
Chapter 1

Introduction

One of the basic targets of market research is the investigation of market and the con-

ception of buying behaviour. In previous years, managers could understand consumer

behaviour from the daily sellings. Nowadays, the huge number of companies and markets

deprive managers of a direct contact with their buyers. Market experts believe that a

successful strategy in the promotion of a product can be achieved by taking into consid-

eration customer behaviour. Thus, marketers try to investigate the relation between the

irritants of marketing and the customer�s response. The following Þgure illustrates the

irritants that affect consumer behaviour.

Figure 1: The irritants that affect consumer behaviour

It is obvious that marketing and environments irritants (product, price place, promo-
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tion, etc.) were imputed in the �black box� of buyer and determine the decision of the

buyer (choice of products, brand choice, etc.).

The above Þgure (1) gives us the information that buyers decisions are affected by cul-

tural, personal , social and psychological factors. These factors are presented analytically

in the following Þgure.
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Figure 2: Factors that affect consumer decisions

Most of these factors are not controlled by managers or those who make the decisions

concerning the promotion of a product. It is important to take into consideration all

these factors in order to apply the most successful strategy. In this part of management

in a company, the contribution of statistical science is very important. The science of

statistics, by applying appropriate models could help the manager understand what is

most probable to have happened in the �black box� of the potential buyer. SpeciÞcally,

statistical techniques can give answers to questions, such as:

1. which factors (cultural, social, etc.) usually affect the behaviour of a buyer

2. how does the buyer decide on his purchases (deÞnition of decision procedure).

Over the last decade there was a notable change of emphasis in the statistical analysis

of survey data. Increasingly, social science researchers are Þnding it informative to Þt

probability models to their data. A wide variety of such models are now used routinely
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including log-linear models, survival models, discrete choice models, latent class models

and many others.

Statistical modeling consists of a sequence of procedures. At a Þrst stage, a probability

model is proposed in order to describe the process of interest (Model Formulation).

This formulation will be guided by substantive theory and it possibly involves a number

of assumptions. At the second stage, the probability model is Þtted to the observed

data. The data are used to quantify the systematic relationships and random variation

postulated by the model. This is achieved by estimating the unknown parameters. In the

next step we make a criticism of the model. The assumptions and simpliÞcations made

to the model formulation stage are put to test. Finally, if the model is deemed to be

acceptable, the model interpretation stage concludes the whole process with consideration

given to the substantive signiÞcance of the results.

1.1 The Problem

An interesting subject in multivariate analysis is to explore the ways in which these

techniques can be used by researchers in market research science. SpeciÞcally, we will

try to investigate the development of such statistical methods in the Þeld of marketing

called consumer behaviour. The use of these statistical models in order to represent the

purchase processes has been developed extremely in the last decades. These models focus

on the ways in which a consumer decides on the brand (or product) he is interested in

or best supplies his needs. Moreover they increase the effectiveness of consumer panels

as a source of market research data for these products. The contribution of these models

in the investigation is signiÞcant because they provide structural insight into the ways in

which consumers regulate their choice of brands and decisions as far as purchase timing

and amounts of frequently purchased products are concerned.

This dissertation focuses on the construction of the most important stochastic models

as applied to buying behaviour of frequently purchased products. An attempt is made
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to describe the main assumptions of such models and their implications in purchasing

behaviour. Moreover, brand switching models are dealt with the analysis of this kind of

data and speciÞcally via latent class analysis. Lastly, we concentrate on mixture models

as applied to buying behaviour.

1.2 Terminology

Before continuing, it is important to determine some basic concepts in order to have a

better understanding of this thesis project.

Event An event is deÞned as a single outcome of realization of the process.

State Space State space is the set of mutually extensive and collectively exhaustive

events for the process.

Brand Switchers The market consists of many categories of products. Each category

of products (state space) also consists of a variety of items (events). Each consumer

chooses a product according to his needs. The consuming society in which a consumer

is member of, offers a variety of products that satisfy the same need. Hence, the brand

switchers are consumers that choose between a variety of products each time. They may

use two or more brands, depending on the situation, the price or may be searching for a

brand they consider to be the �best� in its category.

Brand Switching Matrix / Data Much of the information used in a number of

popular brand choice models can be extracted from a brand switching matrix. A brand-

switching matrix is a cross-tabulation of the number of purchases of one brand which

are followed by purchases of the same or another brand. Often, this is expressed either

as a conditional probability of repeating or switching brand given purchase of the Þrst

brand, or, the unconditional probability of a given sequence of two brand purchases being
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observed. The data that gives us information about the buying behaviour is called brand

switching data.

Brand Switching Models The use of brand switching models can be seen as a suit-

able method for analyzing brand performance. To built a brand switching model, it is

necessary to have detailed consumer panel data. From the data available, an analysis is

carried out to discover the loyalty to a particular brand, how consumers are behaving in

terms of switching from one brand to another, and the quantity bought per buyer.

Market segmentation This concept describes the division of a market into homoge-

neous groups which will respond differently to promotions, communications, advertising

and other marketing mix variables. Each group, or �segment�, can be targeted by a

different marketing mix because the segments are created to minimize inherent differ-

ences between respondents within each segment and maximize differences between each

segment.

There are many good reasons for dividing a market into smaller segments. The

primary reason is that it is easier to address the needs of smaller groups of customers,

particularly if they have many characteristics in common (e.g. seek the same beneÞts,

same age, gender, etc.). Segmentation can also help avoid sending the wrong message or

sending a message to the wrong people, etc.

Latent Class Models Latent variable models provide an important tool for the analy-

sis of multivariate data and provide a way of reducing dimensionality. Bartholomew and

Knott (1998) support a classiÞcation of latent variable methods. This classiÞcation is

presented below:

5



Classification of Latent variable Methods

Manifest V ariables

Metrical Categorical

Latent V ariables Metrical Factor Analysis Latent Trait Analysis

Categorical Latent ProÞle Analysis Latent Class Analysis

In Latent Class Analysis one tries to Þnd theoretically meaningful discrete latent

variables, each having two or more latent categories or classes, that explain the relation

among the categorical manifest variable (starting with a multivariate frequency table).

The latent class model postulates that the observed dependence between the rows and

columns of the table is due to the presence of underlying latent classes where, by the

assumption of local independence, the rows and columns are independent within any

latent class. More information, about latent class analysis and the way in which this

technique is applied in behavioural data, is given in the following chapters.

Heterogeneity Brand choice models have been developed at the market level to

describe and predict market phenomena such as switching, market share, penetration and

segmentation. This aggregate level analysis raises the issue of how much heterogeneity

among households in brand choice affects one�s picture of aggregate brand switching.

When we say �heterogeneity�, we mean differences in long term brand preferences among

households, which leads to differences in the relative number of purchases made over

time of each brand in a competing set of brands. If households are very heterogeneous,

inferences about how much one brand competes with another are likely to be misleading.

One brand may compete with another for some of the buyers but not for others.

The lack of sufficient data for many markets makes the measuring of heterogeneity

at the household level impossible. More often heterogeneity has been measured instead

at the aggregate, or across-household level, using brand switching matrices which have
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been reconstructed from survey data on only the two most recent brand purchases.

Trivedy and Morgan (1996) developed a model, that formulates a simple and less

restrictive representation of consumer heterogeneity allowing a more managerially rele-

vant interpretation and implementation while only requiring aggregate brand switching

data. According to the authors heterogeneity with respect to purchase probabilities,

implies that θi is distributed over the population, so we say that E(θi) = θi. If E(θij)

represents the expectation of switching from i to j in subsequent trials, total switching

would be
PP

i−j E(θij). Thus, E(θij) = Aijθiθj, where Aij is a parameter representing

heterogeneity in the population.

