symbols. Specifically, symbols are used

for data of individual variables whereas the location of the symbol on the scatterplot is

used for providing information about the group. Each group of observations is displayed

by one symbol and this symbol of the profile plot enables the user to get a clear view of

the size and the sign of each variable from its reference value.

The first step in the construction of an MP chart is to draw a horizontal base line

for each symbol and then calculate sequentially a bar for every variable. This bar plots

either above (below) the base line if the deviation is positive (negative). The size of the

bar depends on the size of the deviation. Let ��
 =
���−��

2�
, where ��
 = 1�� � ��
�, 0� is

a scale factor, �� is the 	�� reference value and ��
� is the value of the @�� observation on

the 	�� variable in the -�� subgroup. Then, the size of the bar is proportional to ��
 up

to value of 4. If the standardized deviation exceeds 2 the corresponding bar is painted

gray. If the standardized deviation exceeds 3 the corresponding bar is painted black. If

all variables means are equal to their standard values the symbol is actually the baseline.

The symbols are plotted in sequential order along a horizontal time axis. In the

vertical axis the location of each symbol is determined by the multivariate deviation of

the sample mean vector from the standard mean vector as measured by 6 2. The critical

value of this axis equal to 0.997 is at a symbol size distance from the top and it is chosen

to be equivalent to three standard deviations control limit of the univariate control charts.

Additionally, a dashed line runs across the chart at the 6 20�997 level. The critical value

corresponding to 0 is placed half a symbol size distance from the bottom.

A symbol’s baseline, which is placed horizontally, is located at the appropriate vertical

location when it is less than the 6 2 critical value. Those observations with a 6 2 value
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higher than the critical value are placed at the top of the chart stack at the ceiling and

completely beyond the dashed line.

The numerical value of the 6 2 statistic is not as informative as in the univariate

charts the deviations from standard values that are measured by the standard errors.

For this reason Fuchs and Benjamini (1994) present on the vertical scale of the chart,

the corresponding tail probabilities instead of the actual 6 2 values.

If the process is in-control and at the nominal values, the chart appears as a simple

horizontal line. If the process is out-of-control, the MP chart gives three visual warnings.

The first one is that the symbol for the group that gives an out-of-control signal is located

above the line of the observations that are under control. Secondly, as the size of the

deviations gets large so does the size of the symbol. The last one is that the symbol gets

darker, attracting more visual attention. All three visual warnings hold regardless if we

have an upward or a downward signal. Even if the shift is constantly appearing in one

direction the visual warnings will be there.

Finally, the MP chart can be used to identify easily the cause of a shift. Since all the

individual variables are displayed on a common scale within a group, the MP chart gives

us the ability to detect visually a change in their interrelationships. Additionally, when

they deviate from their standard, our attention is drawn by the behavior of individual

variables, by the height and darkness of the corresponding bars.

Sparks et al. (1997) presented a graphical method for monitoring multivariate process

data based on the Gabriel biplot. This method uses reduction to two dimensions for

identifying the in or out-of-control state. However, we use all the data for the decision if

we are in or out-of-control even though the method is a dimension reduction one. This

method can be used as a control chart and also if we are out-of-control to detect the

reason that led to this problem. In particular with this approach a practitioner is able

to detect changes in location, variation, and correlation structure.
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