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CHAPTER   2 

 

VARIANCE COMPONENT AND HIERARCHICAL 

LINEAR MODELS 

 
2.1 Variance Component Models 

 
2.1.1 Introduction 

  

 The variance component models were being used widely for the 

assessment of school effectiveness and in other areas concerning educational 

research, before the use of hierarchical and multilevel models. The common 

feature of all those models is the existence of random effects at each sampling 

level. 

 At this point, it is important to make a distinction between the fixed 

effects and the random effects and between the models that are due to those 

effects. For that reason, let us mention two examples (Searle, 1971). Consider 

an agricultural experiment testing the efficacy of three fertilizers on 24 plants 

(six plants got no fertilizer at all, being considered as control). A very simple 

model for analyzing the data is the following: 

 

y eij i ij= + +µ α ,         i = 1, 2, 3, 4 ,    j = 1, 2, 3, 4, 5, 6 
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where yij is the jth observation on the ith treatment, µ is the mean, αi is the 

effect of treatment i and eij is the error term. In this example our interest is 

focused on just these four treatments and there is no thought for other 

fertilizers. Thus, these effects are called fixed effects and consequently the 

model is the fixed effects model. 

 On the other hand, consider a laboratory experiment studying the 

maternal ability of mice, using as a response the weight of six litters from each 

of four dams. The model used for this kind of data is : 

 

y eij i ij= + +µ δ ,         i = 1, 2, 3, 4 ,    j = 1, 2, 3, 4, 5, 6 

  

 

where yij is the weight of jth litter from the ith dam, µ is the mean, δi is the 

effect due to ith dam and eij is the error term. In this example, the four female 

mice used in the experiment are regarded as a sample from a large population 

of female mice. The experiment is not concerned just for these four mice, but 

the prime interest is to draw inference about the population. Thus, it can be 

considered as taking a random sample of mice on each occasion. So, δi’s are 

random variables, which are called random effects and the corresponding 

model, random effects model. The error terms are assumed to be a random 

sample from a population distributed as (0 ,σe
2 I), while δ’s are also random 

sample from a population distributed as (0,σδ
2 I). Thus, the variance of an 

observation is 

 

σ σ σδy e
2 2 2= + , 

 

and the variances σe
2   and  σδ

2   are called variance components and for that 

reason the corresponding model is also called variance component model. 

 Lastly, there are also models that contain fixed and random effects (apart 

from the general mean µ and the error term) and these are called mixed models. 
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An example of a mixed linear model is given by Goldstein (1986), using 

educational data. The data are structured hierarchically and there are three 

levels: schools, classrooms within schools and children within classrooms. 

Supposing that there are measurements on a response variable for the jth child 

in the ith classroom within the kth school, the appropriate model for analyzing 

that kind of data is: 

 

Ykij kij ki k= + +α β γ* * *                                                                      (1) 

 

and at each of the three levels it is possible to set up a linear model that relates 

the terms of the initial model to a function of explanatory variables. More 

specifically, for the term representing the level-3 units (schools) it holds that: 

 

γ γ γ γk k k l l k
l

q

kw v w v*
, ,...= + + + = +

=
∑0 1 1

0
                                        (2) 

 

with vk being a random variable with zero mean and variance σv
2  and γl being 

the school level coefficient for the lth explanatory variable wl,k for school k. 

The term representing the level-2 units (classrooms) can be written as: 

 

β β β βki k ki ki l k l ki
l

p

kiz u z u*
, , , ,...= + + + = +

=
∑0 1 1

0
                                       (3) 

 

with uki being a random variable with zero mean and variance σu
2 , while βl,k is 

the classroom level coefficient of the lth explanatory variable zl,ki for classroom 

ki. Finally, for the term representing the level-1 units (children) we have that: 

 

α α α αkij ki kij kij l ki l kij
l

r

kijx e x e*
, , , ....= + + + = +

=
∑0 1 1

0
                                  (4) 
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where again as before ekij is a random variable with zero mean and variance σ2  

and αl,ki is the child level coefficient of the lth explanatory variable xl,kij for 

child kij. Substituting the above three relations to the initial model we finally 

get: 

 

Y x z w v u ekij l ki l kij
l

r

l k l ki
l

p

l l k k ki kij
l

q

= + + + + + + + +
= = =
∑ ∑ ∑α β γ α β γ0 0 0

1 1 1
, , , , , ( )         (5) 

 

and the variance will be equal to 

 

var( )Ykij v u= + +σ σ σ2 2 2  

 

assuming zero covariances between the random variables. A quantity of 

interest to be estimated is the intra-class coefficient given by: 

 

ρ
σ σ

σ σ σki
v u

v u
=

+
+ +

2 2

2 2 2  

 

and the corresponding quantity for schools is: 

 

ρ
σ

σ σ σk
v

v u
=

+ +

2

2 2 2 . 

