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Chapter 2 
 
 
 
EVALUATION METHODS FOR LINEAR MODELS 
 

 

 

 

2.0  NOTATION AND TERMINOLOGY. 

 

Suppose we have a model under consideration which 

can be written in the form: 

Y = Xβ + e 

where  

Y is an (n x 1) vector of observations 

X is an (n x κ) matrix of known predictors 

β is a  (κ x 1) vector of parameters 

ε is an (n x 1) vector of errors 

 

The least squares estimator of β is the value b, given 

by: 

( )b X X X Y= ′ ′−1 . 

The fitted values are obtained from: 

Y Xb=  

We use the notation 

( )TSS y yi
i

n

= −
=

∑ 2

1

(Total Sum of Squares) 

( )ESS y yi
i

n

= −
=

∑ 2

1

(Explained Sum of Squares)  

( )RSS y yi i
i

n

= −
=

∑ 2

1

(Residual Sum of Squares)  

 

Some of the methods most commonly used in the literature 

for model selection are the following ones: 
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2.1  RESIDUAL MEAN SQUARE CRITERION 

 

Let p be, the number of predictors used in a linear 

model (p≤ κ).  An estimate of the RMS (Residual Mean 

Square) is given by: 

MSE
RSS
n p

=
−

  

for all the possible 2κ-1 models.  

The criterion is based on the function(see Drapper 

N.R. and Smith(1981)): 

S p
MSE p

p

2( )
( )

=








κ
 

that is, the average of the MSE for all the models of 

dimension p.  The criterion works well for large data 

sets. 

After the estimation of MSE and S2(p), the procedure 

is the following: 

 

• We plot the average S2(p) against p. (Figure 1) 

 
                                 S2(p) 

     

 

 

         σ2  

 

 
p = number of predictors in the model 

 

Figure 1: Plot of the average S2(p) against p. 

 

• At the beginning, the curve is a descending one. As 

more and more predictor variables are added to an 
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already overfitted* equation, the residual mean square 

will tend to stabilize - the curve becomes a line - and 

approach the true value of σ2 as the number of variables 

increases, provided that all important variables have 

been included. Thus, this procedure gives us an 

«asymptotic» estimate of σ2 with which we can choose a 

model, or models, whose residual variance estimate is 

close to RMS(κ) - the RMS of the model that contains 

all the predictors- and which contain the fewest 

predictor variables to achieve that.  The elbow of the  

curve indicates the appropriate number of predictors 

included in the model. 

 
 
 
 

2.2  THE COEFFICIENT OF DETERMINATION  
 
 
  The most common measure of the goodness of fit of a 

linear model is the coefficient R2.  This measure, known 

as the coefficient of determination, is defined by (e.g 

Drapper N.R. and Smith(1981)): 

 

R2 = 
Sum of e to regression 

Total Sum of 
Squares du

Squares
 ⇒ 

R
ESS
TSS

RSS
TSS

2 1= = −  . 

That is, R2 measures the «proportion of total 

variation about the mean Y  explained by the regression». 

The coefficient of determination lies always between 0 

and 1 and the fit of a model is satisfactory if R2 is 

close to unity.  A value of R2 is usually regarded as 

large, if it is greater than 0.7 or 0.8.  An advantage of 

this measure is that it can be calculated very easily. 

                                                 
* The fitting of regression equations that involve more predictor 
variables than are necessary to obtain a satisfactory fit to data is 
called overfitting. 
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According to this measure, the best model is the one 

with the largest R2 coefficient.  However, R2 can always 

be increased after the inclusion of any predictor.  

Therefore, the model : 

Y = Xβ + γw + e 

has always a higher R2 than the model  

Y = Xβ + e 

whatever the extra predictor variable w is. This occurs 

because the R2 coefficient is an ascending function of the 

inclusive predictors in the model.  If n is the total 

number of observations and p is the number of the 

inclusive predictors (p≤ κ ), it can be proved (see, e.g., 

Panas(1993)), that : 

E(R2)=
p
n p

−
−
1
 

which means that the mean of the distribution of R2 

increases as p increases. A solution to this problem is 

to estimate the appropriate number of dimensions, p, 

graphically.  The procedure is described in the next 

steps: 

 

• We estimate R2 for all the possible 2κ-1 regressions. 

