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Chapter 3 
 
 
 
 
TEST OF THE PREDICTABILITY OF A LINEAR MODEL AND 

COMPARISON OF THE PREDICTABILITY OF TWO LINEAR 

MODELS BASED ON THE χ2 AND THE CORRELATED GAMMA-

RATIO DISTRIBUTIONS  

 

 

 

 

3.1  ESTIMATION OF PREDICTIONS. 

 

Consider the linear model :  

 

Yt Xtb et = +    (3.1.1) 

where 

  Yt is  an  ( At x 1)  vector  of  observations   on   the  
     dependent random variable  

  Xt is  an  ( At x m)   matrix   of  known   coefficients, 

     where A t m 0≥ ′ ≠



, X t X t
 

  β  is an mx1 vector of regression  coefficients  and 

 et is  an  ( At x 1)  vector  of   normal   error  random 
    variables  with E(et)=0 and V(et)=σ2 It ,  where  It   is     

    the  A t x At  identity matrix. 
 

 The prediction of the (t+1) time-point is given by: 

� �Yt 1+ +=D DX bt 1 t    (3.1.2) 

 

where  



Estimation of Predictions  

 27 

  �bt  is the  least  squares  estimator  of β at  time  t,  

     given by:  

( )�b X X X Yt t t
1

t t= ′ ′−
   (3.1.3) 

and 

  Xt 1+
D  is a  1xm  vector   of  values  of  the  regressors 

     for the (t+1)time-point. 

 

The variance of the prediction �Y t 1+
D is, then, given by: 

        ( ){ }V Yt t(� )+ +
−

+= ′ +1
2 1D D Dσ X X X Xt 1 t t

1
t 1
 '   (3.1.4) 

where 

      
[ ] [ ]

[ ]
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σ2 2= =

− −

−
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mt

Y X  b  Y X  bt t t

'

t t t

At
   (3.1.5) 

After the value Y t 1+
D for the (t+1) time-point has been 

observed, the model to be used for predicting the value of 

the (t+2)time-point becomes: 

 

Yt 1 Xt 1b et 1+ = + + +   

 

where now the matrices Xt+1 and Yt+1 are defined as : 

X
X

X
Y

Y
t 1

t

t 1
t +1

t
+

+ +

=








 =









D D   and   

Yt 1

 

with dimensions ( ) ( )A At + +1 1 x m and t  x 1 respectively. 
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3.2  TESTING THE PREDICTABILITY OF A LINEAR MODEL 

 
 

Xekalaki and Katti (1984) and Panaretos et al.  

(1997), used the difference between the observed and the 

predicted value of the dependent variable on every time 

point, to evaluate the predictability of a linear model. 

 

Let  

  Yt+1
D : the observed value of the  dependent  variable  for   

       the (t+1) time-point. 

  �Yt +1
D : the predicted  value of the dependent variable  for   

       the (t+1) time-point.  

 

Then it is known that (Xekalaki and Katti (1984)) : 

 

( )( )( )� ~ ,Y Yt t t+ + +
−

+− ′ +1 1
20 1D D D D N  S  'X X X Xt 1 t t

1
t 1    (3.2.1) 

 
A statistical function that could be used for the 

evaluation of the predictability of the model is the 

function: 

( )( )
r

Y

S
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t

t

+
+

+
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+

=
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′ +
1

1

1

�Y
 t = 0,1,2...t+1

 '

D D

D DX X X Xt 1 t t
1

t 1

  (3.2.2) 

 

where St  is given by (3.1.5). 

Because of the (3.2.1) and (3.2.2) it’s obvious that:  

rt 1 ~  N(0,1)+     (3.2.3) 

Xekalaki and Katti (1984) considered as a scoring rule for 

the performance of the model the average of rt2  :   

R
r

nn

t
t

n

= =
∑ 2

1   (3.2.4) 
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If the rt were independent and because of  (3.2.3) then it 

is known that : 

nR rn t
t

n

n=
=
∑ 2

1

2~ χ    (3.2.5) 

       

 

According to the above theorem the assumptions are met for 

(3.2.5) to hold.  So, the predictability of a linear model 

can be tested as follows: 

 
H0:

:

the model is appropriate for predictions

H the model presents lack of predictabilityA








 

 

The null hypothesis is rejected for large values of rt
t

n
2

1=
∑ , 

that is when the value of rt
t

n
2

1=
∑  is at the right tail of the 

χ2-distribution. 

This hypothesis test, has been studied by Box and 

Jeckins (1970) and is called «Portmanteau test» (see 

paragraph 2.19) as well by Spanos (1986) taking into 

consideration a specific number of residuals.    