 

Random coefficients can be included in model (5). If it were a single level 

model, the random coefficients would have been defined  at that level. But in a 

multilevel model, as Goldstein (1986) mentioned, ‘... if a coefficient at any 

level in (5) is assumed to be a random variable, it can be written in general as 

the sum of linear functions of explanatory variables at that level and other 

levels plus error terms, which, in principle, could operate  at any level’. 
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2.1.2  Applications of Variance Component Models in Educational                          

Research 

 

 

One of the most important contribution to classroom research in the UK 

was Bennett’s study (1976), which was designed to compare formal and 

informal teaching methods. This study became the subject of a long debate. 

Bennett’s major conclusion was that formal methods of teaching were 

associated with greater pupil progress. 

 Aitkin et al. (1981) re-analyzed the educational data that was used by 

Bennett (1976) and ended up with different conclusions about the teaching 

styles and their effects on pupil performance. 

 Primarily, in order that the different teaching styles be defined, a 

questionnaire that contained 28 items was designed, piloted and administered 

to a representative  sample of teachers. This questionnaire covered six major 

areas of classroom behaviour, such as: 

1.  classroom management and organization, 

2.  teacher control and sanctions, 
3.  curriculum content and planning, 
4.  instructional strategies, 
5.  motivational techniques and 
6.  assessment procedures. 
The 28 items were coded into 38 binary items and the probability model that 

was adapted in order to examine the existence of distinguishable teaching 

styles, is a mixture or latent class model. Thus, Aitkin et al. supposed that there 

are k latent classes or types of teaching style, each one of them characterized 

by different frequencies of use of different behaviours. If the proportions of 

each teaching style in the population is λ1, λ2, ..., λk, where λ j
j

k

=
∑ =

1
1 , then the 
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probability that a teacher’s vector X of responses takes the value x, given that 

he is in the jth  latent class is: 

 

P j j( , )X x= θ   

 

where θ j  is a vector of parameters, probably different for each latent class,  

while the unconditional probability of the response x is given by: 

 

P P j Pj
j

k

( ) ( , ) (X x X x= = =
=
∑ θ

1
teacher in class j) 

             = =
=
∑λ θj j
j

k

P j( , )X x
1

 

 

For specifying how the probability P j j( , )X θ  depends on θ j  the authors of the 

paper assumed that given the latent class to which a teacher belongs, his 

responses on the 38 binary items are independent  

 

P j j( , )X x= =θ P X x jt t jt
t

( , )=
=
∏ θ

1

38

, 

 

an assumption widely used in latent class modeling in sociology. Aitkin et al. 

did not use models with more than three latent classes, as mixture models 

possess multiple local maxima of the likelihood function according to the 

initial assignments of teachers to classes, used to start off the iterative 

algorithm for the maximum likelihood estimates. But with the two-latent class 

model there exists a unique maximum of the likelihood function. 

 After having analyzed the data with both two-class and three-class 

models they concluded that the first latent class in the two-class model is at the 

formal end of every item, as well as in the three-class model with a few 

exceptions. The second class in the two-class model is at the informal end of 
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every item, as well as in the three-class model but again with a few exceptions 

of items. Finally, the third class in the three-class model is intermediate 

between the first and the second class. For more details about the definition of 

formal, informal and mixed teaching styles, see Aitkin et al. (1981). 

Nevertheless, what is of interest to be reported in connection with the teachers 

with mixed teaching style is the high frequency of disciplinary problems and 

the low frequency of testing, compared with the formal and informal teachers. 

 Furthermore, in order to determine any relation of teaching style to pupil 

progress Aitkin et al. developed  ‘... a ‘mixed’ or variance component model 

for ‘clustered’ or ‘nested’ sample designs for the one way analysis of 

covariance for pre-test/test situations’. For this kind of analysis the 

experimental design is as follows: a random sample of 36 teachers was 

assigned randomly to classrooms, while a random sample of 921 children was 

divided into classes of about 25 children. Each teacher was assigned to one of 

the three teaching methods and taught the one of the classes mentioned above. 

Finally, the children were tested at the beginning (pre-test) and at the end of the 

year (achievement test). The analysis was based on the following variance 

component model 

 

Y x T Epqr pqr p q pqr= + + + +µ γ α  

 

where, Ypqr denote the achievement test score, xpqr the pre-test score of the rth 

child in the qth classroom taught by method p. Also, α p  constant and 

represents the differences between the three methods, Tq is treated as random 

variable and represents the ability of the teacher in the qth classroom. 

Furthermore,  Tq and Epqr are mutually independent random variables assumed 

normally distributed with zero mean and variance σT
2   and  σE

2  respectively. In 

the above model the slope of the regression on pre-test score is assumed to be 

constant for different teaching methods while Tq are treated as random 

variables. As a consequence of the random teacher effects it holds that: 
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var( ) var( )Y T Epqr q pqr T E= + = +σ σ2 2  

 

cov( , ) cov( , )Y Y T E T Epqr pqr q pqr q pqr′ ′= + +  

                        = =var( )Tq Tσ
2  

 

cor Y Ypqr pqr
T

T E
( , )′ = =

+
ρ

σ
σ σ

2

2 2  

 

An extension of the above model holds if the slope of the regression of 

achievement test on pre-test is considered to be different for the three teaching 

methods. Thus, 

 

Y x T Epqr p pqr p q pqr= + + + +µ γ α . 

