Chapter 3

Estimation Effect in Control Charts

3.1 Introduction

A feature that may affect the performance of a control chart is the estimation effect.
In this chapter we present the current status of research of this field and some new
results. In Section 3.2, we present the case on the estimation effect issue in univariate
and multivariate Shewhart charts. New results on the effect of estimation on the values
of average run length (ARL) and standard deviation of the run length (SDRL) of the S
chart with three sigma and probability limits in the case of subgroups are also presented.
Corresponding results for the X chart for individual observations are also presented. In

Section 3.3 we refer to the estimation effect in the EWMA chart.

3.2 Estimation Effect in Univariate and Multivariate

Shewhart Charts

The estimation effect issue in Shewhart charts was investigated by many authors.
Proschan and Savage (1960) considered the effect of the number of samples and sample
size on the performance of the X chart in terms of the probability of the mean plotting

outside the control limits if we are in-control when the average range or a pooled estimate
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of the variance is used as an estimate of the process variability. They provided values
for the number of samples needed for keeping stable the probability of the mean plotting

outside the control limits if we are in-control for given values of the sample size.

Table 3.1.Correlation for several values of m and n

n
m 5 10 20 50
5 | 0.46581 | 0.37055 | 0.30735 | 0.25370
10 | 0.30362 | 0.22741 | 0.18158 | 0.14528
20 | 0.17898 | 0.12829 | 0.09986 | 0.07833
30 | 0.12689 | 0.08935 | 0.06886 | 0.05362
50 | 0.08020 | 0.05560 | 0.04249 | 0.03288
100 | 0.04178 | 0.02859 | 0.02171 | 0.01671
200 | 0.02133 | 0.01450 | 0.01097 | 0.00843
500 | 0.00864 | 0.00585 | 0.00442 | 0.00339
1000 | 0.00434 | 0.00293 | 0.00221 | 0.00170

However, they did not take into account the dependence between the event that the
sample mean of sample i exceeds UCL and the event that the sample mean of another
sample j exceeds UCL. Therefore, there results are of limited use. Hillier (1969) dealt
with the problem of estimated control limits in the case of X and R chart. He provided
a method of evaluating the probability of the mean plotting outside the control limits in
the case of the X with the range R used to compute the process variability. This method
did not consider the dependence issue as the method of Proschan and Savage (1960),
consequently we can not base the design of our chart on these results.

Ghosh et al. (1981) gave formulas for the computation of the run length distribution
in the case of the X chart with unknown variance. Quesenberry (1993) examined the

effect of estimation of the process mean and standard deviation on the control limits of
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the Shewhart chart for the mean for both rational subgroups and individual observations.

Table 3.2. ARL and SDRL values for the S (three sigma) chart when n =5

oi/og

1 1.2 1.4 1.6 1.8

m ARL | SDRL | ARL | SDRL | ARL | SDRL | ARL | SDRL | ARL | SDRL

) 4-105 | 1-10° | 22235 | 7-10* | 594.02 | 2-10* | 105.38 | 1353.3 | 37.41 | 143.16

10 | 2200.1 | 3-10* | 310.65 | 2288.7 | 86.99 | 330.39 | 39.29 | 104.72 | 21.06 | 45.34

20 | 551.16 | 1699.7 | 139.42 | 297.08 | 54.88 | 95.14 | 2747 | 41.75 | 16.48 | 21.70

30 | 415.06 | 840.14 | 112.55 | 182.48 | 48.74 | 74.75 | 25.79 | 34.47 | 15.52 | 18.54

50 | 346.68 | 545.72 | 101.62 | 134.96 | 43.32 | 55.43 | 23.36 | 27.19 | 14.73 | 16.19

100 | 298.59 | 407.05 | 91.09 | 106.99 | 40.75 | 44.42 | 2235 | 23.56 | 14.20 | 14.55

200 | 276.08 | 318.09 | 85.28 | 93.97 | 39.28 | 41.12 | 21.55 | 22.18 | 13.93 | 13.92

500 | 262.29 | 275.14 | 85.20 | 88.07 | 38.55 | 39.24 | 21.75 | 21.79 | 13.94 | 13.52

1000 | 253.76 | 258.84 | 84.37 | 87.67 | 37.32 | 37.06 | 20.97 | 20.66 | 13.59 | 13.14

oo | 249.31 | 248.81 | 82.44 | 81.94 | 37.72 | 37.21 | 21.22 | 20.71 | 13.69 | 13.18

He proved that

— — — /\[J
Corr(X, — UCL, X, — ICT) — — e 0CL)

Var (71 - U/C’\L)

9(1—e)\ 1|
1+m(1+¥)

which means that there is a correlation between the events X,; — UCL and Yj _LCL. He
concluded that X chart requires about 400/(n— 1) samples for estimating the parameters
in order for the estimated control limits to behave as the theoretical ones, where n is the
subgroup size. In the case of individual observations he showed that 300 observations are
needed for the estimated control limits to behave as the theoretical ones. The control
chart he used is the X chart with the variability estimated by the moving range.

Chen (1997) extended this work by using three different estimators of the standard
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deviation in the X chart case. Let Xij1=1,2,..

a period known to operate in-control and let Y;;,i = 1,2, ...