1.3 Plan of Thesis

As, we also mentioned in the previous pages, in this thesis we will attempt a presentation

of some of the most important statistical models applied in order to analyze consumer

behaviour. Primarily, we present a brief survey of the development of stochastic models

in buying behaviour. Continuing, we attempt to focus our survey in the use of latent class

analysis for the analysis of brand switching data. In particular, chapter 2 of this thesis

presents some general concepts on statistical modeling of buying behaviour. Moreover,

this chapter provides a history of the stochastic models as were developed in order to

study consumers behaviour in depth. In chapter 3, we present models which focus on

�when� purchase events take place or �how much� products will be purchased in a given

time interval. (These models are called purchase incidence models). Chapters 4 deals

primarily with brand choice models (Zero Order, Markov and Linear Learning models)

in general. Continuing, in chapter 5 we describe the most important concepts as far as

the latent class analysis is concerned. Moreover, we deal with latent class models that

are applied to buying behaviour. Finally, we present a comparative analysis of the brand

choice models.
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Chapter 2

Approaches to Stochastic Modeling

The most frequent question that can be asked about consumer choice behaviour, or

any human behaviour, is whether that behaviour is at least partially stochastic and/or

whether there exist causes and explanations for all behaviour. Freud and many other

scientists believed that an explanation exists for all behaviour even if the explanation

must be sought in the unconscious. This Þnding has lead to the development of some

empirical studies. Although, these studies have many supporters it is obvious that the

incapability of present models to explain a substantial portion of the variance is reason

for disappointment. Some evidence suggests that brand choice behaviour is substantially

stochastic.

Bass (1974) maintained that the fact that the choice behaviour of individual con-

sumers is substantially stochastic does not mean that it is fruitless to study this behav-

iour. It is useful to seek the major inßuences which determine the structure of stochastic

preference. According to Bass, attribute studies in particular and the study of the im-

portant dimensions of the choice process contribute to an understanding of consumer

behaviour and are managerially relevant with respect to product strategy.
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2.1 Type of Models and Characteristics of Stochastic

Models of Buying behaviour

Market researchers are Þnding it informative to give emphasis to the statistical analysis of

market data by Þtting probability models. The models for behavioural phenomena may

have Deterministic or Probabilistic character. Another separation, is that the stochastic

models may deal with either individual or aggregate behaviour.

When a consumer makes a purchase he makes several simultaneous decisions: deciding

what to purchase, when to purchase, and how to purchase. Consequently, stochastic

choice models (stochastic models of Buying behaviour) have generally been divided into

two classes:

1. purchase - timing (incident) models which focus on �when� purchase events take

place or on �how much� will be purchased in a given time interval

2. brand choice models, which focus on �what� to purchase (Stochastic models of

Brand Choice)

Thus, the purchase incidence models are used to predict when a purchase of a product

will occur or how many purchases will occur in a speciÞc time interval. The brand choice

models help market researcher predict which brand (or group of brands) will be purchased

by the consumers, given that a purchase does not occur in a particular time.

The distinction between brand choice and purchase incident models is important for

several reasons. In order to Þnd out the differences between these types of models we

deÞne the following:

Let Bi the purchase of brand i, and P the purchase of any brand of the product class.

The probability that an individual will purchase brand i in the interval of time between

t and t+ h is:

Pr{Bi ∈ (t, t+ h)}
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If we expand this probability according to the rule of conditional probability obtain :

Pr{Bi ∈ (t, t+ h)} = Pr{Bi|P ∈ (t, t+ h)}Pr{P ∈ (t, t+ h)} (2.1)

This means that the probability of brand i being purchased between (t,t+h) is equal to

the conditional probability brand i being purchased between time (t,t+h), given that a

purchase occurs, multiplied by the probability of a purchase occurring during this time

interval.

In the above equation, the Pr{Bi|P ∈ (t, t + h)} is a brand choice probability, but
Pr{P ∈ (t, t + h)} is a purchase incident probability. Hence, models that work on

predicting Pr{Bi ∈ (t, t + h)} are called brand choice models and models that predict
Pr{P ∈ (t, t+ h)} are called purchase incident models.
Brand choice models can usually be distinguished according to how they deal with:

1. Population Heterogeneity. This refers to differences in long term brand pref-

erences among households, which lead to differences in the relative number of pur-

chases made over time of each brand in a competing set of brands. Many stochastic

models of brand choice attempt to take into account population heterogeneity. This

can be done by the following ways: a) Certain speciÞc determinants of the purchase

probabilities can be identiÞed and built into the model. b) Households can be di-

vided into segments according to their purchases. On the basis of these variables,

estimation of the parameters of the model for each segment can be made. c) As-

sumption that the parameter has a distribution of values in the population (prior

distribution) can also be made. Each individual in the sample is assumed to repre-

sent a random draw from the prior distribution of possible parameter values. Since

heterogeneity has become an important topic in marketing this is referred to this

extendedly in the following pages.

2. Purchase-event feedback. Some models assume that the purchase of a product

has a direct effect on the household�s subsequence purchase probabilities. There are
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models that assume no purchase-event feedback. These models are called zero-order

models, because the purchase probability of the brand on the (n+k)th occasion,

pn+k is equal to the purchase probability of the brand on the nth occasion pn.

Also, the Þrst order Markov model assumes that only the last purchase occasion

determines the next purchase. Additionally, the Linear Learning Models use the

purchase event feedback in order to make a better prediction on buying behaviour.

3. Time effects. The effects of time is a signiÞcant factor in the use of brand choice

models. It is common and sometimes easier to assume that the net effect of such

forces on the purchase probabilities can be summed up by a time trend term in

the model. The probability diffusion models and some of the market penetration

models can be viewed in ths light.

4. exogenous market factors. Exogenous factors in consumer behaviour are those

factors which existed in the mind of the consumer before he/she encounters the

offers of suppliers in the market. In this sense, they inßuence the plans and ideas

of the consumer from outside and determine his/her choice in broad terms. Some

of these factors are the following:

� Consumer characteristics (culture, sub-culture, social class of consumers)

� Product characteristics (price, product differentiation, etc.)

� Effect of technology

2.2 Heterogeneity of Consumer Brand Choice

As stressed in the previous section, heterogeneity is one of the most important top-

ics in marketing. In the last decades many researchers have included heterogeneity in

studying consumer brand choice processes. This occurs since not taking a notice of het-

erogeneity may lead to wrong conclusions on the consumers behaviour. Furthermore,
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ignoring heterogeneity may lead to biased results and wrong inferences concerning mar-

keting strategies that must be followed. According to previous experience, heterogeneity

can be distinguished as observed or unobserved. Examples of observed heterogeneity are

demographic characteristics, habits etc. whereas unobserved heterogeneity is the hetero-

geneity that may exist in a segment consisting of consumers with common demographic

characteristics, habits, etc.

According to Bemmaor and Schmittlein (1991) the total variance that is present in a

purchase behaviour can be deÞned as the sum of within -household variance and between -

household variance (and residual variance). SpeciÞcally, the within- household variance is

known to us as non- stationarity, but the between- household variance is heterogeneous.

Despite the recent advances little is known about the heterogeneity present between

households. Most previous research has modeled unmeasured heterogeneity as completely

unobservable, or has attempted to reduce variability by introducing terms such brand

loyalty, (Guadagni and Little, 1983).

Moreover, other researchers have included heterogeneity in their models by various

ways. Thus, we have the following approaches:

1. models in which heterogeneity can be speciÞed inside or outside the likelihood

function.

2. models in which heterogeneity can be modeled using a Þxed or a random effects

speciÞcation

3. models in which heterogeneity can be included as a random intercepts or random

coefficients

4. models in which heterogeneity can be modeled parametrically or non-parametrically
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2.3 Survey of the Literature

If we make a retrospection of the past, we will see that the development and application

of stochastic models in the buying behaviour began very early. From the literature, it

is obvious that researchers were always interested in extracting meaningful information

concerning customer behaviour.

Lipstein (1959) was one of the Þrst who tried to apply a Þrst order Markov model

to brand choice behaviour. Kuehn (1962) also adapted the linear learning models to

the same problem. Markov and Linear Learning models (LLM) incorporate assumptions

about the effects of purchase - event feedback but do not make provisions on time effects

and population heterogeneity. The work of Kuehn on linear learning models led Frank

(1962) to the development of an alternative learning model. His approach postulated a

Bernoulli model for each household but assumed that the brand choice probabilities for

different households were likely to differ from one to another.

Morisson (1965 a,b) developed the Compound Bernoulli model. This model is essen-

tially the same as the model proposed by Frank. The advantage of compound Bernoulli

model is that it lends itself for a much better statistical analysis. Only short purchase

histories of individual consumers would be used (thus, the stationarity assumption of it

was not strained too badly). In this approach Morrison used the term �Compound�.

This term denotes the fact that explicit provision for a distribution of relevant parameter

values is included in the model. Morisson also developed the compound Markov model.