 

 What is of interest to determine is whether the different teaching 

methods affect the progress of children in classrooms. If we consider that the 

null hypothesis is the one of no difference between the teaching methods 

(α1=α2=0), then assuming absence of covariance and equal class size, this 

hypothesis can be tested with an ANOVA table. In the case of unequal class 

size efficient estimator can be obtained by maximum likelihood, while the 

ANOVA table can be replaced by an analysis of deviance table. The results of 

the analysis showed that the formal classrooms do best in English, the informal 

classrooms do best in reading, both classrooms are similar in mathematics, 

while mixed classrooms do worst on all tests. 

 At this point it was emphasized by the authors that these results are not 

statistically significant, since they allowed for the random variation among 

classrooms. Furthermore, the abilities of individual teachers can be estimated 

treating them as fixed. Another way of estimating teachers’ abilities is to use 

the additional information in the ‘prior distribution’ of ability. In this case, the 
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‘posterior distribution’ of T given Y contains all information about teacher 

ability, given the prior distribution and the data from pupils in each class, while 

the ‘expected’ ability is the mean of the posterior distribution. The basic 

conclusion of the reanalysis by Aitkin et al. is condensed as follows: ‘The 

teaching style differences in achievement which were found in TS (Bennett, 

(1976)) are not confirmed by the reanalysis. There are two reasons for this. 

First, the analysis of covariance model which includes the random effect of 

teachers results in greatly reduced significance of any differences, because of 

the large variation among teachers. Second, the clustering of teachers by the 

latent class model changes the nature of the differences among teaching 

styles...’. 

 Except from Bennett and Aitkin et al. the educational data was analyzed  

once again by Prais (1983). Although, Prais did not use a variance component 

model for the analysis of the data, it is interesting to mention his work and his 

different conclusions. Prais used straightforward regression techniques and the 

aim of his study was of course to determine whether formal and informal 

teaching methods affect pupil performance and in what way. This re-

consideration of the data was prompted from the different conclusions of 

Aitkin and it is in agreement with Cox’s question (Aitkin et al. (1981), 

discussion): ‘whether some simpler analysis would not be effective’. 

 Prais instead of using the observations on each of the 921 pupils in the 

36 classes, used the 36 class averages. Considering this case, the loss of 

information is not great since ‘...the variability of class averages is much less 

than of individual pupils...’. Thus, according to this analysis and for the test 

scores in mathematics, Prais found out that eleven of the thirteen informal 

teachers did worse than average, but only two of the twelve formal teachers did 

worse than average. Although, this difference is significant, according to a test 

based on binomial distribution, we have to bear in mind the small number of 

observations and the way the teachers were characterized as formal or informal. 

As an example of the latter, let us consider one teacher in the informal group 
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whose class showed a gain of 14.1 points above the average (while the best 

class among the formal classes did 6.1 points above the average). Although this 

teacher was classified in the informal group of teachers, her methods were not 

at all informal. Another outlier in the formal group is the teacher whose class 

did 7.4 points below the average. Before proceeding with the analysis, let us 

mention that the group consisting of teachers using ‘mixed’ teaching methods 

was excluded entirely from Prais’s study, as it was very difficult to classify 

these teachers. 

 The method that was used by Prais in order to analyze the educational 

data was the multiple regression analysis with two explanatory variables: (a) 

the opening score and (b) a dummy variable which takes the value 1 for formal 

classes and 0 for informal classes. This variable represents the average benefit 

associated with formal rather than informal instruction. The conclusions of the 

analysis can be summarized  as follows: 

 

1. For the mathematics and English there is a statistically significant difference 

in favour of formal teaching methods.  For the reading scores there is also a 

difference in favour of formal teaching methods but it is not quite 

significant. 

2. If the three scores are combined in order to obtain a single one, then it is 

estimated again that formal teaching is better.  

 

3. If the outlying formal teacher is included, then the estimated benefit of 

formal teaching will lower but the estimated differences will remain 

important. 

 

4. If the outlying informal teacher is also included, then the obtained results 

will be consistent with that of Aitkin et al. (1981). 
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Another study considering the assessment of school effectiveness was 

performed by Aitkin and Longford (1986). It refers to statistical modelling 

issues in school effectiveness studies and proposes five models for describing 

the relationships between examination results and characteristics of the student 

intake. A major problem, that the authors have to confront with, is when they 

want to assess the importance of school-level variables, but they have student-

level outcomes. That is the so-called multilevel analysis. We are going to refer 

to this more analytically later. It is also possible to use variance component 

models, mixed models and hierarchical linear models because all these are 

models with random effects at each sampling level. 

  The data used in the study, were O-level and CSE examination results 

for a 25% random sample of the 5th year cohort in all the schools of one Local 

Education Authority in the UK. That is, 907 students in 18 schools. From these 

18 schools, two are single-sex Grammar schools and the other 16 are mixed-

sex comprehensive schools. It is important to mention that the two single-sex 

Grammar schools had a substantially higher ability intake than the others. The 

O-level and CSE passes are available for each student and these are converted 

to another score (called ‘ILEA’ score, based on the scoring system of the Inner 

London Education Authority), in order to have a unique scoring system and be 

able to fuse the examination results and use them as response variable in the 

study. The explanatory variables are the VRQ and the gender of the students. 