.mandj=1,2,...

n represent data from

and j =1,2, ...,

n represent

Table 3.3. ARL and SDRL values for the S (three sigma) chart when n = 10

oi/a
1 1.2 1.4 1.6 1.8

m ARL | SDRL | ARL | SDRL | ARL | SDRL | ARL | SDRL | ARL | SDRL

) 606.61 | 1064.81 | 236.14 | 634.06 | 78.31 | 263.87 | 29.43 | 112.67 | 14.39 | 41.18
10 | 538.65 | 919.10 | 145.57 | 329.89 | 45.83 | 99.37 | 19.21 | 31.64 | 10.17 | 13.87
20 |461.44 | 725.80 | 106.92 | 175.82 | 33.86 | 48.22 | 15.85 | 19.75 | 9.04 | 10.34
30 |430.50 | 626.79 | 95.59 | 137.72 | 32.34 | 40.07 | 15.02 | 17.08 | 8.59 9.14
50 [389.91 | 510.09 | 88.05 | 106.54 | 30.29 | 33.98 | 14.38 | 15.65 | 8.37 8.58
100 | 359.35 | 411.69 | 80.89 | 88.11 |[28.79| 30.81 | 13.85 | 14.24 | 8.26 8.16
200 | 344.38 | 367.08 | 78.19 | 82.25 | 28.46 | 28.96 | 13.43 | 13.31 | 7.97 7.58
500 | 334.53 | 340.97 | 76.10 | 76.60 | 27.45 | 27.27 | 13.52 | 13.14 | 8.06 7.65
1000 | 334.56 | 337.96 | 75.88 | 75.93 | 27.31 | 27.01 | 13.50 | 13.04 | 7.98 7.48
oo |331.17 | 330.67 | 75.66 | 75.16 | 27.52 | 27.01 | 13.47 | 12.96 | 8.00 7.48

current or future data. Also, let X;; « N (u,0?) and Y;; «~ N (u+ ao,b?c?) with «, b

constants. Since X « N (1, 02/(mn)) and Y; « N (1 + ao, b20?/n) for given X =7 a

given o we have

PY:<LCLorY;>UCLIT,5) = 1— <1><

Nz

w——\/_>+c1>(

N

b

nd

where z = (T — u) / (¢/y/mn) and w = 7/o. Then, the ARL is computed through the

following relation

o0 o0 1 1
ARL = / / - Y = ———
—oco JO P(YZ <LCLorY,; > UOL|T, 3) V2T

o8

exp (—0.52%) f(w)dzdw,




where f(w) is calculated for three different estimators of o. For a detailed discussion on

the different estimators of o, see Vardeman (1999).

Table 3.3.(continued) ARL and SDRL values for the S (three sigma) chart when n = 10

oi/a%
0.2 0.4 0.6 0.8
m | ARL | SDRL | ARL | SDRL | ARL | SDRL | ARL | SDRL
5 [24.01 | 3743 |306.28 | 520.37 | 1019.6 | 1274.5 | 1136.2 | 1433.6
10 | 21.04 | 25.88 | 254.28 | 377.34 | 1071.7 | 1253.2 | 1316.9 | 1514.7
20 | 19.77 | 22.62 | 230.60 | 275.74 | 1079.4 | 1207.5 | 1472.6 | 1603.4
30 | 19.15 | 20.62 | 223.33 | 249.71 | 1056.5 | 1155.1 | 1569.2 | 1656.9
50 | 1847 | 19.15 | 218.20 | 229.50 | 1047.3 | 1106.2 | 1644.7 | 1686.9
100 | 18.21 | 18.10 | 210.57 | 215.40 | 1037.5 | 1061.3 | 1696.2 | 1729.9
200 | 17.95 | 17.93 | 205.32 | 205.49 | 1023.1 | 1027.8 | 1744.5 | 1746.7
500 | 18.20 | 17.79 | 205.59 | 203.14 | 1009.1 | 1022.0 | 1773.9 | 1785.0
1000 | 17.53 | 17.28 | 206.96 | 204.95 | 1006.7 | 1007.9 | 1768.3 | 1773.9
oo | 1790 | 17.39 | 206.06 | 205.56 | 1011.7 | 1011.2 | 1777.2 | 1776.7

Nedumaran and Pignatiello (2001) developed new control limits for the X chart
taking into account the estimation effect. Specifically, let X; be the average of a fu-
ture subgroup, V be the average variance of the m initial in-control subgroups and
T, = % Then, (Tyi1, Tons2, -, Tmek) has a positively equicorrelated multi-
variate t distribution with correlation 1/(m + 1), where k is a specified number of
future subgroups. If P (ﬁ <X,; < U/C’\L> =1l—-—vi=m+1m+2,...m+Ek
then v must be equal to the run length distribution percentile when we have true lim-

its, for the estimated limits to have equivalent performance with the true ones. Then

v = P[RL<k =1—(1—a)" where « is the probability of a false alarm for a sin-

max |T;| < h.
m+1<i<m+k

gle subgroup. If P = 1 — v where v = m(n — 1), we have

¥,m,k,v
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that P [

X -1

¥,m,k,v

the control limits are

Table 3.4. ARL and SDRL values for the S (three sigma) chart when n = 20

UCL

LCL

I
>l

—h

~¥,m, kv

m—+1

'y,m,k,y mn

] = 1 — ~. Consequently,

oi/a%
1 1.2 1.4 1.6 1.8

m ARL | SDRL | ARL | SDRL | ARL | SDRL | ARL | SDRL | ARL | SDRL

o | 332.72 | 444.02 | 121.96 | 244.63 | 32.29 | 78.86 | 11.46 | 27.03 | 5.54 | 10.33
10 | 362.96 | 457.01 | 92.99 | 166.56 | 23.32 | 45.79 | 871 | 11.78 | 4.62 5.39
20 | 371.24 | 439.25 | 75.00 | 115.39 | 19.63 | 25.36 | 7.87 877 | 4.32 4.20
30 | 372.32 | 430.13 | 68.53 | 86.90 | 18.23 | 21.84 | 7.67 817 | 4.29 4.12
50 | 362.66 | 403.51 | 63.80 | 76.74 | 17.52| 18.73 | 7.49 7.60 | 424 | 3.97
100 | 364.01 | 393.80 | 60.17 | 65.57 | 17.01 | 17.34 | 7.36 7.15 4.11 3.58
200 | 359.00 | 374.30 | 59.56 | 60.31 | 16.61 | 16.45 | 7.15 6.82 4.11 3.59
500 | 355.18 | 358.14 | 59.11 | 59.61 | 16.36 | 16.15 | 7.13 6.70 | 4.09 3.56
1000 | 353.23 | 353.28 | 57.59 | 57.23 | 16.26 | 15.79 | 7.15 6.66 | 4.08 3.59
oo | 356.50 | 356.00 | 57.37 | 56.87 | 16.39 | 15.88 | 7.15 6.63 | 4.07 | 3.53