This model differs from the compound Bernoulli model only in terms of the order of the

individuals purchasing process. In the compound Markov model only the last purchase

inßuences the current purchase behaviour. Especially, the compound Markov model al-

lows for the Þrst order behaviour, and compound Bernoulli model allows for zero - order

behaviour. Massy (1966), applied the approach followed by Frank to the Markov model

in order to test for population heterogeneity effects. He also developed his own version

of compound linear learning model.

The contribution of Coleman (1964) to the development of stochastic brand - choice
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models, combining time effects and population heterogeneity, is also very important. The

contributions of Howard (1965) and Montgomery (1966) were also important. SpeciÞ-

cally, Howard assumes that households reevaluate the worth of various brands at discrete

points in time, that the outcomes of the successive evaluation (drawn from the distribu-

tion of probabilities) are independent of each other, and the purchase probability between

reevaluations does not change. This is justiÞed by the fact that the process of purchases

follows a Bernoulli distribution. In contrast, Coleman�s change and response uncertainty

model and probability diffusion model postulate that these �reevaluations� occur contin-

uously and the changes in probabilities per unit time are small and are not independent

of the past evaluations..

Howard (1963), Telsert (1963) and Lipstein (1965) developed models that include time

effects and purchase event feedback but not population heterogeneity. Especially, Howard

postulated a Markov model where transition probabilities are related to the time the last

purchase occurred. Telsert also developed a Markov model in which the parameters are

functions of marketing variables (e.g. advertising). Finally, Lipstein developed a Markov

model in which the matrices are estimated from data covering two different time periods.

Duhamel (1966) tried to estimate Telsert�s variable Markov model using individual

household data. Kuehn and Rohloff (1967) occupied themselves with the development

of a learning model where the learning operators are functions of the time since the last

purchase. Jones (1969) extended Montgomery�s probability diffusion model (extension

of cleman�s model) so as to include learning characteristics. The common characteristic

of the last tree model is that the authors tried to include all four of the characteristics

(population heterogeneity, purchase event feedback, time effects and exogenous market

factors). A detailed description of the above models can be found in the book of Massy,

Montgomery and Morrison, published in 1970.

Jones (1969) also took a major step forward by allowing individuals to differ in the

order of the stochastic process that follows as well as in the process parameters. In this

model individuals are allocated to Bernoulli, Markov and Linear Learning segments, each
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segment heterogeneous within itself. Givon and Horsky (1978) developed a model which

assumes the individual follows either the Bernoulli, Markov or Linear Learning process

as well as have different parameters from other people following the same process. The

same authors, in 1979, presented an application of a composite stochastic model that

allowed individuals to differ in the order of the stochastic process.

Latent class analysis was proposed by Lazarsfeld (1950). This procedure enabled the

researcher to take data from multiway contingency table describing aggregate responses

and decompose the tabular frequencies into a set of latent classes or segments that dis-

played certain characteristics. Despite its promise, latent class analysis had seen little

use in the social sciences up to 1968 where Myers and Nicosia made use of the model

in marketing. Green, Carmone and Washspress (1976) tried to make a non technical

description of latent class analysis, because they judged that the algorithms that had

been proposed were complex computationaly and limited in scope.

During the last decades the studies in marketing that used latent class analysis have

seen little use. Grover and Dillon (1985) developed a probabilistic model which can be

used to test alternate market structures and can be translated in terms of a restricted

latent class model. Grover and Srinivasan (1987) presented a new approach to market

segmentation. They developed a latent class based approach to analyze market structure

by using brand-switching data. SpeciÞcally, they deÞned a market segment to be a

group of consumers homogeneous in terms of the probabilities of choosing the different

brands in a product class. Colombo and Morrison (1989) proposed a two-class �Hard

Core Loyal� and �Potential Switcher� latent model for the analysis of brand switching

data. They showed how this simple model can be easily estimated using a standard log-

linear approach. Zahorik (1994) tried to generalize models based on latent class analysis

by accounting for heterogeneity among consumers and by allowing for brand switching

across clusters, in order to depict variety seeking.

With the demonstration of Goodman (1974a,b) on how to obtain maximum likelihood

estimates of the model parameters, a major obstacle for the dissemination of the latent
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class was removed. In chapter 5, we present in more details Goodman�s approach.

Eshima, Nobuoki (1993) proved that the Latent Markov Chain (LMC) model and the

Latent Mixed Markov Chain (LMMC) model are equivalent, and it is shown that LMC

model can be applied to various dynamic latent structure +models based on the Markov

chain model.

Shigemasu and Sugiyama (1994) proposed a new model, which combines latent class

analysis, and the multinomial logit model. Latent Classes of this model are introduced

to explain and predict choice behaviour effectively. Chatterjee and Sudharshan (1994)

studied a model for delineating product markets -MARKDEF (market deÞnition). In

MARKDEF product market deÞnitions are analytically obtained using consumer per-

ceptions. MARKDEF provides important diagnostic capability. It not only enables one

to gain insight into the overall similarity /dissimilarity of products but also the attributes

which account for these. In particular, MARKDEF gives a measure called the overall in-

dex of deviation, which reßects the overall degree to which two products differ from each

other. In addition, MARKDEF provides a measure of deviation on each attribute for the

products under consideration, which aids in understanding the attributes responsible for

differentiating the products. MARKDEF is supported in the product class investigated,

namely the methodology of comparing the results obtained from MARKDEF with those

of other standard procedures like multidimensional scaling and cluster analysis and it is

demonstrated that MARKDEF has good overall validity.

It is important also to refer to the most important approaches on buying behaviour

that are considered signiÞcant for the modeling of consumer. In what follows we present

some interesting approaches that may affect (positively or negatively) future surveys.

Lattin and McAlister (1985) developed a model of consumer variety-seeking behav-

iour. This model incorporates brand switching between complementary products to fulÞll

consumers� desires for variety. The model serves as the basis for developing a technique

that allows determination of which products covered by brand switching data may be

considered to be substitutable and which should be considered complementary.
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Kumar and Sashi (1989) developed a probabilistic model for testing hypothesized

hierarchical market structures at the aggregate level using brand switching data. Each

hypothesized structure is represented by a directed graph and its parameters are approxi-

mated by the use of log-linear modeling techniques. Jain, Bass and Chen (1990) provided

an iterative maximum likelihood procedure for estimating parameters of a model that

incorporates heterogeneity within segments. Their work is based on the previous work

of Grover and Srinivasan.

In 1993, log-linear trees were developed by Novak, and introduced as a model for

analyzing market structure in brand switching data. Log- linear trees combine log linear

models with a non-spatial graphical representation based on additive trees to represent

market structure. Log- linear trees establish connections among previous approaches and

afford certain advantages. This can be seen by considering some of the major approaches

to analyzing market structure in brand switching data.

Dipak and Ram (1994) used simulated data in order to compare the GS against

the JBC model for the switching data with regard to how well they recover the true

underlying market structure and the parameters values and also to identify situations, if

any, under which one model Þts the data better than the other. The robustness of the

factor analytic approach for determining the number of segments in a latent class model

was also examined.

Mayekawa (1994) worked on the generation of equivalent path models in the linear

structural equation models. Equivalent path models are deÞned as a set of different path

models, which give the same value of global Þt indices to a data matrix. Therefore, by

deÞnition, the data matrix at hand cannot distinguish those models. After deriving some

algebraic results, a graphical method is presented, in order to generate a set of equivalent

models of a given path matrix. As a result, it is demonstrated that, for most of the four-

variable cases, a set of equivalent path models exists. This implies that the cause-effect

terminology used in the interpretation of the result of the data analysis using the linear

structural equation models in questionable in most of the cases, unless the causal order
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is determined prior to the analysis on some theoretic basis. Matsuda and Namatame

(1995) developed a scaling technique in order to investigate the image integration of

consumers, taking advantage of the recent visual and object-oriented programming tech-

nology. Moreover, Mayekawa (1996) worked on the derivation and the application of the

maximization of the likelihood, which is the product of binomial or multinomial densities

under the linear, constrains among the cell probabilities. This type of problem arises

when we wish to smooth the histogram, to test the linear trend of proportions, or to

compare the means/ variances of number- right test scores across several groups without

normality assumption. In the applications of the latent variable models, it is shown that

the same method can be used to estimate the distribution of the latent variables.
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Chapter 3

Purchase Incidence Models

3.1 The Negative Binomial Distribution Model

As we have already mentioned, purchase incidence models are used in predicting the

timing of purchase events. Among a variety of purchase incidence models, the negative

binomial distribution (NBD) model is the most signiÞcant. According to Ehrenberg

(1959), the NBD model assumes that the process which generates purchases at the level

of the individual household is Poisson, and that the parameters of these processes are

distributed over members of the population according to a Gamma distribution. More

speciÞcally, the probability that a consumer makes the next purchase during a period of

time interval is independent of the previous purchase time, and the time between two

purchases follows an exponential distribution.