 
Theorem (Brown (1975), Kendall (1983)). 
  
If  e(t) ~ N(0,σ2 It ) then the quantities : 

( )( )
W

Y
t

t
+

+

+
−

+

=
−

′ +
1

1

1

�Y
 t = 0,1,2...t+1

 '

D D

D DX X X Xt 1 t t
1

t 1

 

are   i.i.d normal variables with mean  0  and  variance 

σ2. Also, the quantities : 

r w
St

t

t
+

+=1
1      t = 0,1,2,… 

are independent variables, t-distributed, with ( At -m) 

degrees of freedom.  For  large At , the variables rt+1  

t=0,1,2,...  given  by  (3.2.2)  are approximately standard  

normal  variables  which  are  mutually independent. 
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3.3 COMPARING THE PREDICTABILITY OF TWO LINEAR MODELS 

 

Let  A and B  two  linear  models  which are  given by 

(3.1.1).  Suppose that we have observations for n1 , n2 

time points respectively and we want to choose the more 

adequate model (the one that has the greater 

predictability).  A statistical function appropriate for 

testing the hypothesis :  

H0 : the two models give equivalent predictions 

HA : model A predicts better than model B   

based on the ratio of the average scores of the two  models 

was given by Panaretos et al. (1997): 

     
( )
( )

R
R A

R Bn n
n

n
1 2

1

2

, =   (3.3.1) 

It is known that if n R Rn n1 21 2
, n  were independent and χ2-

distributed with n1, n2 d.f, respectively, then the ratio 

Rn n1 2,  is F-distributed with n1, n2 d.f. On the other hand, 

the residuals of predictions rA(t),rB(t) of the two linear 

models A, B given by (3.2.2) are not independent since they 

come from the same response.  The following theorem is 

instrumental in developing the test. 

Theorem. (Kibble(1941) Patil(1984)). 

 
 Let Xi , Yi , i=1,2,..,n be standard normal distributed random 

variables following jointly, the bivariate standard normal 

distribution.  Then, the joint distribution of : 

X X Y Yi
i

n

i
i

n

= =
= =
∑ ∑2

1

2

1

2 2   and    (3.3.2) 

is Kibble’s bivariate Gamma type (1941) with probability 

density function : 

( )
( ) ( )

( )
( ) ( )( )f X Y

e
i

XY

X Y
i

i

i, =
−

+

−
+

−

=

∞
− +∑

1 2 2

0

1
2 1

1

ρ

κ
κ

κ ρ

ρ ρ

κΓ Γ Γ 1 -  i +2
  (3.3.3)    

where κ=n/2. 
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Considering the same number of time-points, according to 

the above theorem, we regard the correspondence : 

Xi→ rA(t)  ,    Yi→ rB(t) 

the joint distribution of the variables: 

X X Y Yi
i

n

i
i

n

= =
= =
∑ ∑2

1

2

1

2 2   and     

is Kibble’s bivariate Gamma distribution. 

 

Panaretos et al. (1997) have shown (see appendix) that the 

ratio of  X and Y : 

Z = X/Y 

follows a Correlated gamma ratio distribution with p.d.f : 

 

( )
f Z

B
Z Z

Z
ZX Y/ ( ) ( , )

( )=
−

+ −
+















 ∞− −

−
+

1
1 1

2
1

2

1 2
2

2 1

2ρ

κ κ
ρ

κ

κ κ

κ

,0 < Z < +  (3.3.4)  

 
 

Using the Correlated Gamma Ratio distribution, we may 

compare the predictability of two linear models: 

 

H0 : MA ~_  MB  

HA  : MA > MB 
meaning that 

    H0: model A is equivalent to model B 

    HA: model A is better than model B . 

 

The advantage of model selection using the Correlated 

Gamma Ratio distribution, compared with the other methods, 

is that we do not have to know the functional form of the 

models that we compare.  

 

In the following pages we present some plots of the 

Correlated Gamma Ratio distribution for different values of 

κ and correlation coefficient ρ. 
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Figure 3 : P.d.f of the Correlated Gamma Ratio Distribution for κ=5 
and different values of the correlation coefficient . 
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Figure 4 : P.d.f of the Correlated Gamma Ratio Distribution for κ=10 
and different values of the correlation coefficient . 
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Figure 5 :  P.d.f of the Correlated Gamma Ratio Distribution for κ=30 
and different values of the correlation coefficient. 
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Figure 6 : P.d.f of the Correlated Gamma Ratio Distribution for κ=50 
and different values of the correlation coefficient. 

 