In the case of the attributes charts p and ¢ with estimated control limits Braun (1999)

computed the run length distributions. If W is the run length until the next signal we

have that

P(Wgw)zl—ZP(in:x> (1—P<F1|in:$>) ;

where F; is the event that the ¢th new observation is outside the estimated control limits.
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In the case of the ¢ chart we have that

[a/m+3/a7m]

m —bc b J
=1 j:{x/m—ﬁ}wx/m]—&-l

and in the case of the p chart

[n:r:/m+3 nx/m(lfx/m)]

j:[nm/mffi nm/m(lfac/m)] +1

where z = 0,1/n,2/n,...,(mn — 1)/n,mn/n. In the case of the c chart 77" | X; is dis-

e~ "¢(mc)*

tributed as a Poisson random variable with mean mc therefore P (E;”Zl X j) =—0,

x = 0,1,2,... In the case of the p chart nZ;n:l X is distributed as a Binomial ran-
dom variable with parameters mn and p that is P (Z;n:l X j> = ("M)p" (1 - p)mm

x=0,1/n,2/n,...,(mn —1)/n,mn/n. Finally, the ARL is equal to

m m -1
ARL = ZP (Z;Xj ::c) P (Fﬂz;xj :x>
x = J=

Braun (1999) showed that, as for variables control charts, the estimation effect can be
serious.
Yang et al. (2002) examined the case of the Geometric chart with estimated control

limits. The run length distribution in this case is equal to

P(R<rippo) =Y [1—am]  a(n) (Tg)p’(} (1—po)™ ",

n=0

p)ln(a/Q)[ln(l—n/m)] i (1 _p)ln(l—a/Q)[ln(l—n/m)

where o (n) = (1 — F' 41, po is the fraction

nonconforming, m is the sample size and n is the number of nonconforming items. The
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ARL in this case is equal to

m

ARL =} — (1n> <Z‘)p3 (1—po)" "

n=0

Yang et al. (2002) showed that the effect on the alarm probability is significant even
when the sample size is very large e.g. 10000. Despite that fact, the ARL is not affected
that seriously, unless we have a small sample size and a large process improvement.
Nedumaran and Pigniatiello (1999) investigated the estimation effect on the T control
charts. They proposed that the number of subgroups needed for the estimated control
limits to behave as the theoretical ones must be between 800p/3(n— 1) and 400p/(n—1),
where p is the number of variables and n is the sample size. Moreover, they gave an exact
procedure for the construction of the 72 control charts when we estimate the parameters

so as to perform similar to the ones with known parameters.

Table 3.4. (continued) ARL and SDRL values for the S(three sigma) chart when n = 20

o2/
0.2 0.4 0.6 0.8
m | ARL | SDRL | ARL | SDRL | ARL | SDRL | ARL | SDRL
5 1.32 0.75 11.92 | 18.83 | 111.01 | 190.51 | 383.43 | 457.13
10 1.28 0.64 10.03 | 12.23 90.20 | 127.11 | 423.04 | 463.05
20 1.26 0.60 9.21 9.96 80.28 94.68 | 442.70 | 473.45
30 1.26 0.58 8.97 9.20 78.03 88.22 | 444.96 | 471.63
50 1.24 0.54 8.90 8.59 75.70 80.02 | 451.20 | 469.84
100 | 1.25 0.57 8.68 8.20 73.42 75.19 | 450.90 | 455.92
200 | 1.23 0.54 8.70 8.27 73.69 74.61 | 447.50 | 446.43
500 | 1.24 0.55 8.55 8.05 73.62 73.39 | 441.19 | 441.96
1000 | 1.24 0.56 8.54 8.14 72.08 71.77 | 445.81 | 448.49
00 1.24 0.54 8.56 8.04 72.91 72.41 | 449.79 | 449.29
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Woodall and Montgomery (1999) emphasized the need for much more research in this

area since it is proved that more data than usually recommended is needed for the control

charts to behave as expected from theory. In the same paper, Woodall and Montgomery

state that much work has been done concerning the control of the process mean but not

that much for the process dispersion.

Table 3.5. ARL and SDRL values for the S (three sigma) chart when n = 50

o1/o%
1.2 1.4 1.6 1.8

m ARL | SDRL | ARL | SDRL | ARL | SDRL | ARL | SDRL | ARL | SDRL

5 |263.03 | 325.32 | 59.79 | 125.84 | 9.49 | 18.56 | 3.23 3.96 1.86 1.57
10 | 304.52 | 359.74 | 44.11 | 76.18 | 7.69 | 9.98 2.89 2.87 1.73 1.23
20 | 328.25 | 365.28 | 36.59 | 49.56 | 6.91 7.54 | 2.83 2.52 1.69 1.15
30 | 340.23 | 369.51 | 33.55 | 39.88 | 6.65 | 6.77 | 2.76 2.37 1.68 1.11
50 | 345.02 | 369.81 | 32.36 | 35.89 | 6.64 | 6.61 2.72 2.24 1.67 1.09
100 | 355.17 | 366.97 | 30.64 | 31.98 | 6.37 | 6.11 2.7 2.2 1.67 1.08
200 | 357.85 | 364.35 | 30.75 | 30.97 | 6.39 | 6.06 2.67 | 2.09 1.67 1.06
500 | 362.32 | 358.59 | 30.32 | 30.28 | 6.38 5.87 | 2.65 2.1 1.67 1.06
1000 | 356.30 | 352.76 | 30.62 | 29.97 | 6.29 5.89 2.67 | 2.08 1.67 1.05
oo | 365.96 | 365.46 | 30.23 | 29.72 | 6.35 5.83 2,67 | 211 1.66 1.04

Chen (1998) deals with the run length properties of the R, s and s? control charts in

the case that o is estimated. Let X;;,¢ = 1,2,..m and j = 1,2, ...,n denote historically

in-control data and Y;;,7 = 1,2,... and j = 1,2,...,n represent current or future data.