The VRQ is the Verbal Reasoning Quotient and is a measure of intellectual 

ability. It is very important that the VRQ be reliable. If it is not so then it will 

produce bias towards zero in the estimation of regression coefficients for these 

variables. A way to overcome this problem is to take two parallel 

measurements on each student and estimate the reliability of VRQ. These 

explanatory variables are at the student-level. At the school-level, only the 

school size will be used. Other variables suggested by the authors are the mean 

VRQ score for each school, the proportion of girls in each school and the 

school standard deviations or inter-quartile ranges for VRQ. 
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As we have already mentioned, 16 of the schools are mixed-sex 

comprehensive schools and only 2 are single-sex Grammar schools with high 

ability intake. Thus, it is obvious that there is heterogeneity in the complete 

sample and this raises difficulties in interpreting the results. That is why in the 

analysis a sample containing only  the 16 mixed-sex comprehensive schools 

was used. 

Firstly, models with constant slopes for all schools were presented. The 

first of these models is given below: 

 

y x xij ij ij ij= + + +α β γ ε1 2 ,      j = 1,2,..., ni ; ni is the number of students from the 

                                          ith school in the sample 

                                          i = 1,2,...,k number of schools (k=18) 

 

yij : ILEA score of the j student in the i school 

x ij1 : VRQ intake score for the j student in the i school 

x ij2 : gender (0 for boys, 1 for girls) 

ε ij : random sample from N(0,σ2) 

 

The data are treated as a single sample of 907 students and the model does not 

take into consideration the grouping of students into schools.  The response 

variable is the ILEA score for the j student in the i school, while explanatory 

variables are the VRQ intake score for j student in i school and the gender of 

each student. The gender is a dummy variable coded 0 for boys and 1 for girls. 

Finally, the model includes the random effects ε ij , which are assumed to be 

random sample from N(0,σ2). In the model, it can also be included the linear 

and quadratic interactions of VRQ with gender, which are highly significant. If 

we ignore these interactions and use only the VRQ and gender effect then we 

will conclude that only the VRQ effect is significant. The school comparisons 
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are based on the school means of residuals. The mean residual for the ith 

school is given by the following formula:  

 

e y y x xi i i1 1= − + −( ) ( )β . 

 

The second model with constant slopes for each school is given by the 

formula below: 

 

y x xij i ij ij ij= + + +α β γ ε1 2 ,     j = 1,2,..., ni ; ni is the number of students from the 

                                          ith school in the sample 

                                          i = 1,2,...,18 number of schools  

 

yij : ILEA score of the j student in the i school 

x ij1 : VRQ intake score for the j student in the i school 

x ij2 : gender (0 for boys, 1 for girls) 

ε ij : random sample from N(0,σ2) 

 

In this model we have the inclusion of specific intercept parameters α i , i = 1, 

2, ..., 18 for each school. This is the only difference between model 1 and 

model 2. If we consider again the quadratic VRQ and the interaction effects we 

will find that they are not statistically significant. Also, the gender is not 

significant for the complete sample and the comprehensive sub-samples. The 

school comparisons are based on the estimates of α i  in the following formula: 

 

e y y x xi i i2 2= − = − − −( ) ( )α α β . 

 

The third model uses aggregated student results, that is, the school 

means and is as follows: 
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y x xi i i i= + + +α β γ η1 2 ,          i = 1,2,...,18 number of schools  

 

yi : mean ILEA score for school i 

x i1 : mean VRQ intake score for school i  

x i2 : mean gender score (the proportion of girls) for school i 

ηi : random sample from N(0, φi
2), φi

2 = σ2/ ni 

 

To fit the model some form of weighted least squares is used. If we take the 

complete sample with the two single-sex Grammar schools then the gender 

effect is significant. If we remove the two single-sex Grammar schools then the 

gender effect will disappear. This happens because in the complete sample the 

two Grammar schools are of opposite gender and that affects the gender effect. 

But when we consider only the 16 comprehensive schools then the above 

statements will not hold because the proportion of girls in the 16 schools is 

similar. Comparisons are based on individual residuals:  

 

e y y x xi i i3 3= − − −( ) ( )β . 

 

It is pretty obvious that in the sets of school effects only the slope estimates 

, ,β β β1 2 3  are different. 

The fourth model takes into consideration the fact that the school 

context affects the student’s outcome. For that reason, we include in the first 

model the school means of individual level variables. Thus, the fourth model 

has the following form:    

 

y x xij ij i ij= + + +α β δ ε ,        j = 1,2,..., ni ; ni is the number of students from the 

                                        ith school in the sample 

                                        i = 1,2,...,18 number of schools 

 



 18 
 

yij : ILEA score of the j student in the i school 

xij : VRQ intake score for the j student in the i school 

x i : mean VRQ for school i 

ε ij : random sample from N(0,σ2) 

 

The estimate of δ is the difference between the third and second model 

estimates of β. School comparisons are based on the school means of individual 

residuals: 

 

e y y x xi i i4 3= − − −( ) ( ).β  

 

As we can see this is identical to the school effects of the third model. 