• We plot the maximum value of R2 coefficient which 

corresponds to every dimension p, towards p. (Figure 2) 

    

 R2 

ο           

        

 

 

 

 

               p 

 
Figure 2: Plot of the maximum value of R2 coefficient which 

corresponds to every dimension p, against p.  
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• At the beginning, the curve is an ascending one. As p 

increases the curve becomes almost a line.  The value 

of p that corresponds to the elbow of the curve is the 

appropriate number of predictors that have to be 

included in the model. 

 

 

 
2.3  ADJUSTED COEFFICIENT OF DETERMINATION 
 

An alternative method of R2 is a modification of R2 

which takes into account not only the fit of the model 

but the number of predictors as well while, at the same 

time, it penalizes the inclusion of  extra variables. The 

modified  R2, known as the adjusted R2, is obtained 

through the formula(e.g Drapper N.R. and Smith(1981)): 

( )

( )
R

Y Y

Y Y

n
n padj

i i
i

n

i
i

n
2

2

1

2

1

1
1

= −
−

−
⋅

−
−











=

=

∑

∑
 

( )= −
−
−

−1
1

1 2n
n p

R  

Radj
2  may decrease, despite the inclusion of a new variable 

in a model. This happens when the improvement of the fit 

of the model that is achieved after the inclusion of the 

new variable is not large enough. Radj
2  does not lie in 

[0,1].  It can take negative values as well.  However we 

can choose between the potential models finding the one 

with the highest Radj
2 . 

Let us now assume that, in a given model we omit an 

predictor, say xj . It can be proved (Greene W.H 1993), 

that Radj
2  will become larger if the t-ratio for the 

coefficient βj is smaller than 1.  Otherwise, Radj
2  becomes 

smaller. This is not the case with R2.  The omission of a 

variable leads always to a model with smaller R2. 
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Radj
2  is obviously an improvement of R2.  Sometimes, 

however this improvement is not adequate.  

Some alternative criteria that also penalize the 

increase of the number of parameters and can be used for 

model selection are given in the sequel.   

 

 

2.4 COEFFICIENT OF MULTIPLE CORRELATION  

 

  The square root of R2 is called coefficient of multiple 

correlation and it is symbolized by R.  Many 

statisticians use R instead of R2.  The apparent reason of 

using R is that 0<R2<1 and consequently R>R2.  

Nevertheless it is difficult to explain R and especially 

the sign of R. 

 

2.5 SELECTION OF REGRESSION COEFFICIENTS. 
 
 
 

The most common method to adjust a model in a set of 

data is the ‘least square method’. Given κ predictors 

there are 2κ-1 possible models among which, we have to 

chose the ‘best’ one.   

After having adjusted the model to the data, we have 

to select these predictors that are significant for the 

model. That is, we have to test the hypothesis: 

H

H
i

i

0

1

0

0

:

:

β
β

=
≠








 (2.5.1) 

If we have not enough evidence to reject H0 then the 

contribution of the corresponding Xi in the model is not 

significant and we have to omit the term βi Xi from the 

model. 

There are different methods for the choice of the 

regression coefficients. The most important are: 
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2.5.1  THE BACKWARD ELIMINATION PROCEDURE. 

 
The backward elimination method is more economical 

than the ‘all regressions’ method in the sense that it 

tries to examine only the ‘best’ regressions containing a  

certain number of variables. The method starts by 

computing a regression equation containing all predictors 

and systematically it eliminates this variable that has 

not a significant contribution to the model in the sense 

that it has the smallest value of t-statistic.  The basic 

steps of the procedure are the following: 

•  We estimate the regression equation that contains  all 

the predictors. 

•  For every predictor Xi, we test the hypothesis (2.5.1) 

and we accept the null  hypothesis that the i-predictor 

is not significant, if: 

   t
S

ti
i

n p
= <

− − ;

β

β

α
1
2

 (2.5.2) 

(where β i  is the least square estimator of the 

coefficient βi of the variable Xi and S
i

β
 is the 

estimated standard deviation of the estimator βi of the 

regression coefficient).  Then, we eliminate that 

predictor that presents the smallest t-statistic. 

•  In the sequel, we estimate the regression equation 

with κ-1 predictors.  We also test the hypothesis 

(2.5.1)and we eliminate that predictor with the 

smallest ti  statistic that is also smaller than    tn-

p;α/2. 

•  We continue the procedure till all the ti  statistics 

are greater than the critical value of the t-

distribution. 