Let X;; « f((x — p)/o)/o and Y;; «~ f((y — p)/(bo))/(bo) with b constant, p,o the

process mean and standard deviation respectively and f(-) the form of the known density

function. Denote U = & /o, where 7 is an estimate of ¢ calculated from the historical

data set and U « h(u;m,n). Let T; = 7, /0, where 0; is an estimate of bo using Y;;. Also,
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denote G(t;b,n) = P(T; < t). Then, if L, and U, are the constants multiplied with o

for the known lower and upper control limits case respectively, we have that

P(o;, < L,o or 0; > U,0|0) = G(L,u/b;b,n) + 1 — G(U,u/b;b,n) = l(u; b,n),

where u = /0. Then, the ARL is computed through the following relation

+o00 1
ARL = / - h(u; m,n)du.
0

Table 3.5. (continued) ARL and SDRL values for the S (three sigma) chart when n = 50

o1/a%
0.2 0.4 0.6 0.8
m | ARL | SDRL | ARL | SDRL | ARL | SDRL | ARL | SDRL
5 1 0 1.25 0.66 8.68 | 13.45 | 124.56 | 199.43
10 1 0 1.23 0.56 7.20 8.36 | 110.20 | 171.69
20 1 0 1.21 0.51 6.80 7.10 97.84 | 128.55
30 1 0 1.20 0.50 6.55 6.53 93.47 | 110.48
50 1 0 1.20 0.48 6.51 6.38 89.64 | 98.31
100 1 0 1.20 0.48 6.44 | 6.04 85.98 | 91.30
200 1 0 1.19 047 | 6.37 5.91 85.92 | 88.10
500 1 0 1.18 047 | 6.34 5.92 85.47 | 85.74
1000 1 0 1.18 047 | 6.26 5.82 85.82 | 85.86
00 1 0 1.19 0.48 6.28 5.76 84.25 | 83.75

Maravelakis, Panaretos and Psarakis (2002) examine the effect of estimation of the
process parameters on the control limits of charts for process dispersion by extending
the results of Chen (1998) for both rational subgroups and individual observations. In

sections 3.2.1-3.2.4 we present this work.
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3.2.1 The S (Three Sigma) Control Chart

Assume that we have the control limits (2.6) and their estimated counterparts in
(2.8). Let A; denote the event that the ith sample standard deviation .S; exceeds UC'L
or is exceeded by LC'L. Then, since S; and \S; are independent for ¢ # j, the sequence of
trials A; and A; are independent meaning that they constitute a sequence of Bernoulli

trials.

Figure 3.1. Empirical Run Length Distribution Functions for the 3 sigma chart
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The mean and standard deviation of the run length distribution, ARL and SDRL respec-

tively, of this process is that of a geometric distribution given by the following formulas

‘ -

ARL = (3.1)

H
S0

SDRL =

—
|
™
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where f =1—Pr(A;) =Pr(LCL < S; <UCL).
Assume now that we are in the case when the true value of the standard deviation is
not known, which is the most usual case. Let B; denote the event that the ¢th sample

standard deviation .S; exceeds UCT or is exceeded by ILCT.

Table 3.6.Correlation for several values of m and n

n

m 5 10 20 50

5 | 0.51095 | 0.39568 | 0.32137 | 0.26032
10 | 0.34314 | 0.24663 | 0.19144 | 0.14964
20 | 0.20710 | 0.14066 | 0.10585 | 0.08087
30 | 0.14831 | 0.09839 | 0.07315 | 0.05541
50 | 0.09460 | 0.06145 | 0.04521 | 0.03400
100 | 0.04965 | 0.03170 | 0.02313 | 0.01729
200 | 0.02545 | 0.01611 | 0.01170 | 0.00872
500 | 0.01034 | 0.00650 | 0.00471 | 0.00351
1000 | 0.00520 | 0.00326 | 0.00236 | 0.00176

The formulas (3.1) for ARL and SDRL are not valid any more because the events
B; and B, are not independent for ¢ # j. We can prove that E(U/C'\L) = UCL and
Var(U CL) (1 + = \/ ) 24l C4 and using these relations we prove after some

calculations that

Cov(S; — UCL, S; — LCL) = Var(UCL) = <1 + oy /1 - 04)

and

Var(S; — ZTC’\L) = [1+

(1—{—%\/1—04 ]
m
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Therefore, the correlation between the random variables S; — UCT and S;— LCL is

var@CL) (1 EVI- 03)2

Corr(S; — U/C’\L, S;— L/C\L) = —— = 5
V(IT(SZ—UCL) m+<1+% 1_0421>

Table 3.7. ARL and SDRL values for the S (probability limits) chart when n =5

oi/o}

1 1.2 1.4 1.6 1.8

m | ARL | SDRL | ARL | SDRL | ARL | SDRL | ARL | SDRL | ARL | SDRL

5 | 359.97 | 463.12 | 267.35 | 405.54 | 173.40 | 312.06 | 111.11 | 231.57 | 71.17 | 173.0

10 | 401.46 | 491.51 | 268.52 | 395.19 | 154.68 | 263.77 | 83.88 | 161.01 | 47.93 | 102.77

20 | 441.09 | 495.15 | 254.39 | 350.22 | 127.40 | 199.04 | 64.92 | 106.92 | 36.69 | 58.40