The fifth model, given by the formula below, contains only one 

explanatory variable, the VRQ:  

y xij ij i ij= + + +α β ξ ε ,          j = 1,2,..., ni ; ni is the number of students from the 

                                          ith school in the sample 

                                          i = 1,2,...,18 number of schools 

 

yij : ILEA score of the j student in the i school 

xij : VRQ intake score for the j student in the i school 

ξ i : school effects, random sample from N(0, σI
2), independent of eij  

ε ij : random sample from N(0,σ2) 

 

The following model can also be used: 

 

y xij i ij ij= + +α β ε ,  
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and in this case the α i , i = 1, 2, ..., 18 are assumed to be a random sample from 

N(α,σI
2). According to this model, the αi  are random variables with mean α 

and variance σI
2. If we include the gender in the fifth model we will have: 

 

y x xij ij ij i ij= + + + +α β γ ξ ε1 2 ,  j = 1,2,..., ni ; ni is the number of students from the 

                                          ith school in the sample 

                                          i = 1,2,...,18 (number of schools) 

 

yij : ILEA score of the j student in the i school 

x ij1 : VRQ intake score for the j student in the i school 

x ij2 : gender score for the j student in the i school 

ξ i : school effects, random sample from N(0, σI
2), independent of  ε ij  

ε ij : random sample from N(0,σ2) 

 

Fitting the above model for the complete sample and for the comprehensive 

sub-samples, we find that only the VRQ is significant. It is also noticeable that 

the regression coefficient estimates for the two samples are almost the same. 

Another important point that should be emphasized is that if the mean of the 

student-level variables varies over schools then these variables can reduce the 

school-level variance component but if the mean of the student-level variables 

is constant within school then the above does not hold. 

Comparing the above models we conclude that the first and third model 

are affected by the presence of the two single-sex Grammar schools and an 

analysis for school comparisons should not be based on these models. On the 

other hand, the second and the fifth model are almost unaffected by the 

presence of the two Grammar schools in the complete sample and give better 

results. The difference between the two models is that the second uses 

stratification while the fifth uses clustering or that the second uses fixed effects 

while the fifth model uses random effects.  
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In the sequel, models with variable slopes are presented. The first of 

these models is an extension of the second model. The form of this model is:  

 

 yij = αi + βi x1ij + γi x2ij + eij , j = 1,2,..., ni ; ni is the number of students from the 

                                          ith school in the sample 

                                          i = 1,2,...,18 (number of schools) 

 

yij: ILEA score of the j student in the i school 

x1ij: VRQ intake score for the j student in the i school 

x2ij: gender (0 for boys, 1 for girls) 

eij: random sample from N(0,σ2) 

In this model we have k regression lines, different for each school. The model 

can be reduced to the following one where the gender effect is constant over 

schools:  

 

yij = αi + βi x1ij + γ x2ij + eij.  

 

Furthermore, we can totally omit the gender effect, in which case we will have 

the following model: 

 

yij = αi + βi x1ij + eij.  

 

There are two ways of comparing the schools. We can either consider the 

intersections of the regression lines for each pair of schools or we can specify 

typical values of VRQ and make partial comparisons between schools. 

The second model with variable slopes is an extension of the fifth model 

that was represented before. This extended model has the following form: 

 

 yij = α + β xij + ξi  + ζi xij +  eij , j = 1,2,..., ni ; ni is the number of students from                              

                                              the ith school in the sample 
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                                              i = 1,2,...,18 (number of schools) 

 

yij: ILEA score of the j student in the i school 

xij: VRQ intake score for the j student in the i school 

ξi, ζi: random intercept and slope for ith school 

eij: random sample from N(0,σ2) 

 

The above model can also include a random gender component independent of 

the random VRQ slope.  As we can see from the above, a correct specification 

of the variables  at school and student level is essential for a reliable estimation. 

 

2.2 Hierarchical Linear Models 

 
2.2.1 Introduction 

 

 Hierarchical linear models are also of models that can be used in 

educational research as they contain random effects at each sampling level. The 

hierarchical structure of educational data inhibits the use of traditional linear 

models since the latter can produce misleading results. 

 Raudenbush and Bryk (1986) presented a general statistical model for 

studying school effects. The data consists of students mathematics 

achievements and their socioeconomic status (SES). The effectiveness of 

public and private (Catholic) schools was intended to be examined. A first 

approach is the use of regression slopes as outcomes. As Raudenbush and Bryk 

mentioned this is a very appealing method since it extends the kinds of 

questions that school research can examine and because it permits researchers 

to explore the effects of school policies on the relationships occurring within-

groups. But there are some disadvantages associated with this method. First of 

all, regression coefficients have considerably greater sampling variability than 

sample means. Also, the sampling precision of the estimated slopes varies 
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across units depending on the design that has been used for the collection of the 

data within each unit. Furthermore, the variability in the estimated slopes 

consists of two components, the parameter variance and the sampling variance. 

