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CHAPTER 3 

 

MULTILEVEL MODELS 

 
3.1 Introduction to Multilevel Models 
 

 Multilevel models are concerned with a structure of the data in the 

population and more specifically, with the hierarchy of the data. A hierarchy 

consists of units grouped at different levels (Goldstein, (1995)). 

There are various kinds of data in which a hierarchical structure can be 

identified. An example of data with a natural hierarchy is the animals grouped 

within classes. It is obvious that animals which belong to the same class would 

be more alike than others which belong to different classes, that is, they would 

share the same biological characteristics or even similar outward appearance.  

Furthermore, the data collected in social sciences may also have a hierarchical 

structure. For example, the students grouped or clustered within schools. In this 

case, it is observed that students who attend the same school are more alike, on 

average, than students who attend different schools. Another example of 

hierarchically structured data in social sciences is the people grouped within 

different social and economic levels. In this case, people belonging to the same 

economic level tend to have similar social attitudes and equal mean income.  

Some data hierarchies can also be created by designed experiments, such as 

clinical trials, where patients are grouped within hospitals. 

In all of the above cases, the data have a hierarchical structure and this 

cannot be ignored. This structure may be natural or may be created by designed 

experiments. The provenance of the hierarchy is not important. What is of vital 

importance is the fact that once hierarchies or groupings are established, the 

group influences its members and vice versa. For that reason, when one wants 

to analyze a set of data with hierarchical structure one cannot just ignore this 
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hierarchy and use traditional statistical analysis techniques. If one does so, it 

would be like overlooking the importance of group effects and on the other 

hand, the results may be misleading or even invalid. 

A typical example of the above situation is Professor Bennett’s work on 

formal and informal teaching styles (Bennett, 1976) and the reanalysis by 

Aitkin et al (1981), using multilevel analysis. More analytically, Bennett 

collected data on nearly a thousand students of 36 primary school classes and 

examined how the progress of the students depended on whether the students 

were taught by formal methods, by informal methods or a mixture of the two 

methods. He used multiple regression techniques for analyzing the data and he 

arrived at the conclusion that the students that were taught by formal methods 

made greater progress. Several years later, Aitkin analyzed the data set of 

Bennett, whose analysis ignored the groupings of students according to 

teachers and into classes, using multilevel analysis. Aitkin took into 

consideration the hierarchical structure of the data and concluded that the 

students that were taught by the formal methods  did not differ from the others. 

This work has been the subject of much debate and many papers have been 

published on this issue. Aitkin’s work was the first considerable multilevel 

analysis of social science data. 

Although the issue of the proper analysis of data with hierarchical 

structure has been long recognized, researchers were not able to confront that 

problem, because they did not have a powerful research tool in their hands. But 

now, the development of multilevel modeling solves the problems arising from 

ignoring hierarchical structures and opens horizons for further research. 
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3.2 The Linear Multilevel Model 
 

 It was explained in the introduction of this chapter that multilevel 

models take into account the hierarchical structure of the data in the population. 

A clear example of this structure is the educational system which places 

students in classes, classes in schools and schools in prefectures. 

 In a multilevel model, students would be the level-1 units, schools 

would be the level-2 units and prefectures would be the level-3 units. In this 

way, multilevel models not only do not ignore the special structure of the 

population, but also intend to investigate how this structure affects the 

measurements of interest. Thus, with regard to school education, one may be 

interested in establishing whether some schools are more effective than others 

and furthermore in defining those characteristics that are related to the 

effectiveness of a school. 

 There are two fundamental principles of multilevel modeling that 

distinguish multilevel models from the single level ones. The first principle is 

that multilevel models consider, in the above example, schools as a sample of a 

wider population of schools. They do not focus just on these schools of the 

sample, but they regard these schools as source of information for all the 

schools in the population. Just as a random sample of individuals provides 

estimates of the characteristics of the population (mean, etc.), so a random 

sample of schools provides estimates for the characteristics of the schools in 

the population. To be exact, a random sample of schools can provide estimates 

of the variation and covariation between schools in the slope and intercept 

parameters and thus, one will be able to compare schools with different 

characteristics. The second principle is the existence of different levels of 

variation. In the example of schools, presented above, there is the level-1 

variation, that is the variation between students (because in this example 

students are the level-1 units). There is also the level-2 variation, that is the 

variation between schools and the level-3 variation, that is the variation 
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between local authorities. But we are going to refer to variation more 

analytically later in this chapter. 