30 | 462.04 | 509.78 | 247.68 | 320.05 | 115.34 | 164.84 | 58.02 | 84.90 | 33.35 | 49.45

50 | 472.24 | 504.56 | 239.29 | 295.97 | 108.19 | 137.80 | 52.48 | 65.23 | 30.29 | 35.47

100 | 489.90 | 512.64 | 229.28 | 262.50 | 99.08 | 115.37 | 49.79 | 54.68 | 28.81 | 31.03

200 | 498.35 | 505.20 | 221.61 | 240.21 | 94.66 | 102.45 | 48.20 | 50.97 | 27.67 | 29.10

500 | 500.93 | 505.59 | 216.74 | 223.58 | 93.45 | 95.24 | 46.06 | 46.00 | 28.00 | 27.60

1000 | 497.73 | 503.09 | 213.01 | 217.36 | 92.29 | 94.50 | 47.12 | 47.08 | 27.31 | 26.70

oo | 500.02 | 499.52 | 214.74 | 214.24 | 91.78 | 91.28 | 46.51 | 46.01 | 27.33 | 26.82

It is obvious that the correlation is a function of m and n only. In Table 3.1 we present
values of the correlation for combinations of m and n. From this Table we see that as the
sample size and the number of samples increases the correlation decreases. For small or
moderate sample size (n < 20) we need 200 samples for the correlation to be negligible.
However, for larger sample size the value m = 50 is suitable.

In order to examine the values of the first two moments of the run length distribution,
we performed a simulation study based on various numbers of samples and various sample
sizes. In particular the number of samples and samples sizes considered were m = 5, 10,

20, 30, 50, 100, 200, 500, 1000 and n = 5, 10, 20, 50. For every combination of m and
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n we simulated m samples of size n from a N(u,c32) distribution and computed UCL
and LCL. Then, we simulated samples from a N(ju, %) distribution until we obtained a
value above UCL or below LCL. The number of samples simulated up to the one that
lead to a value outside the control limits constitutes one observation of the run length

distribution. This procedure was repeated 10000 times in order to get estimates of the

values of ARL and SDRL. The results are presented in Tables 3.2 — 3.5.

Table 3.7.(continued) ARL and SDRL values for the S (probability limits) chart when n =5

01/
0.2 0.4 0.6 0.8
m | ARL | SDRL | ARL | SDRL | ARL | SDRL | ARL | SDRL
5 |99.28 | 92.90 | 207.50 | 279.98 | 367.15 | 426.84 | 423.91 | 494.16
10 | 51.33 | 60.99 | 188.80 | 229.67 | 383.62 | 419.59 | 478.62 | 506.71
20 | 49.25 | 53.77 | 178.80 | 195.31 | 381.22 | 406.88 | 535.06 | 558.84
30 | 47.36 | 50.56 | 174.26 | 182.63 | 378.10 | 395.01 | 551.71 | 561.82
50 | 47.06 | 47.90 | 172.37 | 175.45 | 374.69 | 387.19 | 572.90 | 579.90
100 | 46.45 | 46.53 | 170.21 | 172.41 | 369.25 | 373.72 | 588.21 | 585.37
200 | 44.99 | 44.60 | 169.92 | 169.76 | 369.89 | 371.74 | 595.42 | 594.84
500 | 45.64 | 45.22 | 168.09 | 168.67 | 364.29 | 363.97 | 604.03 | 601.67
1000 | 45.64 | 44.65 | 165.86 | 166.04 | 364.05 | 369.30 | 598.0 | 601.84
oo | 45.09 | 44.59 | 167.40 | 166.90 | 366.87 | 366.37 | 597.91 | 597.41

From Tables 3.2 through 3.5 certain conclusions are drawn. We see that we have
results for both upward and downward shifts when n > 5 but only for upward when
n = 5. This happens because for n < 5 the lower control limit is set to zero. Therefore,
it can never be crossed. For upward shifts as m increases the ARL and SDRL values
decrease and approach their theoretical values. For downward shifts as m increases the

same thing happens for n = 50. For n = 10,20 the ARL and SDRL values do not follow

68



a specific trend. In the in-control state we also do not have a clear pattern for either
ARL or SDRLvalues. What we can say in every case is that ARL and SDRL values

behave in the same way.

Table 3.8. ARL and SDRL values for the S (probability limits) chart when n = 10

oi/o}

1 1.2 1.4 1.6 1.8

m | ARL | SDRL | ARL | SDRL | ARL | SDRL | ARL | SDRL | ARL | SDRL

o | 341.44 | 422,99 | 217.14 | 329.46 | 110.54 | 218.04 | 52.43 | 130.38 | 25.60 | 62.05

10 | 391.03 | 456.05 | 208.08 | 307.21 | 86.61 | 155.83 | 36.61 | 67.22 | 17.72 | 28.51

20 | 428.95 | 469.37 | 194.55 | 257.65 | 70.14 | 106.07 | 28.50 | 39.48 | 14.96 | 18.23

30 | 448.41 | 480.41 | 187.90 | 234.75 | 65.03 | 88.79 | 27.33 | 33.58 | 14.20 | 16.15

o0 | 464.28 | 481.37 | 178.40 | 209.85 | 60.27 | 72.62 | 25.81 | 28.64 | 13.61 | 14.78

100 | 479.05 | 488.20 | 169.77 | 184.28 | 56.35 | 61.10 | 24.52 | 25.62 | 13.16 | 13.69

200 | 484.86 | 493.03 | 166.70 | 176.09 | 54.73 | 56.70 | 24.26 | 24.50 | 12.81 | 12.66

500 | 490.54 | 489.97 | 161.32 | 164.74 | 52.91 | 53.41 | 24.02 | 24.08 | 13.11 | 12.82

1000 | 492.16 | 480.65 | 161.60 | 161.87 | 53.81 | 53.11 | 23.60 | 23.23 | 12.70 | 12.38

oo | 500.05 | 499.55 | 161.99 | 161.48 | 53.44 | 52.94 | 23.46 | 2295 | 12.74 | 12.23

As m increases the ARL is getting closer to the theoretical value faster than the
SDRL. Moreover, as n increases the theoretical values, in the in-control state, approach
the ones from a normal distribution, which are ARL = 370.4 and SDRL = 369.9. The
same of course happens and for the out-of-control states.