The disadvantage of the use of slopes-as-outcomes is that the corresponding 

model does not provide separate estimates for the variance components. In 

order to overcome the above deficiencies, a flexible statistical tool has been 

developed which provides means for studying how variations in policies and 

practices influence educational processes and also provides the basis for 

constructing richer definitions of school effectiveness.  

 This statistical tool is the hierarchical linear model and the statistical 

theory behind it includes mixed-model ANOVA, regression with random 

coefficients, covariance component models and Bayesian estimation for linear 

models. The paper by Lindley and Smith (1972) constitutes a key contribution 

to the construction of the hierarchical linear model. Raudenbush and Bryk 

(1986) described the method followed by Lindley and Smith as follows, ‘They 

explicitly lay out a hierarchical structure in which parameters estimated at one 

level in the model become the outcome variables at the next level.’ The above 

hierarchical parametric structure enables us to model multilevel phenomena 

faced in school-effects research. The hierarchical linear model (HLM) is 

widely applied in social and psychological research. 

 Let us now define a hierarchical linear model. Firstly, a within-group 

model is set which determines the relations among various student-level 

characteristics, Xijk and the achievement scores, yij. The model has the 

following form: 

 

y X X X Rij j j ij j ij jK ijK ij= + + + + +− −β β β β0 1 1 2 2 1 1...                                           (1) 

i = 1, ..., nj,     j = 0, ..., K-1 

 

where, yij is the outcome score for student i in school j, Xijk are the values on 

the student-level characteristics for student i in school j, βjk are the regression 
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coefficients and Rij is the random error. Furthermore, the within-school 

regression coefficients, βjk, are allowed to vary across schools, forming the 

following between-group model: 

 

β θ θ θ θjk k k j k j P k P j jkZ Z Z U= + + + + +− −0 1 1 2 2 1 1... , ,                                       (2) 

p = 0, ..., P-1 

 

where, θpk are regression coefficients that, according to Raudenbush and Bryk 

(1986), ‘capture the effects of school-level variables on the within-school 

structural relationships (βjk)’, Zpj are values on the school-level variables for 

unit j and Ujk is the random error. The above between-school model allows a 

simultaneous investigation of effects on school means and regression 

coefficients. Now, if we substitute (2) into (1) we get: 

 

y X Z X Z U U X Rij k ijk
k

p pj
p

pk ijk pj j jk ijk ij
kpk

= + + + + + +
= = ===
∑ ∑ ∑∑∑θ θ θ θ00 0

1 1
0

111
      (3) 

 

where, the last three terms constitute the error term. If there are no random 

effects in the between-group model, then the hierarchical linear model is 

equivalent to an ordinary linear model. We can also set: 

 

β γ γ γ γj j j K j jX X U0 00 10 1 20 2 1 0= + + + + +−... ,  

β βjk k= ,     for k = 1, ..., K-1 

 

and thus, permitting estimation of both the pooled within-group slopes βk and 

the corresponding between-group slopes γk0. 

 

 

2.2.2 Applications of Hierarchical Linear Models in Educational                          

Research 
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 Raudenbush and Bryk (1986) used the hierarchical linear model 

mentioned before, to study the relative effectiveness of public and private 

(Catholic) schools. Coleman et al. (1982) made a similar study and they 

concluded that the overall academic achievement was higher in Catholic 

schools than in public schools and this was more intense for lower-SES 

students in Catholic schools. The data that was used came from the High 

School and Beyond (HSB) survey and the analysis sample consisted of 10,231 

students from 82 Catholic schools and 94 public schools. The outcome variable 

is the standardized mathematics achievement score, while as explanatory 

variables are used the socioeconomic status (SES) of the students and the 

sector (1 for Catholic and 0 for public schools). 

 The first model that was applied examines the variability of the SES-

achievement among schools. The within-school model is given by: 

 

y X X Rij j j ij j ij= + − +β β0 1 1 1( ).  

 

where yij is the mathematics achievement for student i in school j, βj0 is the 

mean mathematics achievement for school j, βj1 is the SES-achievement 

relationship in school j, Xij1 is the SES of student i in school j, X j. 1  is the mean 

SES for school j and Rij is the error term. The between-school model is given 

by: 

 

β θ

β θ
j j

j j

U
U

0 00 0

1 10 1

= +

= +

,
,

 

 

where θ00 is the grand mean for mathematics achievement across all schools, 

θ10 is the mean slope for the SES pooled within all schools, Uj0 is the effect of 

school j on the mean mathematics achievement and Uj1 is the effect of school j 

on the SES. Having estimated the parameters of the above model the authors of 
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the paper concluded that, ‘there is a positive relationship between SES and 

mathematics achievement within schools’. Furthermore, the means 

achievement levels vary across schools and the relationship between 

mathematics achievement  and SES varies also across schools. It is interesting 

to compare the estimated parameter variance and the total observed variance. 

Although, of the total observed variability about 90% is parameter variance, 

only about 35% of the observed slope variability is parameter variance, while 

the remaining 65% is sampling variance. This is a striking example of the 

deficiencies of the slopes-as-outcomes model, presented in the previous 

section. 