 Below, the 2-level and the 3-level models will be introduced along with 

the basic notation, the procedures for estimating parameters, forming and 

testing functions of the parameters and constructing confidence intervals. 

 

3.2.1 The 2-Level Model 

  

 Before the presentation of the 2-level model, let us stress once again that 

the example of the education system is going to be used throughout this 

section. First of all, consider the simple-level model 

 

Y X ei i= + +β β0 1 0                                                      (3.1) 

 

where Y is a response variable, X an explanatory variable and the intercept 

(β0 ), the slope (β1) and the residual ( e i0 ) can be interpreted in the standard 

way. The subscript i refers to the level-1 units, that is the students, in one 

school. Thus, the model (3.1) describes a single-level relationship. In order to 

describe simultaneously the relationships of more schools, the following model 

is used 

 

Y X eij j j ij ij= + +β β0 1 0                                                  (3.2) 

 

where j refers to the level-2 units, that is the schools and i refers, as above, to 

the level-1 units. Generally, wherever an item has an ij subscript, it means that 

this item varies from student to student within a school. When an item has a j 

subscript, it means that it varies from school to school, but has the same value 

for the students within the same school. Finally, when an item has neither an ij 

subscript nor a j subscript, then this item is constant across all students and 

schools. The model (3.2) is still a single-level model, since it describes separate 
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relationship for each school. For converting the model (3.2) to a 2-level model, 

we have to consider β0 j  and β1j  as random variables with 

 

β β0 0 0j ju= +    and   β β1 1 1j ju= +  

 

where u j0  and u j1  are also random variables with zero mean and variances and 

covariance 

 

var( )u j u0 0
2= σ ,  var( )u j u1 1

2= σ ,  cov( , )u uj j u0 1 01= σ           (3.3) 

 

The model (3.2) now takes the following form 

 

Y X u u X eij ij j j ij ij= + + + +β β0 1 0 1 0( )                              (3.4) 

var( )e ij e0 0
2= σ  

 

In the equation above, β0  and β1  are the fixed parameters, while the variances 

σ u0
2 , σ u1

2 , σ e0
2  and the covariance σ u01  are the random parameters. If we 

considered the simplest 2-level model, then this would include only the random 

parameters σ u0
2  and σ e0

2 , and the model would have the following form 

 

Y X u eij ij j ij= + + +β β0 1 0 0                                            (3.5) 

 

The above model is called variance components model and, as mentioned 

before, the only random parameters are the intercept variances at each level. In 

these models, the variance of the response about the fixed component is 

 

var( | , , ) var( )Y X u eij ij ij u eβ β σ σ0 1 0 0 0
2

0
2= + = +  
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where, as mentioned above,σ u0
2  and σ e0

2  are the level-2 and the level-1 variance 

respectively. Thus, in the variance components models, the variance of the 

response about the fixed component is the sum of level-1 and level-2 variance. 

A measure of the extend of clustering of students within schools is the intra-

school correlation and is defined as 

 

ρ
σ

σ σ
=

+
u

u e

0
2

0
2

0
2                                                             (3.6) 

 

In other words, this correlation measures the proportion of variance that is 

between schools (Goldstein, 1995). 

 In order to include further fixed explanatory variables in model (3.4) we 

extend it and we have 

 

y X u z e zij ij hj hij
h

ij ij= + +
=
∑β

0

1

0 0                                        (3.7)               

 

where X is the design matrix for the fixed explanatory variables, Xij  is the ijth 

row of X and zhij  are the explanatory variables for the random part of the 

model. In equation (3.7) Z={Z0 Z1}, where Z0  is a vector of ones and 

Z1={ x ij1 }. Any of the explanatory variables can be measured at any of the 

levels. 