If we use this type of chart for identifying shifts in process dispersion we have to use
samples of size n at least 20, for minimizing the effect of estimating S. If n is less than
this value the practitioner will face an increased number of false alarms. The effect of

estimation is also severe for m < 20, especially in the in-control state and for small shifts.
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For values 30 < m < 50 the effect is moderate and for values of 100 or larger the effect
is small enough. A last point we have to make is that when we have small downward
shifts for n < 20the ARL and SDRL values are larger than the corresponding in-control
values. This result is also confirmed by Klein (2000). Consequently, in such cases special

care must be given and it is better to use control charts for small shifts like CUSUM and

EWMA.

Table 3.8. (continued) ARL and SDRL values for the S (probability limits) chart when n = 10

01/
0.2 0.4 0.6 0.8
m | ARL | SDRL | ARL | SDRL | ARL | SDRL | ARL | SDRL
d 5.34 741 | 46.09 | 81.74 | 182.01 | 262.85 | 339.52 | 406.60
10 | 4.63 4.92 | 38.28 | 48.93 | 162.80 | 206.09 | 378.42 | 422.41
20 | 4.40 4.27 | 35.18 | 40.33 | 154.72 | 181.67 | 396.79 | 417.98
30 | 4.36 4.10 | 34.06 | 37.31 | 147.37 | 159.98 | 400.78 | 424.06
20 | 4.20 3.76 | 33.36 | 35.08 | 144.77 | 156.54 | 401.66 | 421.77
100 | 4.27 | 3.81 |32.66 | 34.24 | 139.43 | 140.95 | 402.89 | 413.00
200 | 4.26 3.73 | 32.78 | 33.25 | 137.34 | 137.24 | 400.48 | 403.36
500 | 4.17 | 3.64 | 3244 | 31.76 | 136.91 | 133.59 | 405.11 | 405.09
1000 | 4.21 3.63 | 31.95 | 31.10 | 133.69 | 132.26 | 398.98 | 400.52
oo | 4.23 3.70 | 32.13 | 31.62 | 136.47 | 135.97 | 400.85 | 400.35

In Figure 3.1 we present the empirical run length distribution functions (ERL) for
n = 5,10,20,50. In each Figure we plot six different lines representing the ERL func-
tions for m = 5,20, 50, 100, 1000 and the theoretical run length distribution (inf). It is
obvious that as m increases the ERL approaches the theoretical run length distribution.

Moreover, as n increases the ERL’s for the m values approach the theoretical run length
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distribution faster.

3.2.2 The S (Probability Limits) Control Chart

Consider the control limits 2.10 and 2.11. In the same way of thinking as in the case

of three sigma limits we can prove that Var(TCL) = [02(1 — ¢2)x2 999l /[( — 1)c?m] and

consequently

Cov(S; — UCL, S; — LCL) = Var(UCL)

Moreover,

Var(S; — UCL) = 02(1 — ¢2) {1 +

_ 02(1 — Ci)X3.999

X(2).999
(n—1)cim

(n—1)cm

|

Table 3.9. ARL and SDRL values for the S (probability limits) chart when n = 20

o1/
1.2 1.4 1.6 1.8

m ARL | SDRL | ARL | SDRL | ARL | SDRL | ARL | SDRL | ARL | SDRL

5 | 327.65 | 381.36 | 170.43 | 279.59 | 56.40 | 125.43 | 18.47 | 47.23 | 8.07 | 17.04
10 [ 379.94 | 415.88 | 154.94 | 241.56 | 40.09 | 71.48 | 13.24 | 19.53 | 6.45 8.01
20 | 421.10 | 434.89 | 135.60 | 194.87 | 33.08 | 46.55 | 11.89 | 14.66 | 5.93 6.32
30 | 442.13 | 451.34 | 126.95 | 170.03 | 30.45 | 37.64 | 11.46 | 12.67 | 5.81 6.0
o0 | 461.32 | 467.99 | 117.98 | 139.49 | 29.17 | 32.83 | 11.09 | 11.54 | 5.69 5.50
100 | 476.40 | 478.77 | 113.42 | 126.66 | 27.69 | 28.82 | 10.97 | 10.94 | 5.57 5.26
200 | 486.38 | 486.97 | 109.86 | 115.12 | 27.35 | 27.82 | 10.50 | 10.20 | 5.50 5.17
500 | 485.13 | 488.22 | 108.31 | 108.90 | 26.81 | 26.19 | 10.43 | 10.12 | 5.41 4.89
1000 | 494.29 | 488.10 | 106.57 | 108.41 | 26.63 | 25.79 | 10.30 | 9.78 5.48 491
oo | 500.01 | 499.51 | 106.64 | 106.14 | 26.67 | 26.17 | 10.42 | 9.91 5.46 4.93
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and finally

VW(U/C\L) . X3.999

C’orrSi—ITC’\L,S»—L/C\L = — = .
( ’ ) Var(S; —UCL) Xb.999 + (n — L)cim

Table 3.9.(continued) ARL and SDRL values for the S (probability limits) chart when n = 20

oi/og

0.2 0.4 0.6 0.8
m | ARL | SDRL | ARL | SDRL | ARL | SDRL | ARL | SDRL
) 1.17 5l 7.0 10.62 | 56.41 | 103.25 | 245.11 | 324.91
10 | 1.14 43 6.11 7.0 4591 | 69.83 | 247.16 | 304.65
20 | 1.13 40 0.71 5.85 | 40.82 | 47.93 | 233.76 | 273.54
30 | 1.13 .39 5.44 5.32 | 40.07 | 44.78 | 228.37 | 256.46
o0 | 1.12 .36 5.49 5.21 | 38.59 | 41.06 | 223.43 | 242.44
100 | 1.12 37 5.36 4.95 |37.85 | 39.05 |219.40 | 225.87
200 | 1.11 .36 5.40 492 | 3799 | 38.81 |217.81 | 217.89
500 | 1.11 .36 5.36 4.87 | 3741 | 36.61 | 213.94 | 209.40
1000 | 1.12 37 5.29 4.80 |37.69 | 37.00 |213.70 | 213.52
oo | 1.12 .36 5.29 477 | 3744 | 36.94 | 215.93 | 215.43