 The second model that Raudenbush and Bryk (1986) applied for the 

analysis of the data identifies the variability among schools as a function of 

sector. Thus, the within-school model is the same as before, but now the 

between-school model includes the sector and we have: 

 

β θ θ

β θ θ
j j j

j j j

Z U
Z U

0 00 01 1 0

1 10 11 1 1

= + +

= + +

,
,

 

 

where Zj1 is the sector (1 for Catholic and 0 for public schools), θ00 is the mean 

mathematics achievement in the public sector, θ10 is the mean slope for the SES 

in the public sector, θ01 is the Catholic school effect on means mathematics 

achievement, θ11 is the Catholic school effect on the SES slope, Uj0 is the effect 

of school j on the mean mathematics achievement after accounting for the 

sector effects and Uj1 is the effect of school j on the SES after accounting for 

the sector effects. From this second model the authors concluded that, ‘the 

relationship of SES to mathematics achievement is smaller in Catholic schools 

than in public schools’. Besides, the parameter variance estimates are now 

conditional variances and they measure the amount of variability remaining 

among the schools means and slopes after sector is taken into account. A 
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natural estimator of the proportion of parameter variance explained by sector is 

given, for each βjk (k=0, 1), by the following formula: 

 

R
Zjk jk

jk

2 11*
var( ) var( )

var( )
= −

−β β

β
. 

 

The sector accounts for 11.3% of the parameter variance among school means 

and 71.6% of the variance in SES achievement slopes. Finally, although the 

parameter variance among school means has been reduced by taking sector into 

account, more variability remains to be explained. 

 The third model is a hierarchical linear model and accounts for the 

sector effects. There are two methods for adjusting the sector effects; the first is 

by controlling the student -level differences and the second is by controlling for 

student-level differences. It is assumed that the amount of homework is a 

confounding variable in the within-school model and that the SES composition 

of the school and its interaction with sector are confounding variables in the 

between-school model. The within-school model is now given by: 

 

y X X X X Rij j j ij j j ij j ij= + − + − +β β β0 1 1 1 2 2 2( ) ( ). .  

 

where yij is the mathematics achievement for student i in school j, βj0 is the 

mean mathematics achievement in school j, βj1 and βj2 are the SES achievement 

and homework achievement relationships in school j, Xij1 is the SES of student 

i in school j, Xij2 is the amount of time spent on homework by student i in 

school j, X j. 1  and X j. 2  are the mean SES and mean hours of homework in 

school j and Rij is the error term. The between-school model is given by: 

 

β θ θ θ θ

β θ θ θ θ

β θ θ θ θ

j j j j j j

j j j j j j

j j j j j j

Z Z Z Z Z Z U

Z Z Z Z Z Z U

Z Z Z Z Z Z U

0 00 01 1 02 2 2 03 1 2 2 0

1 01 11 1 12 2 2 13 1 2 2 1

2 20 21 1 22 2 2 23 1 2 2 2

= + + − + − +

= + + − + − +

= + + − + − +

( ) ( ) ,

( ) ( ) ,

( ) ( ) ,

. .

. .

. .
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where Zj1 is the sector, Zj2 is the school SES, θ00 is the mean mathematics 

achievement in the public sector, θ10 and θ20 are the mean slopes in the public 

sector for the SES achievement and homework achievement relationships, θ01 

is the Catholic school effect on mean mathematics achievement slopes, θ02 is 

the effect of school SES on mean achievement, θ12 and θ22 are the effects of 

school SES on the SES achievement and homework achievement slopes, θ03, 

θ13 and θ23 are the effects of the sector-by-school-SES interactions on mean 

achievement, the SES achievement slope and the homework achievement 

slope, and finally, Uj0, Uj1 and Uj2 are the remaining random effects associated 

with school j. From the analysis of this third model, it is concluded by 

Raudenbush and Bryk (1986) that, ‘school SES is related to mean 

achievement’, while, ‘differences in social class composition between public 

and Catholic schools account for the observed mean mathematics achievement 

differences between the two sectors’. Furthermore, school SES affects the 

strength of the SES achievement relationship within schools. Also, according 

to Raudenbush and Bryk (1986), ‘a student’s social class has a stronger effect 

on individual achievement in higher social class schools than in schools with a 

larger proportion of less advantaged students’. Another important result is that 

if homework, school SES and the sector-by-school SES interaction are taken 

into account, then the effect of the Catholic school on the SES achievement 

relationship persists. On the other hand, the interactions of sector with school 

SES have no effect either on mean achievement or on the within-school 

relationships and thus these terms will be excluded from the model. Finally, 

with the inclusion of the school SES effect, no significant variation among 

slopes remains to be explained. 

Another application of the hierarchical linear models on educational 

research was made by W. Raudenbush and J. Willms (1995). The authors of 

this paper specify and estimate the school effects. They also define two types of 

school effect. The first type refers to the effect of a particular policy on a 
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student outcome, while the second one describes how the attendance of a 

particular school modifies a student’s outcome. 