 

Estimation for the Multilevel Model 

 Let us consider the simple 2-level variance components model (3.5). 

The variance matrix for the response vector Y for the model (3.5) with two 

level-2 units (schools) has the following form 
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where J n j( )  is a (nj× nj) matrix of ones and I n j( )  is a (nj× nj) identity matrix. The 

above matrix has a block-diagonal structure and this implies that the covariance 

between students from different schools is zero. If we knew the variances σ u0
2  

and σ e0
2 , then we could construct the covariance matrix V and applying the 

Generalized  Least Squares estimation procedure we could obtain estimates for 

the fixed coefficients 

 

( )β = − − −X V X X V YT T1 1 1                                              (3.8) 

 

When the residuals follow the Normal distribution, then maximum likelihood 

estimates are obtained from the above equation. 

 The estimation procedure, that is going to be used, is an iterative one. 

First of all, initial estimates have to be given  to the fixed parameters. Thus, 

from an initial OLS fit (σ u0
2 =0), we give the OLS estimates to the fixed 

coefficients. From these we construct the raw residuals, which are defined as 

 
~y y xij ij ij= − −β β0 1                                                     (3.9) 

 

and the vector is ~ {~ }Y yij ij= . Then, we form the matrix ~ ~YYT , whose expected 

value is the covariance matrix V. We can construct the vector vec( ~ ~YYT ) by 

stacking the columns one on the top of the other. In the same way we construct 

the vector vec(V), too. Below, the relationship between vec( ~ ~YYT ) and vec(V) 

is given, in which R is the residual vector   
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The next step is to assume Normality and apply the GLS estimation procedure 

using the estimated covariance matrix  of vec( ~ ~YYT ) . After having obtained 

estimates by applying GLS to (3.10) we obtain new estimates for the fixed 

parameters. We continue to apply this procedure until it converges. If the 

Normality assumption does not hold, the obtained estimates will be consistent 

but not fully efficient. On the other hand, for models with many random 

coefficients, the assumption of multivariate Normality is more suitable as it 

permits parametrization for complex covariance at any level. 

 The estimation procedure described above is the one that the statistical 

package MLn uses. This package was developed by H. Goldstein. There are 

other estimation procedures for the multilevel models, too. One of these is 

based on a ‘Fishing scoring’ algorithm which was developed by Longford 

(1987). There is also a variation of the Iterative Generalized Least Squares 

(IGLS), the procedure described above, the Expected Generalized Least 

Squares (EGLS). We can also consider the model (3.2) as a Bayesian linear 

model (Lindley and Smith, 1972) and assume that β j  is exchangeable with 

prior distribution which has variance σ u0
2 . 

 It is obvious, that in multilevel model we will have residuals at different 

levels. Consider again the simple 2-level variance components model (3.5). For 

this model we obtain residuals at two different levels 

 

~u
n

n
yj

j u

j u e
j0

2

2
0

2=
+

σ

σ σ
  

 



 41 
 

~ ~e y uij ij j0 0= −  

 

~
~

y
y

nj

ij
i

j
=


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



∑

 

 

where n j  is the number of level-1 units in the jth level-2 unit. The above 

residuals are consistent but only conditionally biased. They can be used as the 

residuals of a single level model for checking the assumptions of the model, 

that is, the Normality assumption and the assumption of the constant variances 

in the model. Beyond that, the residuals obtained by a multilevel model can be 

considered as random variables following a distribution with parameters that 

give information about the level-2 variation. These residuals can also be 

viewed as estimates for each level-2 unit. 