As in the case of three sigma limits this correlation depends only on m and n. In
Table 3.6 we calculated the correlation for various combinations of m and n. From this
Table we conclude again that as the sample size and the number of samples increases the
correlation decreases. The recommendation for sample sizes and number of samples is
the same as in the case of three sigma limits.

We computed the ARL and SDRL values for several values of m and n via simulation

along the same lines as in the three sigma limits. The number of samples and sample
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sizes considered were m = 5, 10, 20, 30, 50, 100, 200, 500, 1000 and n = 5, 10, 20,50. The
results are presented on Tables 3.7 — 3.10. From Tables 3.7 through 3.10 we deduce the

following points. For upward shifts as m increases the ARL and SDRL values generally

decrease and approach their theoretical values. For downward shifts as m increases the

same thing happens for n = 20, 50. For n = 5, 10 the ARL and SDRL values do not

follow a specific pattern. In the in-control state the ARL and S D RL values increase until

they get close to their theoretical values, which is in accordance with the results of Chen

(1998). As an overall conclusion we can say that the ARL and SDRL values behave in

the same way except that as m increases the ARL is getting closer to the theoretical

value faster than the SDRL.

Table 3.10. ARL and SDRL values for the S (probability limits) chart when n = 50

02/
1.2 1.4 1.6 1.8
m ARL | SDRL | ARL | SDRL | ARL | SDRL | ARL | SDRL | ARL | SDRL
5 320.32 | 380.78 | 93.28 | 184.90 | 13.83 | 29.14 | 4.02 5.49 2.10 1.90
10 | 369.19 | 410.82 | 70.91 | 122.34 | 10.73 | 15.32 3.61 4.02 1.93 1.49
20 | 411.62 | 433.18 | 58.04 | 85.60 9.50 10.86 | 3.37 3.19 1.93 1.42
30 | 431.22 | 447.76 | 53.56 | 68.63 8.96 9.54 3.42 3.10 1.90 1.36
50 | 452.27 | 459.10 | 50.77 | 5&8.78 8.96 8.95 3.28 2.85 1.89 1.30
100 | 472.90 | 472.99 | 48.14 | 50.64 8.62 8.59 3.25 2.79 1.88 1.32
200 | 482.50 | 481.24 | 47.71 | 48.24 8.51 8.24 3.25 2.75 1.86 1.29
500 | 493.58 | 498.61 | 47.47 | 48.19 8.60 8.11 3.24 2.69 1.85 1.23
1000 | 490.32 | 499.04 | 47.59 | 47.66 8.56 8.10 3.23 2.66 1.86 1.27
00 500.01 | 499.51 | 47.23 | 46.73 8.52 8.01 3.22 2.67 1.86 1.27

When we are in-control we need at least m = 200, otherwise the practitioner will face

many false alarms whereas the value of n is not equally important. In the out-of-control
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situations the value of n is important for minimizing the effect of estimating S. Specif-
ically, when ¢%/03 = 1.2 the ARL values for n = 5,10, 20, 50 are 239.29,178.40,117.98
and 50.77 respectively. Therefore, we observe a dramatic reduction as n becomes larger.
A similar situation occurs for downward shifts. Consequently, large values of n, larger
than 20, are recommended. The effect of estimation is severe for m < 20, especially for
small shifts. For values 30 < m < 50 the effect is moderate and for values of 100 or
larger the effect is small enough. When we have small downward shifts for n = 5, and
for n = 10 when m < 10, the ARL and SDRL values are larger than the corresponding
in-control values. In such a situation it is better to use control charts for detecting small

shifts like CUSUM and EWMA charts.

Table 3.10. (continued) ARL and SDRL values for the S (probability limits) chart when n = 50

01/
0.2 0.4 0.6 0.8
m | ARL | SDRL | ARL | SDRL | ARL | SDRL | ARL | SDRL
3 1 0 1.21 .62 747 | 11.58 | 107.80 | 188.75
10 1 0 1.19 .50 6.19 6.96 92.22 | 141.22
20 1 0 1.18 AT .86 5.90 79.17 | 102.14
30 1 0 1.16 45 5.69 2.50 74.86 | 87.60
50 1 0 1.16 45 5.65 5.46 71.97 | 78.71
100 1 0 1.15 42 5.64 0.22 69.87 | 73.40
200 1 0 1.16 43 5.62 2.18 69.61 | 69.69
500 1 0 1.15 42 5.49 4.95 68.90 | 70.23
1000 1 0 1.15 42 5.51 5.06 69.27 | 70.27
00 1 0 1.16 43 5.48 4.96 68.04 | 67.54

In Figure 3.2 we present the empirical run length distribution functions (ERL) for

n = 5,10, 20, 50. In each Figure we plot six different lines representing the ERL functions
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for m = 5,20,50,100, 1000 and the theoretical run length distribution (inf). We see
that as m increases the ERL approaches the theoretical run length distribution. Also,
an increasing n value causes the ERL’s for the m values to approach the theoretical run

length distribution faster.