In the following, we present the most important issues regarding the Purchase Incident

Models.

3.1.1 Description of Negative Binomial Distribution Model

The Gamma-Poisson form of the Negative Binomial distribution (NBD) model generally

gives a good Þt to many aspects of repeat-buying behaviour for a wide range of frequently

bought branded consumer goods. Ehrenberg (1959) was the Þrst to present a well - de-
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veloped stochastic model for purchase incidence (Negative Binomial Distribution Model).

This author presents results showing that the negative binomial distribution tends to Þt

the frequency histogram for the total number of units bought by members of a consumer

panel during a Þxed time interval. Moreover, Ehrenberg points out that the negative

binomial distribution can be derived by assuming that the process which generates pur-

chases at the level of the individual household is Poisson, and that the parameters of

these processes are distributed over members of the population according to a gamma

distribution.

The main assumptions for this model are:

1. Purchases of a particular brand by a given consumer in successive equal time periods

are independent and follow a Poisson distribution with a constant mean. Namely,

the probability that the number of purchases in a period of unit length will be

Poisson :

P (X = x|λ) = e−λλx
x!

, where x = 0, 1, 2, . . . , X = the number of purchases and

λ is the purchase rate.

2. Different households have different purchase rate λ. Thus, the purchase rate pa-

rameter λ , governing an individual household�s purchasing pattern is gamma dis-

tributed. Namely, the long average rate of purchasing varies from consumer to

consumer and follows a Gamma distribution in the whole population, so we have

that g(λ|r, a) = arλr−1e−aλ
Γ(r)

, where λ > 0, and r,α are the parameters of a Gamma

Distribution.

3. Stationarity (the probability laws change as a result of consumer controlled actions).

A consequence of this mixed Poisson model is that the frequency distribution of

purchases for the whole population in a given time - period follows the Negative Binomial

distribution :

P (X = x|r,α) =
Z ∞

0

P (X = x|λ)g(λ|α, r)dλ =
µ
x+ r − 1

x

¶µ
α

α+ 1

¶rµ
1

α+ 1

¶x
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for x=0,1,... α > 0 and r an integer.

If the period of time is t the scale parameter α is replaced by α/t and we have the

following form:

P (X = x|r,α/t) =
µ
x+ r − 1

x

¶µ
α

α+ t

¶rµ t

α+ t

¶x
Useful descriptive measures are the Expected value: E(X) = E (λ) = r

α
and the

variance: V ar(Y ) = r
α
+ r

α2

The last equation can be interpreted as follows: The variance in purchasing for an

arbitrary individual with the negative binomial distribution is the sum of the within

individual variation V ar(λ) = r
α
plus the across individual purchase rate variability.

The major use of NBD model is to predict what would happen and to compare it

with what did happen. For example, suppose a brand runs a promotion and sees a sale

increase. Did this increase come from (1) non-buyers or (2) from previous heavy buyers?

Morrison and Schmittleing (1988), generalized the Negative - Binomial distribution

model for the analysis of purchases.

Extensions developed by replacing some NBD assumptions

Some empirical evidence suggests that purchasing a particular brand size in successive

equal time periods tends to be more regular than Poisson. ChatÞeld and Goodhardt

(1973) proposed an alternative model, in which inter-purchase times for a given consumer

are described by an Erlang distribution.

These authors dealt with the Þrst assumption of a Negative Binomial Distribution

model. This assumption, (individual consumer�s purchases in successive equal time

should be Poisson) can be criticized because of its implications concerning inter-purchase

times. They studied three alternatives to the exponential distribution for describing the

inter-purchase times of an individual consumer (Gamma, Weibul and Lognormal distri-

butions). Continuing, they proposed some special cases of the Gamma distribution (or
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Pearson type III) mainly because it is mathematically easier to handle than the other

alternatives. Moreover, they studied the special case when the exponent (parameter p

of Gamma distribution) is a positive integer. This distribution is usually called Erlang

distribution. Hence, considering the Gamma as the distribution that describes the inter-

purchase time of an individual consumer, these authors proposed an Erlang distribution

for interpurchase time, yielding a �condensed� negative binomial model. The word �con-

densed� arises from the fact that the variance is less than the mean for all the values of

λ, whereas the Poisson distribution has equal mean and variance.

The �Condensed� Negative Binomial Distribution Model (CNBD) is an integrated

model for the whole population. In this model two properties hold.

1. Purchases of a particular brand-size by a given consumer have Erlang inter-purchase

times and the number of purchases in a given period follows the condensed Poisson

distribution.

2. The average long-run rate of purchasing varies from consumer to consumer and

follows a Gamma distribution in the whole population

Thus, in the given time-period the distribution of purchases in the whole population

is obtained by mixing the condensed Poisson distribution with the Gamma distribution.

So:

Pr(r purchases) = PCN(r) =

Z ∞

0

f (λ)PC(r)dλ, r =0,1,. . .

Thus,

PCN(0) = PN(0) +
1

2
PN (1)

PCN(r) =
1

2
PN (2r − 1) + PN (2r) + 1

2
PN(2r + 1), r =0,1,. . .

This distribution is obtained from a NBD by exactly the same weighting procedure with

which a condensed Poisson distribution is obtained from the corresponding Poisson dis-

tribution. Thus, they called the distribution Condensed Negative Binomial distribution.
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Some empirical evidence suggests that purchasing a particular brand size in successive

equal time periods tends to be more regular than Poisson.

Morrison and Schmittlein (1982 and 1983) showed that CNBD gives a more regular

sales pattern than the NBD model and gives an increasing slope to the zero class (class

of individuals who will never buy).

If there exists a class of individuals who never buy, then the proper mixing distri-

bution has a mass point representing that proportion of the population at λ = 0, and

consequently a gamma distribution for the remaining population proportion.

Finally, a most difficult and perplexing problem for all stochastic models is nonsta-

tionarity, because it can occur in many different ways.

3.1.2 The Negative Binomial Distribution /Pareto Model

Schmittlein, Morisson and Colombo (1987) developed a model based on the negative bi-

nomial distribution that can be used to determine how many of a Þrm�s current customer

are �active� determined by the transaction activity in the last year. The developed model

is based on the following assumptions:

1. At the individual customer level: every active customer(when �alive�) purchases is

Poisson with parameter λ, and also, customers remain alive for a lifetime that is

exponentially distributed with parameter µ.

2. At the population level: Gamma heterogeneity for purchasing (λ) and death (µ)

rates.

Thus, the Poisson purchasing and gamma heterogeneity assumptions imply a Negative

Binomial Distribution model of purchasing behaviour for active customers. Namely:

P (X = x|r,α, τ > T ) =
µ
x+ r + 1

x

¶µ
α

α+ T

¶rµ
T

α+ T

¶x
where
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x = 0, 1, 2, . . . ,

τ = time of �death�

r,α = gamma distribution parameters for interpurchase time rate.

On the other hand, exponential �death� rates with gamma heterogeneity yield a

Pareto distribution of the second kind. Namely:

f(τ |s, β) = s

β

µ
β

β + τ

¶s+1
, τ > 0

where s,β = gamma distribution parameters for lifetime length.

So, the probability that an individual is �alive� at T, using the Bayes�s theorem, is

P (τ > T |λ, µ,X = x, t, T ) =
1

1 + [µ/ (λ+ µ)] [e(λ+µ)(T−t)]

where

t = time of last purchase

T = current time

X = number of purchases the customer made in (0,T).

Then it is easy to calculate the P (�alive�|parameters estimates) = P (τ > T |r,α, s, β, X =

x, t, T ) which is the weighted average over λ and µ of the individual level probabilities.