 

Hypothesis Testing and Confidence Intervals for Fixed and Random 

Parameters 

 When hypothesis testing is needed for combinations of fixed 

parameters, then it is necessary to construct linearly independent functions of 

the p fixed parameters of the model. These functions will have the form 

f C= β , where C is a (r× p) contrast matrix. More precisely, if we want to test 

the null hypothesis that two explanatory variables are zero (H0: f = k, where k = 

{0} in this case), then we have to define the contrast matrix C and construct the 

functions f. The next step in the hypothesis testing is to form the following 

equation 

 

R f k C X V X C f kT T T= − −− −( ) [ ( ) ]( )1 1   where  f C= β            (3.11) 

 

Under the null hypothesis R r~χ2 . 
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 Now, if we want to construct an α% confidence region for the fixed 

parameters first of all we form the following equation 

 

( ) [ ( ) ] ( )R f f C X V X C f fT T T= − −− − −1 1 1                         (3.12) 

 

and then set it equal to the α% tail region of χ r
2 . The above expression of R  

gives an r-dimensional ellipsoid region, which is the confidence region. 

Furthermore, if we want to construct a (1-α)% confidence interval separately 

for each linearly independent function of the parameters or for linear functions 

of a subset of the parameters, then the following formula will be used 

 

( , )C d C di i i iβ β− +                                                    (3.13) 

 

where Ci  is the ith row of the matrix C and d i  is 

 

d C X V X Ci i
T

i
T

q= − −[ ( ) ],( )
.1 1 2 0 5χ α  

 

where q is the number of parameters involved in the subset. 

 The above methods for hypothesis testing and confidence intervals (or 

regions) are applied to the fixed parameters. For the random parameters, and 

when the sample is large, we can use the same procedures as those described 

for the fixed parameters. But we generally use procedures based on the 

likelihood statistic. So we form the deviance statistic 

 

D01
0

1
2= −







log

λ
λ

                                                      (3.14) 

 

where λ 0  and λ1  are the likelihoods for the null and the alternative hypotheses, 

respectively. The deviance statistic D q01
2~χ , where q is the difference in the 
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number of parameters in the two models. Based on the same method we can 

also construct a (1-α)% confidence region. For doing this, we set D01  equal to 

the α% point of χq
2 , and a region is constructed to satisfy the equation of 

deviance statistic. 

 Finally, consider the level-2 residuals. According to the example that is 

used throughout the section, these residuals would be the school-level 

residuals. In this particular case, an interesting thing to do is to compare a 

subset of schools and identify those schools whose residuals are different 

(larger or smaller) from others. For doing this, first of all we have to order the 

residuals from smallest to largest. Then, we construct a (1-α)% confidence 

interval for each residual and judge if the residuals are significantly different by 

whether their confidence intervals overlap. For example, under the Normality 

assumption and for two residuals with equal standard errors, the width of the 

confidence intervals for judging whether the residuals are significantly 

different is 

 

±139. σ  

 

at a 5% significant level. If we want to obtain confidence intervals for each of 

the level-2 residuals, we have to assume first of all that, on average, each pair 

of level-2 units will be compared the same numbers of times. The procedure for 

constructing the confidence intervals for each residual is 

 

u z sj b j±                                                                  (3.15) 

 

and is widely discussed by Goldstein and Healy (1995). In the equation above 

zβ  is the positive normal deviate with a two-tailed probability β. 
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Complex Variation 

 It was mentioned in the beginning of the chapter, that one fundamental 

principle that distinguishes multilevel models from the single level models is 

the existence of variation at each level. Furthermore, in multilevel models we 

have the potential to model the variation, at the various levels, as a function of 

explanatory variables. More precisely, let consider u j  and eij  as the level-2 and 

level-1 variation, respectively. These can be expressed as 

 

u u zj hj hj
h

r

=
=
∑

0

2

  and    e e zij hij hij
h

r

=
=
∑

0

1

                            (3.16) 

 

where z’s are explanatory variables of the random part of the model and in 

most cases z j0  and z ij0  define the intercept variance term at each level. The 

simplest case of the complex variation is to model variance as a linear function 

of one explanatory variable. Thus, assume that we have the following model 

 

y x u u z e e zij ij j j ij ij ij ij= + + + + +β β0 1 0 1 0 1( )                      (3.17) 

 

where var( )e ij e0 0
2= σ ,  var( )e ij1 0= ,  cov( , )e eij ij e0 1 01= σ ,  var( )u j u0 0