In other words, the first type of school effects, the type A effect, is the 

difference between a given student’s performance and the performance that 

would have been expected if that student had attended another school. The 

second type of school effects, the type B effect, is the difference between a 

student’s performance in a particular school and the performance that would 

have been expected if that student had attended a school with the same context 

and with practice of average effectiveness.  

Below, a statistical model is presented for school effects. According to 

this model, the outcome of a student depends on the effect of school practice, 

on the contribution of school context and on the student’s background. An 

interaction effect between the school practice and the context is also possible. 

But for simplicity let us consider the following additive model: 

 

Yij = µ + Pij + Cij  + Sij + eij 

 

Yij: the outcome for student i in school j 

µ: grand mean of Y 

Pij: the effect of school practice (school resources, organizational structure, 

instructional leadership) on student i in school j 

Cij: the contribution of school context (mean socioeconomic level of school’s 

students, unemployment rate of the community) 

Sij: the influence of measured student background variables (pre-entry aptitude, 

socioeconomic status) 

eij: random error, independent of P, C, S, with zero mean and homogeneous 

variance σ2(e). 

 

Furthermore, it is pretty obvious that a school has not a uniform effect on all 

who attend it. That is why we can include in the model the main effects of 
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school-level variables as well as interactions between school and student-level 

variables. According to the above, we have that: 

 

Pij = Pj + (PS)ij   

Cij = Cj + (CS)ij   

Sij = Sj + (Sij - Sj)  

 

where  (PS)ij and (CS)ij are the interactions of school practice and school 

context with the student background with zero means. In the above model the 

type A effect is this term:  

 

Aij = Pij + Cij 

 

and with interactions  

 

Aij = Aj + (AS)ij  

 

where Aj = Pj + Cj and (AS)ij = (PS)ij  + (CS)ij.  

 

The type B effect is this term: 

 

Bij = Pij  

 

and with interactions  

 

Bij = Bj + (BS)ij  

 

where Bj = Pj and (BS)ij = (PS)ij. 

Another important aspect is the variation in school effects. For example, 

if the variance of type A effect were zero, then the choice of the school would 
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not be important. On the other hand, if the variance of type A was large, then 

choosing among a set of schools would make a great difference. The same 

holds for the variance of the type B effect. The between-schools variances are 

given by the formula: 

 

E(µj - µ)2 = τ(A) + τ(S) + 2cov(A,S) 

 

and the within-schools variances are given by this formula: 

 

E(µj - µ)2 = σ2(S) + σ2(AS) + 2cov(S,AS) + σ2(e).  

 

According to the above formulas, the school practice, the school context and 

the student background contribute to the between and within-school variation. 

It is also clear that both types of variation include a covariation term between 

school effects and student background.  

The authors use two ways of estimating the type A effect. The first is by 

addition  Aij = Pij + Cij and the second is by subtraction Aij = Yij - µ - Sij. The 

first approach requires that all the variables have been measured and included 

in the additive model so that Pij and Cij are unbiased. The second one requires 

that Sij is estimated without bias. In the same way, the type B effect can be 

estimated by addition and by subtraction. For estimating the type B effect by 

subtraction we use this formula, Bij  = Pij = yij - µ - Cij - Sij, which requires that 

Cij and Sij must be estimated without bias.    

The example presented in the above mentioned paper, analyses data 

from 5,054 students from 20 secondary schools. The response variable is the 

fourth-year English outcome for each student and the explanatory variable is 

the primary 7 reading test score for each student. The following statistical 

models were used: 

 

Uniform Effects Model:     Yij =  α + βω Xij  + γc Xj + uj + eij 
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Yij: fourth year English outcome for student i in school j 

Xij: primary 7 reading test score 

Xj: school sample mean reading test score for school j 

 uj: random effect of school j, ~ N(0, τ) 

eij: student-level random error, iid, ~ N(0, σ2) 

 

After an orthogonal reparamaterization the model takes the form:  

 

Yij =  α + βω (Xij - Xj)  + βb Xj + uj + eij,  

 

where Yij, uj and eij are defined as above and Xij - Xj is the student reading 

ability deviated around the school mean. An unbiased estimate of type A effect 

for each school is given by the formula 

 

Aij = Yj - α - βω Xj 

 

 If we assume that X and u are orthogonal then a consistent estimate of type B 

effect is given by 

 

Bj = uj = Yj - α - βb Xj. 

 

Nonuniform Effects Model:      If we include in the model a randomly varying 

coefficient for students’ reading test scores then the form of the model will be: 

 

Yij =  α + βω Xij  + γc Xj + u0j + u1j Xij + eij. 

 

In the above model the student background, the school context and the school 

practice are defined in the following way 

 

Sij = βω Xij 
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Cj = γc Xj    

Pij = u0j + u1j Xij.  

 

As we can see in this model Pij varies from student to student within schools. 

The estimates for  type  A  and  type  B  effects  are  given  by  the  formulas  

 

Aij = Yj - α - βω Xij   and   Bij = Aij - γc Xj. 

 

As biased estimators of school effects the means of each school of the 

pupil-level residuals from the first model of Aitkin and Longford (1986) can be 

used. Also, estimates can be produced based on residuals from means-on-

means regression, on banding or via Empirical Bayes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