The utility of this model for a manager is unmeasured since it gives information

concerning:

1. the estimation of the number of active customers over time

2. the identiÞcation of the P(�alive�|parameters) at the individual level

3. prediction of future transaction levels.
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3.1.3 Other extensions of NBD model

Brockett, Golden, and Panjer (1996) developed a series of purchase incidence models

based upon the NBD model. In this paper, the authors generalized the Poisson process

by replacing the exponential distribution assumption with a wide range of other, more

sophisticated, distributions. Although better Þtting results were presented to conclude

the superiority of the new models over the traditional NBD model, the �abstract behav-

iours� of all the models, including the NBD model, are the same. In particular, as the

purchase frequency increases, the NBD model, as well as all others, predict seeing less

number of consumers in their experiments measured in a given period of time. Although

the actual numbers predicted might be different, the trend of more low-frequency buyers

and less high-frequency buyers was consistent among all models.

3.2 Model of Interpurchase Times at the Individual

Level

The purchase timing models, such as the negative binomial distribution model (NBD)

and the condensed negative binomial distribution model (CNBD) make assumptions on

the distribution of interpurchase times at the individual level (exponential interpurchase

times or Poisson purchases in the NBD, and Erlang 2 interpurchase times or condensed

Poisson purchases in the CNBD) and use a mixing distribution on the scale parameters

(gamma distribution in both the NBD and CNBD) to aggregate. In reality however, the

timing of when to purchase at the individual level is complex; it depends on how the

product is used and how much of the product is at hand.

Kahn (1987) developed a theoretical model of interpurchase times at the individual

level that takes into consideration assumptions about how the product is used. Especially,

in this model the distribution of interpurchase times is calculated based on factors such

as: how the product is used, external market forces, random events etc.
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Assume that the times between purchases depend on three issues:

1. The number of uses per container (There is an assumption about the size of con-

tainer. Assume either that the sum of uses exceeds the amount of product in the

container or is less than the amount of product in this)

2. The distribution of the amount used

3. The distribution of the times between uses

The dependent variable in this model is the number of uses per container. In order

to calculate the sum of uses, Kahn tried to estimate how many uses are expected in each

container. This author found that the distribution of the number of uses per container,

P(n), and the expected number of uses per container, E(n), depend on:

1. The size of the container, and

2. The regularity of the amount used

The number of times between uses which are added up to form the time until the

next purchase is a function of the number of uses per container. Thus, the probability

density function of the interpurchase times at the individual level is a sum, over the

different possible number of uses per container, of P(n) times the n-fold convolution of

the interpurchase times distribution.

Thus, Kahn proved that the probability density function for the times between pur-

chases can be written as:

h(t) =
∞X
n=1

P (n)gn(t)

where: P(n) is the probability distribution of number of uses per container

P (n) =

Z K

0

fn−1(y)
Z ∞

K−y
f(x) dx dy =

Z K

0

fn−1(y)[1−F (K−y)] dy = Fn−1(K)−Fn(K)

28



K is the size of the container, f(x) is the probability density function for the amount x

consumed per usage occasion

fn(x) =

Z x

0

f(y)fn−1(x− y) dy

and g(t) is the probability density function for times between the uses

gn(t) =

Z t

0

g(t0)gn−1(t− t0)dt0

By deriving this theoretical distribution, Kahn also provided a mean to test the

robustness of the distributional assumptions made by other researchers. This author

found that, whereas the Erlang or Gamma family of distributions is fairly robust, speciÞc

shape parameters are not as robust across different product types.

3.2.1 The Usefulness of models of interpurchase times at the

individual level

ChatÞeld and Goodhardt (1973) argued that practical interest lies more in the behaviour

of groups of consumers than in that of single individuals. They found that the NBD

model was robust at the individual level, and since it is a relative simple model it is

sensible to use it in a frequently - purchased product category where there are many

heterogeneous purchases.

It is clear that if a manager is interested in how much of his product will be purchased

on the market in a Þxed period of time or if he is interested in the expected number of

purchases in a future period, given that a certain amount was purchased in an observed

period, then the NBDmodel is adequate. However, there are some situations in which the

manager or researcher might be interested in the distribution of interpurchase times at

the individual level, and hence the Poisson assumption of the NBD is clearly undesirable.

A manager, or researcher, is interested in the distribution of interpurchase times at
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the individual level in the following situations:

1. to study the independence assumption between brand choice and interpurchase

times. Sometimes managers want to develop methods to make the purchasing habits

more or less regular in order to built up loyalty. In order to further investigate this

relationship, a theoretical model of the distribution of interpurchase time at the

individual level is desirable.

2. to study the effect of promotion on interpurchase times. A way to test the effects of

promotions is to examine if the distribution of interpurchase times at the individual

level is more irregular when purchases are made on promotion rather than when

purchases are made when there is little or no promotion. Thus, in order to test

these types of relationships in depth, it is desirable to have a theoretical model,

which predicts purchase behaviour in the absence of any external market activity.

3. to study the robustness of the assumption of a Gamma distribution at the individual

level.
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Chapter 4

Brand-Choice Models

Stochastic models of brand choice can be distinguished by how they deal with purchase-

event feedback and the inßuence of current purchase behaviour on future brand choice

probabilities (Lilien, Kotler and Moorthy,1992). We will brießy review three brand-choice

models: zero-order models, Markov models, and linear learning models.

4.1 Zero-Order Models

Zero-order models assume that a consumer, regardless of what he and she is exposed to,

has a constant purchase probability of buying a brand. In other words, in zero-order

models the purchase probability of the brand on the (n+k)th occasion, pn+k, is equal to

the purchase probability of the brand on the nth occasion pn. The zero order models that

are presented in this chapter, differ in the assumptions made about consumer preferences

and choice and in the number of brands they consider. The most important models used

in order to describe consumer behaviour are presented in the following.

4.1.1 Bernoulli Model

The simplest stochastic model for describing consumer behaviour is the Bernoulli process.
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DeÞnition 1 The stochastic process {Xt, t ∈ T}, Xt ∈ R where R = (0, 1)and T =

0, 1, 2, .... is a Bernoulli process if and only if

P [Xt = 1|Xt−1,Xt−2, ..., Xt−p] = p

for all (Xt−1,Xt−2, ..., Xt−n) ∈ Rn, n = 1,2,3,... .

In the case of buying behaviour, the above implies that the probability pi is constant

over time and independent of the consumer�s actual purchase decisions in the past. Thus,

at any purchase decision (in a particular product category) the consumer has the same

probability pi of purchasing brand i.

It is important to remember that households usually differ in many ways, and some of

these may affect use opportunities or brand preferences for particular products. Similar

to other models, the Bernoulli model of buying behaviour attempts to identify, explain,

or take account of population heterogeneity.

The heterogeneous Bernoulli model assumes that in a population of customers, each

one has a constant probability pi of buying one of the two brands in the market. Addi-

tionally, we don�t assume that each consumer has the same p. In the case that we have a

heterogeneous population, we assume that p has a Beta distribution over the individuals

in the population. So, we have that:

f(p) =
Γ(α+ β)

Γ(α)Γ(β)
pα−1(1− p)β−1, for α > 0, b > 0 and 0 < p < 1

It is obvious that the Beta distribution is an objective measure of heterogeneity in the

consumer population. The variance of the Beta distribution will give us a quantiÞcation

of the heterogeneity in the population.

If we want to estimate the posterior distribution of p given the prior mixing distrib-

ution we proceed as follows:

f (p|α,β) = k1pα−1 (1− β)β−1 (prior, mixing distribution)
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p (r|n, p) = k2pr(1− p)n−r r = 0,1,...,n (binomial likelihood distribution)

Thus, using the Bayes�s theorem, the posterior distribution of p is proportional to the

prior distribution times the likelihood is:

f (p|n, r,α,β) = k3pα+r−1 (1− β)β+n−r−1

where k1, k2, k3 are appropriate constants. It is obvious that the distribution of p has the

same form as the prior. Namely, if f(p) has a beta distribution with parameters α and

β and if we observe that an individual makes r purchases of a brand out of n purchase

occasions, then the posterior distribution of p is also beta with parameters α + r and

β + n− r.