2= σ , 

var( )u j u1 1
2= σ ,       cov( , )u uj j u0 1 01= σ . Therefore, the level-1 variation has the 

following form 

 

var( )e e z z z zij ij ij e e ij e ij e e ij0 1 0
2

01 1
2 2

0
2

012 2+ = + + = +σ σ σ σ σ  

 

while the level-2 variation can be written as 

 

var( )u u z z zj j ij u u ij u ij0 1 0
2

01 1
2 22+ = + +σ σ σ  
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There is also the potential to model the variation at several levels as a nonlinear 

function of explanatory variables, or even to take the predicted value yij ,  form 

the random term e yij ij1  and then the level-1 variation will become σe ijy1
2 , 

known as constant coefficient of variation model. Furthermore, we can model 

the level-1 variation using as explanatory variables dummy variables defined 

by two or more subgroups. It is possible to include in the model of the level-1 

variation the covariances between two dummy variables coefficients, a dummy 

variable coefficients and a continuous variable coefficient, but it is not possible 

to include covariances between the dummy variables categories of the same 

explanatory variable. Everything that has been mentioned about the complex 

variation holds for all levels of a multilevel model. 

 

3.2.2 The 3-Level Model 

 

 What has been said about the 2-level model can be extended in order to 

cover the case of the 3-level model. Based again on the example of the 

education system, a 3-level structure could consist of the students being the 

level-1 units, the schools being the level-2 units and the prefectures being the 

level-3 units. In this case, a simple linear 3-level model would have the 

following form 

 

Y X v u eijk ijk k jk ijk= + + + +β β0 1 ( )  

 

where β0  and β1  are the fixed parameters of the model and vk , u jk  and eijk  are 

considered as random variables with zero mean and variances 

 

var( )vk v= σ 2 ,   var( )u jk u= σ 2 ,   and   var( )eijk e= σ 2  

 



 46 
 

These variances are the random parameters of the model. Let us now consider 

the 3-level model of this form 

 

Y X v v z u eijk ijk ok k ijk jk ijk= + + + + +β β0 1 1 0 0( )  

 

In the above case, an explanatory variable has been introduced in the random 

part of the model and thus it is possible to have complex variation at level-3. 

This can be done by modeling the level-3 variance as a linear function of the 

explanatory variable zijk . The same extensions can be made to any of the other 

two levels, while a more general form of the 3-level model is 

 

Y X v z u z e zijk ijk hk hk
h

r

hjk hjk
h

r

hijk hijk
h

r

= + + +
= = =
∑ ∑ ∑β

0 0 0

3 2 1

 

 

where X is the design matrix of the fixed explanatory variables and z’s are the 

explanatory variables of the random part of the model. 

 

3.2.3 Applications of Multilevel Models in Educational Research 

 

 Multilevel models are widely used in educational research. To be more 

precise, the need for assessment of school effectiveness gave rise to the 

development of multilevel modeling. As Aitkin and Longford (1986) argued  

‘... the minimal requirement for valid institutional comparisons was an analysis 

based upon individual level data which adjusted for intake differences...’. 

Goldstein et al. (1993) analyzed data on examination results from inner London 

schools in relation to intake achievement, pupil gender and school type. More 

specifically, the data concern examination results from 5748 students in 66 

schools in six Inner London Education Authorities. The examination results 

includes students’ General Certificate of Secondary Examination (GCSE) 

grades in Mathematics and English, a total score for all subjects taken in that 
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examination, scores on a common reading test at the age of 11 (LRT) and 

grades into three categories on the basis of a verbal reasoning (VR) test also at 

11 years. If students did not have both intake measures or they obtained an 

ungraded result, they were omitted from the analysis. The response variables 

have been transformed to normality, while two kinds of models have been 

fitted to the data. The first model analyzes the total examination score and the 

second model constitutes a bivariate analysis of the English and mathematics 

scores. 