We have to point out that the elimination of the i-

predictor can equivalently be tested using the F instead 

of the t-distribution. 
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2.5.2  THE  FORWARD SELECTION PROCEDURE. 

 
The method of the forward selection procedure uses 

the opposite logic from the one used in the backward 

elimination method.  In every step, a predictor variable 

is added in the model. The steps of the procedure are the 

following:  

 

• We estimate all the correlations between all the 

predictors and the response Y.  We choose that 

predictor that presents the highest correlation with 

the response. Let this predictor be, X1.  

 

• We estimate the model with predictor X1.  We also 

estimate the t-statistic to test the hypothesis H0:β1=0. 

If we accept H0, that is if: 

     t
S

ti

n
i

= <
− ;

β

β

α
2
2

 (2.5.3) 

  we have to stop the procedure. If not, we have to 

choose the second predictor. 

 

• For the selection of the second predictor, we estimate 

the partial correlations of Y with all the predictors, 

keeping X1 constant. Let X2 be this predictor that 

presents the highest absolute value of the partial 

correlation coefficient.  In the sequel, we estimate 

the model with predictors X1, X2 and we test the 

hypothesis H0:β2=0. If 

t

t

t

n

n

=

≤

≥















−

−

3 2

3 2

; /

; /

α

α

     we stop the procedure and we consider the

     model that contains only the predictor X  

  we procced to the selection 

         of a third predictor

1   
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• When the last selected predictor presents a t  

statistic  smaller than the critical value, the 

procedure is terminated. 

 

The advantage of this method is that it is 

computationally easy.  On the other hand this method has 

a number of disadvantages.  The correlations between the 

response and the predictor variables take generally large 

values. Another disadvantage is that offers only the 

possibility of adding an independent variable and from 

the time that a variable is incorporated in the model it 

is retained even if the value of the statistical function 

t doesn’t exceed the critical level in any stage of the 

method. 

We have to point out that the incorporation of the 

i-predictor can equivalently be tested using F instead of 

t-distribution. 

 

 

2.5.3  THE  STEPWISE REGRESSION PROCEDURE. 

 
This method looks like the forward selection 

procedure but can be considered as a combination of the 

previous two procedures.  

Initially, it incorporates a predictor in the 

equation, following the same method as the forward 

procedure.  The difference is that in every stage we 

totally reexamine the predictors that have already been 

incorporated in the model using the criterion of the 

backward procedure.  So, it is possible to eliminate some 

predictors that previously had been considered  

significant. The procedure continues until we arrive at a 

subset of predictors for which none of the predictors 

presents statistic t  smaller than the critical value of 

t-distribution.  
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2.6  RIDGE REGRESSION 

 
The method of ridge regression was first suggested 

by A.E. Hoerl (1962), and provides a different way for 

model selection.  The procedure is intended to overcome 

‘‘ill conditioned’’ situations where correlations between 

the various predictors in the model cause the X΄X matrix 

to be close to singular (determinant equal to zero), 

giving rise to unstable parameter estimates. The 

estimation of the regression coefficients β of  a linear 

model is : 

b( )ϑ =(X΄X + θ Ιr)-1 X΄Υ 

where θ is a positive number - usually lying in the range 

(0,1). The selection procedure eliminates these variables 

that give the smaller b ( )i ϑ in absolute value, that is, 

these b ( )i ϑ  that have the least predictive efficiency.  

After this it eliminates these variables whose regression 

coefficients tend to zero when θ increases.  

Ridge regression is useful and appropriate in 

circumstances where it is believed that the values of the 

regression parameters are unlikely to be ‘‘large’’. The 

choice of θ is essentially equivalent to an expression of 

how big one believes those b’s to be.  In circumstances 

where one cannot accept the idea of restrictions on the 

b’s, ridge regression would be completely inappropriate.  

A disadvantage of the method is that it doesn’t clarify 

when the procedure finishes. It should be noted that, in 

applications, ridge regression has not usually been used 

as a model selection  procedure.  We mention this use 

only as a possibility.  

There is a large and growing literature on the many 

aspects and generalization of ridge regression. Some 

important comments are given in the assignment of Draper 

and Nostrand (1979).  
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2.7  MALLOWS CP STATISTIC 

 

An alternative statistic, which has gained 

popularity in recent years is the Cp statistic, initially 

suggested by C.L.  Mallows (1973).  This has the form: 

C
RSSp
s

p np = + + −
( )

( )2 2 1  

where   

RSS(p) is the residual sum of squares from a model 

containing p parameters  

and 

s2 is the residual mean square of the model that 

contains all the predictors. 