4.1.2 Simple Multiple-brand Model

Another zero order model is the simple multiple-brand. Ehrenberg (1972), postulated

that the joint probability of a consumer purchasing brands i and j on successive purchase

occasions is given by

p(i, j) = kmimj

where {mi} are the market shares of the respective brands and k an appropriate constant.
It easy to show that

p(i, i) = mi − kmi(1−mi)

Then, summing the above equation over brands, we get an equation for k:

k =
1−P p(i, i)

1−Pim
2
i

Noting again that p (i) = mi, from equations
P

j p(i, j) = mi,
P

i p(i|j) = 1, and p(i, i) =
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mi − kmi(1−mi), we obtain:

p(i|j) = kmi, j 6= i
p(i|j) = 1− k(1−mi), j=i

which shows that the conditional probabilities of purchasing brand i are independent of

brand j.

Kalwani and Morrison (1977) showed that two assumptions (1) a zero order process

applies, and (2) switching is proportional to share, are sufficient to derive the results

shown. Alternatively, Kalwani (1979) shows that if the purchase probability density

function of consumers in a choice category is given by the Dirichlet distribution, then

the equation p(i, j) = kmimj holds as well. There have been an number of other models

and studies dealing with zero order behaviour.

4.2 Markov Models

4.2.1 Basic deÞnitions and Mathematical properties of a Þrst

order Markov Chain

A process is called Þrst order Markov when it has a Þnite number of states and every

individual state depends only on its previous states. Markov chains are characterized

by many properties but in the case of buying behaviour the basic concepts are: (1) the

states of a Markov chain, (2) the transition matrix, (3) the steady state probabilities,

and (4) stationarity.

Some basic properties of a Þrst order Markov chain are:

The state of a Markov chain

The state of a stochastic process at time t is the value of the process at time t. Hence,

if we have a sequence of purchases in time t, the state of an individual at time t is the

brand that he bought at time t.
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The Markov Transition Matrix

The transition matrix of a Markov Chain with n states has the following form:

State at time t+ 1

1 j n

State at time t

1

i

n


p11 p1j p1n

pi1 pij pin

pn1 pnj pnn


where the transition probability pij is the conditional probability that the consumer will

be in state j at time t+ 1, given that he was in state i at time t.

Steady-State Probabilities

Let π = (π1,π2, ...,πn) be the n component row vector that is found by solving the

system of equations

π = πP

These πi are called Steady - State Probabilities, and can be interpreted as the proportion

of time that the Markov chain is in state i when the chain is observed over a long period

of time.

Stationarity

Additionally, we assume that the Markov chain is stationary. This means that the

transition matrix P(t) is independent of t (probabilities do not change).

4.2.2 First Order Markov Chains

The aspect of �Þrst order� of a Markov chain means that pij is independent of the

individual�s state at times t − 1, t − 2, . . . Thus, in this case Markov models assume
that only the last brand chosen affects the current purchase.

SpeciÞcally, there are two properties that characterize a stationary Þrst-order Markov

process. Let Yt denote the brand chosen on the tth purchase occasion and N denote the
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number of brands. Then the stationary Markov process satisÞes the following conditions:

p(Yt = k|Yt−1, Yt−2, ..., Y0) = p(Yt = k|Yt−1) (one− period memory)
p(Yt = k|Yt−1) = p(Y1 = k|Y0) (stationary for all t, k)

Let us denote such a matrix as P = {pij},where pij is the probability of purchasing j
next, given i was last purchased. The stochastic matrix P has the following properties:

0 ≤ pij ≤ 1 and
P

i pij = 1.

Market Shares Given current market shares, a Markov model can be used to predict

how market share changes over time. Suppose we know {mit}, the market share of brand
i at time t, then market shares for all brands at time t+1 can be calculated as:

mj,t+1 =
nX
i=1

pijmit , j = 1, 2, ..., n.

So, if we apply a Markov model in a brand switching matrix, we obtain some useful

information, such as:

1. Using the transition matrix, we can perform forecasting for market shares, and

2. These models show how the effect of a change in market structure can be evaluated.

Remark 1 As with other stochastic models, several critical assumptions are used, in-

cluding purchase timing (one purchase per time period), homogeneity and stationarity.

Incorporating Explanatory Variables

Givon and Horsky (1990) provide a two stage Markov model that incorporates explana-

tory variables. They deÞne the Markovian transition matrix corresponding to individuals

brand switching behaviour among brand A and B (brand B may represent all non-A

brands), and then non-stationarity in the transition probabilities is allowed as:
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At Bt

At−1

Bt−1

 P tAA P tAB

P tBA P tBB

 where P tXY is the probability of buying brand Y in

period t given that brand X was purchased in the previous period t− 1.
According to Morrison (1966) and Givon and Horsky (1978) the above transition

matrix can be written as:

At Bt

At−1

Bt−1

 αt + β 1− αt − β
αt 1− αt

 where β is the purchase feedback due to experi-

ence with the brand and is a non feedback parameter.

Since, the �Þrst order� consumer only remembers the last experience with the brand

and αt the brand�s quality is likely to remain unchanged over time, β will be considered

as constant. The non-feedback effect, on the other hand, will be assumed to be impacted

by marketing mix activities and therefore αt is considered to be nonstationary.

The market share of brand A at the time of purchase event t, based on the above

matrix, is denoted mt and has the following form:

mt = mt−1 (at + β) + (1−mt−1) at = at + βmt−1.

At this point, we specify the nonfeedback effect, at, to be:

at = α+ γGt + δRt + εt

Hence, each consumer in the market is assumed to follow the process shown, with β, the

�brand feedback� effect constant across customers, and the effect of controllable variables

αt, is going to model as follows:

αt = α0 + γ(at + λat−1 + λ2at−2 + ...+) + δRt + εt
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where α0, γ,λ, δ are constants

at is the advertising share of brand A in period t,

Gt is its goodwill

Rt is the (relative) price of brand A at time t

εt is the random error term (random events which impact αt).

Thus, the relative information contained in ads is assumed to be perfectly remem-

bered, at the point of purchase, if it occurred in the past last purchase period and to be

forgotten in a pattern of geometric decay, if it occurred in prior periods. The fraction

remembered from one period to the next is λ. Unlike advertising share which contains

information which may be remembered, relative price is considered to embody no such

lasting information, and only the current relative price is assumed to affect the brand�s

market share.

Combining the previous equations we have:

mt = α0 + γ(at + λat−1 + λ2at−2 + ...+) + δRt + βmt−1 + εt.

Transforming the last equation by Þrst considering mt − λmt−1 and then mt − βmt−1

yields

mt = α0(1− λ) + (β + λ)mt−1 − βmt−2 + γXt + δRt ++δλRt−1 + µt

where µt = εt − λεt−1.

Remark 2 This model does not deal with population heterogeneity or with purchase tim-

ing.

Remark 3 More complete stochastic models, incorporating timing, choice, heterogeneity,

marketing variables, feedback and so on, face two problems:

1. The inclusion and linking of these additional phenomena leads to models that are

analytically complex and difficult to communicate.
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2. These models require more data and more subtle estimation procedure than are often

available for practical applications.

4.3 Linear Learning Models (LLM)

Linear Learning models provides one possible way to accommodate adaptive behaviour

into stochastic models of consumer brand choice. Kuehn (1958) developed linear learning

models on switching patterns for frozen orange juice. The basic idea which led him to

the development of such a model is that consumers are affected by feedback from past

brand choices. Hence, the act of purchasing a particular brand is assumed to affect the

probability that this brand will be selected the next time (purchase event feedback).

The linear learning models offers a set of hypotheses about the way in which a purchase

event feeds back on the post-purchase probabilities. The most important assumption

is that the post-purchase probability is always a linear function of the pre-purchase

probability. This linear function has the following form:

pt = α+ βpt−1 (4.1)

for all the values of pt and all t, and α, β ∈ [0, 1]. The right -side part (α+βpt−1) is called
feedback operator. Additional assumptions contained in linear learning models are the

following:

� The model assumes quasi-stationarity in the sense that the parameters of the change
operators do not change over short periods in time.

� The model assumes that all households exhibit adaptive behaviour that can be
described by feedback operators with, at least approximately, the same parameters.