Figure 3.2. Empirical Run Length Distribution Functions for the probability limits chart
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3.2.3 The X Chart for Monitoring Process Dispersion

Consider the control limits of Section 2.3.3. In order to assess the effect of the number
of observations on the control limits of the X chart we performed a simulation study.
The results are presented in Table 3.11. For each value in the Table, we simulated N
values from a N (p,032) distribution, we computed the UCL and LCL and subsequently
we generated values from a N (u, 0%) distribution until we obtained a value above UCL or

below LCL. The number of samples simulated up to the one that was outside the control
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limits constitutes one observation on the run length. This procedure was repeated 32000

times in order to get estimates of the values of ARL and SDRL.

Table 3.11. ARL and SDRL values for the X control chart

ai/o}
1 1.2 1.4 1.6 1.8

N | ARL | SDRL | ARL | SDRL | ARL | SDRL | ARL | SDRL | ARL | SDRL
30 ] 986.31 | 5024.83 | 315.36 | 1058.44 | 147.93 | 439.79 | 84.36 | 187.50 | 53.74 | 98.54
50 | 614.94 | 1565.0 | 229.95 | 476.60 | 116.69 | 200.50 | 69.61 | 107.23 | 47.23 | 66.81
75 | 503.75 | 948.78 | 202.02 | 318.54 | 105.18 | 150.77 | 64.51 | 84.15 | 43.99 | 54.87
100 | 467.07 | 770.60 | 190.53 | 274.54 | 100.73 | 131.39 | 61.98 | 75.26 | 42.78 | 50.48
200 | 413.88 | 518.65 | 173.68 | 205.96 | 93.86 | 105.77 | 58.63 | 63.56 | 40.67 | 42.81
300 | 398.94 | 476.34 | 167.79 | 187.69 | 92.76 | 100.47 | 57.93 | 61.37 | 41.26 | 42.29
500 | 387.38 | 429.45 | 167.90 | 179.39 | 90.34 | 93.58 | 56.80 | 58.96 | 39.69 | 40.54
1000 | 379.32 | 401.55 | 162.96 | 168.50 | 89.12 | 91.10 | 57.03 | 57.78 | 39.90 | 39.85
2000 | 372.64 | 383.71 | 162.70 | 166.87 | 89.45 | 89.41 | 56.35 | 55.82 | 39.62 | 39.17
oo | 370.40 | 369.90 | 162.08 | 161.58 | 89.05 | 88.55 | 56.48 | 55.98 | 39.45 | 38.95

From Table 3.11 we see that we do not have results for downward shifts. This hap-

pens because a decreasing standard deviation will never cause a value below the lower

control limit. The simulation reveals that the ARL and SD RL values decrease until they

approach their theoretical values. We need at least 300 observations to minimize the

effect of estimation in the control limits of the X chart.

In Figure 3.3 we present the empirical run length distribution function (ERL) for

n = 30, 50, 100, 200, 500, 1000, 2000 and the theoretical run length distribution (inf). The

result is that as n increases the ERL approaches the theoretical run length distribution.
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3.2.4 Discussion

In the rational subgroups case we propose larger n values than usual and someone
may report that this is a problem. However, Woodall and Montgomery (1999) remarked
that in industry now there are large data sets available in contrast to the past. Therefore,
such values for the sample size should not be a problem, generally. On the other hand,
if for some special applications this still remains a problem, the practitioner should keep
in mind the great influence on the estimated control chart performance displayed on the

tables of this work.

Figure 3.3. Empirical Run Length Distribution Functions for the X chart
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3.3 Estimation Effect in the EWMA Chart

Jones et al. (2001), considered the problem of estimating the parameters of the
EWMA chart in the normal case. They proved that if the random variable T is the run
length of the EWMA chart, then the ARL of such a chart is given by

ARL = E[T|v,6,u] = /OO /OOM(w,zo,%cS,u) fuw (W) & (20) dwdzy,
—o0 J0

where M (w, zg, 7, 0,u) = 1+%fth(w,zo,fy,5,v)¢ <% [v—(1—-r)u] — % - 7%) dv,
v = o/og, & = (u— o)/ (c0/+/n), w, 2o are specific values of the random variables
W =06y/00, Zo = ﬁ% and u is the starting value of the EWMA. Also, p,, 0o are
the in-control mean and standard deviation, 1i,, 0y are their estimates respectively and
1, o are the mean and standard deviation at time ¢. Additionally, the second moment of

T is given by

E [T, 6,u] = / N / " My (w, 70,7, 6,u) fu (1) 6 (20) duwdzo,

where M; (w, zg,7,9,u) = 1—1-3—:’ fth (w, z0,7,0,v) ¢ (% w—(1-r)u] - % + 'yf/OT_n> dv+

w M My (w, 20,7, 8,0) (% o —(1—r)u] -2+ W) dv. The SDRL can be computed

by SDRL = \/ E[T?] — (E[T])*. Jones et al. (2001) concluded that in both in-control

and out-of-control cases the process’s run length performance is affected. In particular,
the estimation effect results in more false alarms and generally leads to a reduction of
the ability of the chart to detect process shifts.

Additionally, Jones (2002) developed a procedure for designing an EWMA chart with
estimated parameters. Using this procedure a practitioner is able to design an EWMA
chart to have the desirable performance. The steps of this method are

Step 1. Identify the desired in-control ARL of the chart

Step 2. Determine the subgroup size n and number of subgroups m that will be used

to estimate the parameters of the in-control process. Obtain a reference sample of m
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subgroups, of n observations each

Step 3. Ensure that the reference sample is representative of the in-control state of
S

Ca,m

the process. Estimate the parameters according to iy = — > | Z;‘Zl X,jand 09 =

m " (Xi—X; 2 V2 mn—1)+1
where Sp = \/Z’_l Z;;(;(_l)] ) and Cam = \/m(n(l)r(Qm(")”)'
2

Step 4. Select the smoothing constant .
Step 5. Using A from Step 4, identify the constant L that produces an EWMA chart
with the desired in-control ARL.
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