 

It can be shown that a model with p predictors is 

adequate if: 

E(Cp)=p  

It follows that a plot of Cp versus p will show up the 

‘adequate models’ as points fairly close to the Cp=p line.  

The best model is chosen after inspecting the Cp plot.  We 
would look for a regression with a low Cp value about 

equal to p. 

 

It can be proved that the statistic Cp is related to 

R2 and R2adj through the formulas: 

( )( )
( )

C
n R

R
p np

p
=

− −

−
+ + −

κ

κ

1

1
2 1

2

2
( )  

where κ  is the total number  of the parameters that can 

be included in the regression, and 

( )( )
( )

C
n p R p

R
p np

adj

adj

=
− −

−
+ + −

1

1
2 1

2

2

( )

( )
( )

κ
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where Radj
2 ( )κ  is the adjusted coefficient of  determination 

that is estimated when all the parameters that can be 

included in the regression are considered. 

2.8  HOCKING’S SP CRITERION. 

 
A criterion quite similar to CP is the SP criterion given 

by Hocking (1976). The criterion is based on the 

minimization of the quantity: 

SP = ( )( )
RSSp

n p n p
( )

− + − −1 1
 

where RSS(p) is the residual sum of squares of a model 

that includes p variables from the κ candidate variables.  

 
 
 
2.9  CROSS VALIDATION - PRESS CRITERION 
 
 

One of the most useful methods in model selection 

problems is the cross validation (CV) method. Similar to 

other model selection methods, the CV method selects a 

model by minimizing the overall expected squared 

prediction error. The idea is simply to split the data 

into two parts, using one part to derive a prediction 

rule and then judge the goodness of the prediction by 

matching its outputs with the rest of the data (hence the 

name cross validation).  The first part contains nc data 

points used for fitting a model (model construction), 

whereas the second part contains nv = n - nc data points 

reserved for assessing the predictive ability of the 

model(model validation).  There are 
n

nv







  different ways 

to split the data set.  Cross validation, selects the 

model with the best average predictive ability calculated 

based on all( or some) different ways of data splitting. 
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Clearly, the computational complexity of this method 

increases as nv increases.  That is why the simplest 

cross-validation with nv=1(leave one-out CV) has been the 

main focus of researchers’ attention in the last years. 

Suppose that p is the number of predictions in a 

regression equation. The basic steps of the leave one-out 

CV are the following (Predictive Sum of Squares procedure 

(Allen 1971):  

 

1.Delete the first set of observations on the response 

and predictor variables. 

2.Fit all possible regression models to the remaining n-1 

data points. 

3.Use each fitted model to predict Y1 by Y p1 (say) and so 

obtain a predictive discrepancy (Y1 -Y p1 ) for all the 

possible regression models. 

4.Repeat steps 1,2 and 3 , but deleting the second 

observation to give (Y2-Y p2 ) values, the third 

observation to give (Y3-Y p3 ) values and so on, to n 

deletions. 

5.For each subset regression model calculate the 

predictive discrepancy sum of squares : 

 PRESS = ( )Y Yi ip
i

n

−
=

∑
1

2

 

6.Choose the «best» subset regression.  This will have a 

comparatively small predictive sum of squares but will 

not involve too many predictors. 

 

The CV with nv=1 is inconsistent in the sense that 

the probability of selecting the model with the best 

predictive ability does not converge to 1 as the total 

number of observations n→ ∞ , and is too conservative in 

the sense that it tends to select an unnecessarily large 

model (overfitting). That is why, many investigators 
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propose leave-nv-out CV, finding methods that reduce the 

amount of computation : 

• Jun Shao (1993), proposes a leave-nv-out cross 

validation where nv/n →1 as n→ ∞ .  Selecting  nv in 

this way, rectifies the inconsistency of the leave-one-

out CV.  

  

• Ping Zhang (1993) also proposes a leave-nv-out cross 

validation. He proves that the general -leave-nv-out CV is 

asymptotically equivalent to the FPE crierion. (Final 

Prediction Error) and proposes two computationally more 

feasible methods, the r- fold CV (MCVk*)and the repeated 

learning-testing method (RLTk), which is essentially a 

bootstrap method.  