Hence, the parameters in the learning model are assumed to be the same for all

households.
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4.3.1 A brief description of LLM (Linear Learning Model)

Assume, that we have two brands in a market. Given this condition, the purchase history

of each household is represented by a series of zeros and ones. So, we have:

Yt =

½
1, if the brand of interest is purchased on occassion t
0, otherwise

(4.2)

Let p(1)t is the probability of purchasing the brand on occasion t. Then p(0)t = 1− p
(1)
t ,

and the basic equations of simple linear learning model are a pair of operators called

acceptance and rejection operator, respectively. These equations have the following form:

p
(1)
t = α+ β + λpt−1, if brand 1 is purchased at t (acceptance operator)(4.3)

p
(0)
t = α+ λpt−1, if brand 0 is purchased at t (rejection opperartor)(4.4)

where λ presents the slope of the model in every case.

At this point, it is important to remember that all households are assumed to have

the same values for the parameters α, β and λ, (according to previous assumptions), even

though this process leads to different values of pt for different households. Because of

0 ≤ pt ≤ λ for all t, this implies that α + β + λ must also be constrained to lie in the

interval [0, 1].

According to Hermiter and Howard (1964) learning has a non-negative inßuence. This

means that it is assumed that the customer�s probability of purchasing brand 1 in period

t is greater if brand 1 has been purchased the previous time than if some other brand

has been purchased, p(11)t > p
(01)
t . Also, the parameters of the model (α, β,λ) are heavily

restricted by the standard probabilistic constrains:

0 ≤ p(01)t ≤ 1P
p
(01)
t = 1
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Hence, the above assumptions lead to the following set of conditions which have to be

satisÞed:
λj = µi = λ for all i, j = 1, 2, 3..., n

βi +
P
αj = 1− λ for all i, j = 1, 2, 3..., n

−1 ≤ max1≤j≤n(−αj) ≤ λ ≤ min1≤j≤n(1− αj − βj) ≤ 1
This means that the equality of the slope coefficients λ in the purchase and rejection

operators is an assumption that may be relaxed in the two-brand case. If more than two

brands are considered, the slopes must be equal in order to ensure that the brand-choice

probabilities will always lie in [0, 1]. The above are illustrated in the following Þgure:

Figure 3: Graphical representation of the Linear Learning Model

The horizontal coordinate presents the probability of choosing brand 1 in period t

and the vertical coordinate presents the probability of choosing brand 1 in period t+ 1.

There is a positively slope 450 line that is used as a norm. The two positively sloped
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lines present the acceptance and rejection operators. The two points U and L, give us

the information as far as the purchase is concerned. In particular, the points show us

where the acceptance and rejection operators cross the 450 line, respectively.

It easy to prove, that if a consumer continues to buy brand 1, the probability of

buying brand 1 approaches 0.87 as a limit. This upper limit, given the intersection of

the purchase - operator and the 450 line, presents a phenomenon known as incomplete

habit formation. On the other hand, if a consumer does not buy brand 1 for a long

time, the probability of buying this brand falls continuously but it never becomes zero.

This is the phenomenon of incomplete habit extinction.

42



Chapter 5

Latent Class Models applied to

buying behaviour

5.1 Restrictive and Unrestrictive Latent Class Model

Goodman (1974 a) dealt with the relationships among m polytomous variables, i.e. with

the analysis of an m-way contingency table. These m variables were manifest variables

in that, for each observed individual in a sample, his class with respect to each of the m

variables was observed. In the same paper, Goodman considered polytomous variables

that are latent in the sense that an individual�s class with respect to these variables was

not observed. The classes of a latent variable was called latent classes.

5.1.1 The Latent Class Model Unrestricted

Consider a 4-way contingency table which cross-classiÞes a sample of n individuals with

respect to four manifest polytomous variables A, B, C and D. Suppose also that the

manifest polytomous variables A, B, C and D consist of I, J, K and L classes, respectively.

Let πijkl denote the individuals probability of being at level (i, j, k, l) , with respect to

the joint variable (A,B,C,D) {i = 1, ..., I; j = 1, ..., J ; k = 1, ..., K; l = 1, ..., L} . Suppose
that there is a latent polytomous variable X, consisting of T classes, that can explain the
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relationships among the manifest variables (A,B,C,D) . This means that πijkl can be

expressed as:

πijkl =
TX
t=1

πABCDXijklt (5.1)

where

πABCDXijklt = πXt π
−
AX
it π

−
BX
jt π

−
CX
kt π

−
DX
lt (5.2)

denotes the individuals probability of being at level (i, j, k, l, t) with respect to the joint

variable (A,B,C,D,X). Here πXt denotes the individuals probability of being at level t

with respect to variable X and π
−
AX
it denotes the probability that an individual will be at

level i with respect to variable A, given that he is at level t with respect to variable X,

and Þnally π
−
BX
jt , π

−
CX
kt and π

−
DX
lt denote similar conditional probabilities. Formula (5.1)

states that the individuals can be classiÞed into T mutually exclusive and exhaustive

latent classes whereas formula (5.2) states that within the tth latent classes the manifest

variables (A,B,C,D) are mutually independent (t=1,...,T). In order for equations (5.1)

and (5.2) to be veriÞed, the following constrains must hold:

TX
t=1

πXt = 1,
IX
i=1

π
−
AX
it = 1,

JX
j=1

π
−
BX
jt = 1,

KX
k=1

π
−
CX
kt = 1,

LX
l=1

π
−
DX
lt = 1 (5.3)

πXt =
X
i,j,k,l,

πABCDXijklt (5.4)

πXt π
−
AX
it =

X
j,k,l,

πABCDXijklt (5.5)

It is straightforward to see that by substituting π
−
AX
it by π

−
BX
jt ,π

−
CX
kt ,π

−
DX
lt , formulas analo-

gous to (5.5) can be obtained. In addition:

πABCDXijklt = πABCDXijklt |πABCDijkl (5.6)
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where πABCDXijklt denotes the conditional probability that an individual is in latent class t,

given that he was at level (i, j, k, l) with respect to the joint variable (A,B,C,D). Using

(5.6) we can rewrite (5.4) and (5.5) as:

πXt =
X
i,j,k,l,

πijklπ
ABCDX
ijklt (5.7)

πXt π
−
AX
it =

ÃX
j,k,l,

πijklπ
ABCDX
ijklt

!
|πXt (5.8)

In the same way, if π
−
AX
it is substituted by π

−
BX
jt ,π

−
CX
kt , π

−
DX
lt , then equations analogous to

(5.8) are obtained.

The maximum likelihood estimates of the corresponding parameters in the latent-class

model for all the above are:
a
πijkl =

TX
t=1

a
π
ABCDX

ijklt (5.9)

where
a
π
ABCDX

ijklt =
a
π
X

t

a
π

−
AX

it

a
π

−
BX

jt

a
π

−
CX

kt

a
π

−
DX

lt (5.10)

We can also Þnd that,
a
π
ABCDX

ijklt =
a
π
ABCDX

ijklt | a
π
ABCD

ijkl (5.11)

If pijkl denotes the observed proportion of individuals at level (i, j, k, l) with respect

to the joint variables (A,B,C,D), standard methods prove that the maximum likelihood

estimates satisfy the following system of equations:

a
π
X

t =
X
i,j,k,l

pijkl
a
π
ABCDX

ijklt

a
π

−
AX

it =
X
j,k,l

pijkl
a
π
ABCDX

ijklt | a
π
X

t
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a
π

−
BX

jt =
X
i,k,l

pijkl
a
π
ABCDX

ijklt | a
π
X

t

a
π

−
CX

kt =
X
i,j,l

pijkl
a
π
ABCDX

ijklt | a
π
X

t

a
π

−
DX

lt =
X
i,j,k

pijkl
a
π
ABCDX

ijklt | a
π
X

t

Let π denote the vector of parameters
µ
π
−
X
t , π

−
AX
it ,π

−
BX
jt , π

−
CX
kt , π

−
DX
lt

¶
in the latent class

model, and
a
π denote the corresponding maximum likelihood estimate of the vector. In

order to calculate
a
π, the following iterative procedures are applied:

1. Start with an initial trial value for
a
π, [π(0) = {π

−
X
t (0), π

−
AX
it (0),π

−
BX
jt (0), π

−
CX
kt

(0),π
−
DX
lt (0)}]

2. Use the formula
a
π
ABCDX

ijklt =
a
π
X

t

a
π

−
AX

it

a
π

−
BX

jt

a
π

−
CX

kt

a
π

−
DX

lt to obtain a trial value for
a
π
ABCDX

ijklt replacing

the terms on the right-hand side of this equation by the corresponding components

in π(0).