 As far as the first model is concerned, the explanatory variables that 

Goldstein et al. (1993) used are: the standardized London reading test (LRT), 

the verbal reasoning category (VR), the student’s gender, the school gender 

(mixed, girls, boys) and the school religions denomination (State, Church of 

England, Roman Catholic, other). Thus, the first model is written as: 

 

y x x u x e xij h hij h hj
hh

hj hij
h

hij
h

hij= + + +
== = =
∑∑ ∑ ∑β β

6

10

0

5

0

2

0

1

 

 

where the subscript 0 refers to the constant term, 1 to LRT, 2 to the dummy 

variable for VR group 1, 3-5 refer to the square of LRT, the dummy variable 

for VR group 2, and the dummy variable for gender. Finally, the subscripts 6-

10 refer to the five school level defined variables. Furthermore, the first 

summation refers to the explanatory variables defined at the student level, the 

second to those defined at the school level, the third summation refers to the 

random part of the model at the school level and the fourth summation defines 

the random variation at the student level. At level-2 it holds that 

 

var( )u hj h= σ2   and  var( )ehij eh= σ2  

 

while the level-1 contribution to the variance is 
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σ σ σe e ex x0
2

01 1
2 22+ + . 

 

After having fitted the first model Goldstein et al. concluded that the effect of 

school gender is small while there is a small advantage for the students 

attended Roman Catholic schools. Furthermore, girls do better than boys with 

large differences among the different verbal reasoning categories. For the 

between school variation it is concluded that the relationship between 

examination score and LRT varies and also the difference between verbal 

reasoning categories 1 and 3 varies with high positive correlation. Finally, at 

level-1 the variance increases with the increase of LRT score. For each school 

it is possible to form the school residuals as follows: 

 

u uj j0 12− ,    u u uj j j0 1 22+ + , 

 

and because the above residuals are estimated, confidence intervals for them 

can be constructed. With the construction of these intervals it is concluded that 

it is not possible to distinguish which school is more effective, since there is a 

considerable overlap between these intervals. 

 The second model includes the student-level variables as explanatory 

variables, while at the between-school-level the model includes only the 

intercept and the LRT coefficient. A multivariate model is specified by treating 

the multiple variates within each student as the level-1 classification. Thus, in 

the fixed part of the model it is concluded that there is a small difference in 

favour of the boys for mathematics, while the difference is in favour of the girls 

for English. On the other hand, there is little difference between the 

relationships for mathematics and English for LRT and VR categories. In the 

random part of the model the LRT for mathematics and English does not vary. 

Finally, the between-student variation decreases from the first verbal reasoning 

category to the third. According to the school residuals, for students with 

average LRT scores, holds that the school with the greatest English residual is 
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average for mathematics and one of the schools with high mathematics residual 

has low value for English. 

Another model was introduced by H. Goldstein and S. Thomas (1996). 

Their aim was to investigate the properties of league tables and compare 

institutions after adjusting for the intake achievements of the students. First, it 

is necessary to mention that the league tables are tables with the average 

General Certificate of Secondary Education examination results of each school. 

Every secondary school in England and Wales has to publish those results in 

order that the tables are used by parents in choosing schools and colleges. 

In the analysis agreed to participate 436 institutions but finally, only 325 

had all the institution level information available. The number of students for 

those 325 institutions was 21,654. For each one of them, there were selected 

information about the A-level and AS-level results, the GCSE results together 

with the number of GCSE examinations taken. It must be mention here that the 

A-level exams are the exams of advanced level General Certificate of 

Education (GCE), the AS-level exams are the exams of advanced 

supplementary level GCE and the GCSE exams are the exams of General 

Certificate of Secondary Education. They also collected data on the gender of 

the student, the gender composition of the institution and the age of the student.  