 

 

 
2.10  BOOTSTRAP 
 
 

Bootstrap is a data-resampling method, based on 

computers, which substitutes considerable amounts of 

computation in place of theoretical analysis. Generally, 

bootstrap replies to how accurate is an estimation θ  of 

an unknown parameter θ  using many replications.(B. Efron 

and R. Tibshirani (1986)). 

 

Regression Models 
 

Let, the data set z for a linear regression model 

consists of n points z1, z2 , … , zn , where each zi is 

itself a pair, say 

zi = (xi , yi)       i =  1,2,…,n 

The structure of the linear model is expressed as: 

yi = xi β + ei      i =  1,2,…,n 
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• Bootstrapping Residuals (Efron 1979) 

 

⇒ Given zi = (xi , yi)     i =  1,2,…,n  we obtain the 

least square estimates of the regression coefficients: 

( )β = ′ ′−X X X Y1  

⇒ We calculate the residuals  

           e y xi i i= − β     for i =  1,2,…,n 

⇒ We estimate the empirical distribution of the ei : 

 F: probability 1/n on ei for i =  1,2,…,n 

⇒ We select a random sample of bootstrap error terms  

 F ( ), ,..., *e e e en1 2 =  

⇒ Bootstrap responses yi
*  are generated : 

     yi
*  = xi *β + ei      for i =  1,2,…,n 

 It may seem strange that the xi are the same for the 

bootstrap data as for the actual data.  This happens 

because we are treating xi as fixed quantities rather 

than random. 

⇒ The bootstrap L.S.E estimate *β : 

 ( )* *β = ′ ′−X X X Y1  

 is the minimizer of the residual squared error for the 

bootstrap data,  

 ( ) ( )y x y x bi i
i

n

b i i
i

n
* * *min− = −

= =
∑ ∑β

1

2

1

2

 

  

• Bootstrapping Pairs (Efron 1982) 

  

⇒ Given zi = (xi, yi) i = 1,2,…n , let F be the 

distribution putting probability 1/n on each of the n 

points. 

⇒ The bootstrap data set now,  is ( )z z z zn
* * * *, ,...,= 1 2 . 

⇒ We obtain the L.S.E: 
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 ( )* * * * *β =
−

X X X Y ’  ’1
 

⇒ Then, the bootstrap predictions are: 

 * * *y X= β  

⇒ The residual squared error is: 

 ( )RSE y yi i
i

n

= −
=

∑ * *

1

2

   

  

Model Comparison 

 

Let X,D,E be the data matrix of all the variables and 

two design matrices -subsets of X- respectively. Then, 

the L.S.E for the two models are: 

( ) ( ) ( ) ( )β βD D D D Y   and   E E E E Y= ′ ′ = ′ ′− −1 1 .  

The residual squared errors for the two models are: 

( ) ( )RSED y y D E y y Ei i
i

n

i i
i

n

( ) ( ) ( ) ( )= − = −
= =

∑ ∑
1

2

1

2

  and  RSE  

Using bootstrapping residuals, or bootstrapping pairs, we 

estimate the above residual squared errors. Generally, 

small values of the residual squared error indicate  good 

prediction.  The question how do the D and E variables 

compare as predictors of the response, can be phrased as 

a comparison between RSE(D) and RSE(D).  A handy 

comparison statistic is 

[ ]( ) ( )θ = −
1
n

RSEE RSED  

A positive value of ϑ  would indicate that the E variables 

are not as good as the D variables and that the D 

variables are better predictors.  But we ca not decide if 

this is really true until we understand the statistical 

variability of ϑ . Confidence intervals using bootstrap 

methods is a good way to answer if the difference is 

statistically significant or if it is of practical 

importance. 
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Jun Shao (1996) proposes an alternative bootstrap 

procedure. He argues, that although the bootstrap 

estimates have good properties, the bootstrap selection 

procedure is inconsistent, in the sense that the 

probability of selecting the optimal subset of variables 

does not converge to 1, as n→ ∞.  This inconsistency can 

be rectified by modifying the sampling method used in 

drawing bootstrap observations. 

  For bootstrapping pairs, it is found that instead of 

drawing n bootstrap observations, much less bootstrap 

observations should be sampled: the bootstrap selection 

procedure becomes consistent if we draw m bootstrap 

observations with m→ ∞ and m/n→0.    

 For bootstrapping residuals, he suggests multiplying 

the residuals by a factor n m , where m satisfies m/n→0 

and m→ ∞. 

 

 
2.11  LIKELIHOOD  RATIO    TEST  (χ2   -  Test)  

 

Let ΘS, ΘR  be the M.L.E for the saturated model 

(the model that contains all the possible predictors) and 

the reduced model(for which the predictors is a subset of 

the predictors of the saturated model), respectively. Let 

also L(ΘS) and L(ΘR ) be the maximum likelihoods. If a 

model fits well the data then we would expect L(ΘR )to be 

quite as large as L(ΘS). We define the function 

( )
( )

Ω
Θ

Θ
=

L

L

R

S

 . 

Using this ratio we can test the hypothesis: 

H0 : Reduced Model is better 

H1 : Saturated Model is better 
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Values of Ω close to 1 indicate that H0 describes well the 

data, while values of Ω close to 0 indicate significant 

lack of fit of the reduced, compared with the saturated 

model. In order to test the hypothesis we have to know 

the distribution of Ω, when H0 is true. 

We define the quantity 

Deviance = D = -2logΩ. 

Asymptotically, when H0 is true, the deviance follows χ2n-p 

where n is the number of observations and p the number of 

the predictors of the reduced model. 

So, 

( )
( ) ( ) ( )[ ]D
L

L
L L

R

S

S R= −














= −2 2log log log
Θ

Θ
Θ Θ  

Suppose that we have the following sequence of nested 

models: 

M0 ⊂ M1 ⊂ MS 

where MS is the saturated model and M0 , M1 , MS  have p, 

p+q and n predictors, respectively.  We want to test the 

hypothesis :  

 
H M

H M
0 0

1 1

:

:

 model is beter

 model is better
  

Furthermore, let D0 be the deviance that is derived when 

comparing M0 and MS , D1 the deviance (Deviance=-2logL(Θ)) 

that is derived when comparing M1 and MS , and Θ0, Θ1 and 

ΘS the M.L.E for the three models, respectively. We can 

test the previous hypothesis using the likelihood ratio 

statistic: 

∆D = D0 - D1 = 

    = 2[log L(ΘS; y) - log L(Θ0;y)]  

          - 2[log L(ΘS; y) - log L(Θ1;y)] = 

   = 2 [log L(Θ1; y) - log L(Θ0;y)] = 
( )
( )2

1

0

log
;

;

L y

L y

Θ

Θ
. 
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D0 ~ Xn p−
2  and  D1 ~ Xn p q− −

2 . Under the assumption of 

independence, ∆D ~Xq
2 .  That is, if  we find a large value 

of ∆D, we reject the null hypothesis of M0, i.e. we prefer 

model M1 to M0. (Likelihood Ratio test or X2 - test) 

 

 

2.12  AKAIKE   INFORMATION CRITERION (AIC). 

 

  The use of the asymptotic chi-square method for model 

comparison is, limited to the case where one model is a 

restricted version of the other. The AIC statistic, 

introduced by Akaike [1973, 1977], can be used in cases, 

where the asymptotic chi-square test is not feasible. The 

AIC statistic associated with a model is defined by the 

formula: 

AIC = - 2 ln L +  2 d.f  

where L is the maximum likelihood of the model and d.f. 

is the effective number of parameters in the model.  In 

the case of linear regression models the problem 

simplifies to the minimization of the function 

AIC nln( ) 2p2= +σ  

Note that adding twice the degrees of freedom 

compensates the error of the large value of the maximum 

likelihood as a consequence of increasing the number of 

parameters. If more parameters are used to describe the 

data, it is natural to get a larger  likelihood, possibly 

without improving a true goodness of fit, and the AIC 

avoids this spurious improvement of fit by penalizing the 

use of additional parameters. The model which gives the 

minimum AIC value is considered the best fitting model.  

 

 

2.13 BAYESIAN INFORMATION CRITERION (BIC) 

 



 Evaluation Methods for Linear Models 

 23 

A Bayesian version of the AIC is one that Akaike 

(1978,1979) called BIC.  For the linear regression models 

it is defined by the function: 

BIC n ln( ) p ln(n)2= +σ  

In this criterion the parameter p penalizes σ2  more than 

AIC since for n>7, ln(n)>2.  