What is of interest in comparing institutions, is the progress that the 

students make from the time they enter the specific institution to the time they 

graduate. That is why the existing achievements or performances of the 

students before entering the institutions are also important. For that reason, in 

school effectiveness research, the final examination result is used as response 

variable and the existing achievements as explanatory variable. In this case, a 

simple model of this form is the following: 

 

yij = β0 + β1 xij + uj + eij,  

 

yij: A-AS examination score for the ith student in the jth institution 
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xij: GCSE score for the ith student in the jth institution 

uj: effect for the jth institution 

eij: student residual 

 

We regard uj as random effect and hence the above model is a ‘multilevel’ 

model with two-level hierarchy of students nested within schools. For 

comparing the institutions the estimates of uj, derived either as Bayesian 

posterior estimates or as regression predictors of the unknown uj were used, 

given the responses and the model parameter estimates.  

Also, normal scores for the whole sample can be used in order to 

determine the following model which describes the relationship between A-

AS-level score and GCSE score: 

 

yij = β0 + Σ βh xij
h + β5 zij + uj + eij, 

 

uj ~ N(0, σu
2),   

eij ~ N(0, σe
2),   

ρ = σu
2 (σu

2 + σe
2)-1 

zij = 1, for girls         

       0, for boys 

ρ: intra-institution correlation 

 

The model that has just be presented takes into account the GCSE score for 

every student. It is therefore adjusted for the GCSE score and if we do so, the 

between-school and between-student variance will be reduced. The results 

would be completely different if these necessary adjustments were not made  or 

if the model was adjusted for the mean institutional A-AS-score only for one 

year. In those cases the unadjusted analyses would produce biased estimates of 

institutional effects. Furthermore, this may be a reason why the league tables 

are misleading and partial.   
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Goldstein and Thomas (1996) considered the gender effect and defined 

the following model: 

 

yij = β0j + Σ βh xij
h + β5j zij  + eij, 

 

β0j ~ N(β0, σu0
2) 

β5j ~ N(β5, σu5
2)  

cov(β0j, β5j) = σu05. 

 

The above model introduces the complex variation by modeling this variance 

as a function of gender:  

 

eij = e0ij + e5ij x5ij,  

 

eij ~ N(0, σ2
e0 + 2 σe05 x5ij)  

var(e0ij) = σ2
e0  

cov(e0ij, e5ij) = σe05.  

 

The variable x5ij is a dummy variable which takes the value 1 for females and 0 

for males. Furthermore,  the quantity 2σe05 is the difference between the 

variances for males and females. 

At this point, the dependence of the variation at both levels on the 

GCSE score can be studied. For that reason,  the GCSE score will be grouped 

in three groups in order to have homogeneity within but not between groups. 

This can be done by extending the above model into the following one: 

   

yij = β0 + Σ βh xij
h + β5j zij + β6j xij zij + β7j xij

2
 zij + u1j w1ij + u2j w2ij + u3j w3ij + u5j 

w5ij + eij. 
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In this model the whij, for h = 1, 2, 3, are dummy (0, 1) variables for the three 

GCSE groups and the level 1 variation is given by:  

 

var(eij) = σ2
e0 + 2 σe05 zij + 2 σe02 w2ij + 2 σe03 w3ij.  

 

It is obvious that the level 1 variation is an additive function of parameters for 

GCSE score and gender. Also, it can be observed that in each factor one 

category is missing. It could be considered an interactive function with 

parameters for each of the six combinations of GCSE score by gender, too.  

The number of GCSE examinations taken by the students can be used as 

one more explanatory variable. The age of the student and the type and the 

status of the institution can also be included. For comparing between 

institutions, it is important to have in mind the fact that the residual estimates, 

with which the comparisons are going to be made, have standard errors which 

have to be estimated. Furthermore, by assuming that these standard errors are 

independent and also with the assumption of normality, normal confidence 

intervals about each estimate can be constructed. Thus, one can present the 

estimates of interest graphically accompanied by error bars corresponding to 

confidence intervals at a level β. A separation will be significant if the intervals 

do not overlap. 

It is obvious from the above that the use of unadjusted results are 

misleading as well as the league tables, which do not take account the previous 

achievements of the students. Thus, if we want to get statistically significant 

estimates, we will have to make adjustments of the previous performance of the 

students. If we use only the average examination results as measure of 

comparison between institutions, then we will arrive at a wrong choice of 

institutions. 
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