2.14  AMEMIYA PREDICTION CRITERION (PC) 

 

Amemiya (1980) suggested a criterion similar to the 

one by Akaike that is based on the minimization of the 

quantity: 

PC = σ2  
n p
n p

+
−

 

2.15  HANNAN’S CRITERION (HC) 

 

Hannan (1981) suggested a criterion that is based on 

the minimization of the quantity: 

HC = n ln(σ2 ) + p (2ln(ln(n)) 

 

2.16  THEIL’S RESIDUAL VARIANCE CRITERION (RVC) 

 

The following criterion was suggested by Theil (1961) 

and is based on the minimization of the quantity: 

RVC = σ2  
n

n p−
 

 

 

2.17  PARZEN’S  CRITERION  FOR   AUTOREGRESSIVE  TRANSFER  

FUNCTIONS (CAT) 

 

Parzen (1977) suggested the following criterion, 

called CAT: 
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CAT p
n

j pj

n( ) =

− +





−









 =

∑

1
1

1 1
2 2

1

               p = 0

1
n

        p = 1,2,3
σ σ

 

where σ j
2 is the unbiased estimator of σ n

2  when an AR(j) 

model (autoregressive series of order j) is fitted in the 

data and n is the number of observations. The order p is 

selected when CAT(p) takes the minimum value. 

2.18  BAYESIAN MODEL CHOICE. 

 

In Bayesian statistics a prior belief for a model is 

given by the prior probability and we are interested in a 

posterior belief of the model, that is the posterior 

probability.  

Assume that we have a countable set M of competing 

models for a given set of data ε.  Let model m∈Μ have a 

vector θm of unknown parameters, the dimension of which 

may vary from model to model.  The posterior probability 

of a model m given the data ε, is given by: 

( )
( ) ( ) ( )

( ) ( ) ( )
π ε

π π ε θ π θ θ

π π ε θ π θ θ
θ

θ

m 

m m m

m
m M

m m

m m m

m m m

m

m

|

| , |

| , |
=

⋅ ⋅

∈
⋅ ⋅

∫

∑ ∫

  d

  d
  

where ( )π ε θ | ,m m  is the likelihood given the model m and 

the parameter vector θm, π(m) is the prior probability for 

model m, and π(θm|m) is the prior of the parameter vector 

θm given the model m.  Inference about the model selection 

problem may be done using the Bayes Factor (BF) of model 

mi against model mj given by 

( )
( )

( )
( )

( ) ( )

( ) ( )
BF

m

m

m

m

m m

m m

i

j

j

i

i m mi i mi

j m mj j mj

i

mi

j

mj

= ⋅ =

⋅

⋅

∫

∫
π ε

π ε

π

π

π ε θ π θ θ

π ε θ π θ θ

θ

θ

|

|

| , |

| , |

  d

  d
. 

However, the Bayes Factor require evaluation of the 

integrals in the nominator and the denominator.  These 

integrals are in general difficult to calculate. 
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 Because of this difficulty numerical or asymptotic 

methods are necessary to obtain posterior summaries of 

interest. A sampling strategy of parameters θ, called 

MCMC (Markov Chain Monte Carlo) is a tool to overcome 

these difficulties. 

 Methods such as SSVS (Stochastic Search Variable 

Selection- George and McCullogh(1993)) and Reversible 

Jump  (Peter Green(1995)) are also used for the Bayesian 

model choice.  
 

 

2.19  MODEL SELECTION FOR TIME SERIES 

 

 The criteria that are mostly used in time series, 

trying an autoregressive-moving average model of order p 

and q with maximum likelihood L and N time points, are: 

• AIC=-2lnL + 2(p+q+1) 

• AICC=
( )

( )
− +

+ +
− − −

2
2 1

2
ln L

N p q

N p q
 

 (Corrected Akaike Criterion) 

•  BIC (Bayesian Information Criterion) 
 

If we want to test the adequacy of the model we use 

the «Portmanteau Test». (Box and Jeckins (1970)) 

Let αt  be the residuals from a time series, and 

r(αt ) be  the autocorrelations of the αt .  Then it is 

known that: 

r(αt )~N(0,1/N) 

and that 

Q N rs t
s

K

=
=
∑ 2

1

( )α  ~ χ2K-p-q 

where K is the lag of the model. 

 

So, testing the hypothesis 

H0 : The model is a satisfactory one 
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HA : not H0 

we have enough evidence to reject H0 for values of Q 

greater than χ2K-p-q.  

 