3. Then, use equation (5.9) to obtain a trial value for
a
πijkl and equation (5.11) in

order to obtain a trial value for
a
π
ABCDX

ijklt . Similarly, use the rest of the equations

to obtain new trial values for
a
π
X

t ,
a
π

−
AX

it ,
a
π

−
BX

jt ,
a
π

−
CX

kt and
a
π

−
DX

lt . Thus a new trial value

for the vector
a
π is obtained.

4. Repeat the procedure starting with the new trial value to obtain the next trial

value for
a
π.

5. The procedure will converge to a solution for the system of equations and to a

corresponding likelihood.

Remark 4 In this iterative procedure a latent class is deleted if the corresponding esti-

mates tend to zero.

46



We compare the solutions obtained using the iterative procedure and see which one

minimizes the chi-squared (X2) statistic

X2 = 2
X
ijkl

fijkl log(fijkl|
a
F ijkl)

fijkl = npijkl ,
a
F ijkl= n

a
πijkl

where
a
πijkl is obtained from (5.9). The maximum likelihood estimate for

a
π minimizes

the equation of X2.

Remark 5 If
a
π is uniquely determined by

a
πijkl, then it is said to be identifiable.

Remark 6 If
a
π is uniquely determined by

a
πijkl, within some neighborhood of π, then it

is said to be locally identifiable.

5.1.2 Some Restricted Latent Structures

The estimation procedure presented in the previous section can be modiÞed in a way to

accommodate models that possess what is called T-class restricted latent structure.

1. Models in which a condition of the following type is imposed upon the parameters:

π
−
AX
i1 =π

−
AX
i2 (i = 1, ..., I)

2. More generally, models in which the T latent classes can be partitioned into α

mutually exclusive and exhaustive subsets T A1 , ...,T Aα where α ≤ T , and /or into β
mutually exclusive and exhaustive subsets T B1 , ...,T Bα , where β ≤ T , such that

π
−
AX
it =π

−
AX
it0 ,

³
t, t

0 ∈ T Aα
´
and π

−
BX
it =π

−
BX
it0 ,

³
t, t

0 ∈ T Bb
´

(5.12)

where α = 1, ...,α; b = 1, ...,β; i = 1, ..., I; j = 1, ..., J .
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3. Models in which, in addition to condition (5.12) the following kind of condition is

satisÞed for certain speciÞed pairs of subscripts, say (α,α∗) and/or (b, b∗):

π
−
AX
it =π

−
BX
jt
0 , (t ∈ T Bα , t

0 ∈ T Bb ),

π
−
AX
it = π

−
AX
i∗t∗

¡
t ∈ T Aα , t∗ ∈ T Aα∗

¢
;π

−
BX
jt = π

−
BX
j∗t∗

¡
t ∈ T Bb , t∗ ∈ T Bb∗

¢
i = 1, ..., I , where there is a one-to-one correspondence between i and j, between i

and i∗ , and between j and j∗.

4. Finally, models which were expressed in terms pertaining to variables A and B, are

extended to other subsets of the m manifest variables in the m-way contingency

table.

To determine whether the estimated parameters in a restricted latent structure are

locally identiÞable, we can use a modiÞed form. Before we refer to this modiÞed form it

is useful to give a sufficient condition for local identiÞability.

Goodman (1974a) proposed a method to study whether π is locally identiÞable and/or

whether
a
π is locally identiÞable. If we combine equations (5.1) and (5.2) our model

becomes:

πijkl =
TX
t=1

πXt π
−
AX
it π

−
BX
jt π

−
CX
kt π

−
DX
lt (5.13)

This formula describes a set of IJKL functions that transform the parameters

µ
πXt , π

−
AX
it , π

−
BX
jt , π

−
CX
kt , π

−
DX
lt

¶

into the πijkl . Since the restrictions (5.3) hold, we need only consider T − 1 of the πXt
only i− 1 of the π

−
AX
it etc.. Thus, we need only consider

T − 1 + (I + J +K + L− 4)T = (I + J +K + L− 3)T − 1
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parameters. Similarly , since
P

ijkl πijkl = 1 we need only consider IJKL − 1 of the
πijkl for (i, j, k, l) 6= (IJKL). When IJKL < (I + J + K + L − 3)T the number of

parameters in the basic set exceeds the corresponding number of πijkl , and so the pa-

rameters will not be identiÞable in this case. If the number of parameters in the basic

set does not exceed the corresponding number of πijkl then, for each πijkl in the basic

set, we calculate the derivative of the function πijkl (equation 5.13) with respect to the

parameters in the basic set. Thus, we obtain a matrix consisting of IJKL− 1 rows and
(I+J+K+L−3)T−1 columns. For example, in the column pertaining to the derivative
with respect to πXt ,

∂πijkl
∂πXt

= π
−
AX
it π

−
BX
jt π

−
CX
kt π

−
DX
lt − π

−
AX
iT π

−
BX
jT π

−
CX
kT π

−
DX
lT

for t = 1, ... , T-1; in the column pertaining to the derivative with respect to π
−
AX
it ,

∂πijkl

∂π
−
AX
st

=


πXt π

−
BX
jt π

−
CX
kt π

−
DX
lt (i = s)

−πXt π
−
BX
jt π

−
CX
kt π

−
DX
lt (i = i)

0 otherwise

for s = 1, ..., i− 1

Replacing the π�s by the corresponding
a
π�s, we have the maximum likelihood estimates

of the parameters in the model. These estimates are locally identiÞable.

We now describe some simple restrictions that would make the parameters in the

latent structure unidentiÞable. First, we consider the case where the T-class model is

such that

π
−
AX
i1 = π

−
AX
i2 , π

−
BX
j1 = π

−
BX
j2 , π

−
CX
k1 = π

−
CX
k2 , π

−
DX
l1 = π

−
DX
l2

In this case, the formula which describes the set of IJKL functions and transforms the

parameters πXt ,π
−
AX
it , π

−
BX
jt , π

−
CX
kt , π

−
DX
lt into πijkl becomes:

πijkl =
TX
t=2

ΘXt π
−
AX
it π

−
BX
jt π

−
CX
kt π

−
DX
lt
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where ΘXt =

 πX1 + π
X
2 , (t = 2)

πXt , (t = 3, 4, ..., T )
. Thus, we can collapse latent classes (1) and (2) to

obtain an equivalent latent structure having T-1 classes rather that T classes.

A second case of restrictions is the one when the T-class model is such that

π
−
BX
j1 = π

−
BX
j2 , π

−
CX
k1 = π

−
CX
k2 ,π

−
DX
l1 = π

−
DX
l2

then we have

πijkl =
TX
t=2

ΘXt Θ
−
AX
it π

−
BX
jt π

−
CX
kt π

−
DX
lt

where ΘXt is deÞned as before and Θ
−
AX
it =


µ
πX1 π

−
AX
i1 + πX2 π

−
AX
i2

¶
/ΘX2 , (t = 2)

π
−
AX
it , (t = 3, 4, ..., T )

. Thus,

we can also collapse latent classes (1) and (2), and the parameters πX1 , π
X
2 , π

−
AX
i1 , π

−
AX
i2 , will

not be identiÞable unless additional restrictions are imposed upon them.

A last case of restrictions is the one when the T-class model is such that

π
−
CX
k1 = π

−
CX
k2 ,π

−
DX
l1 = π

−
DX
l2 .

Then we have

πijkl =
TX
t=2

ΘXt Θ
−
AX
it Θ

−
BX
jt π

−
CX
kt π

−
DX
lt

where Θ�s are equal to the corresponding π0s for t = 3, ...,T, and where

2X
t=1

ΘXt Θ
−
AX
it Θ

−
BX
jt =

2X
t=1

πXt π
−
AX
it π

−
BX
jt

for i = 1, ...,I; j = 1, ... ,J. When T>2 the above equation imposes IJ restrictions on the

Θ�s. Because of (5.3) the number of Θ�s that we need to consider is 2(I + J − 2) + 2 =
2(I + J − 1).
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5.1.3 The EM algorithm for Latent Class Models

The estimation problem of the latent class models is solved via two methods. The

Þrst is the Newton-Raphson approach as used by Haberman (1988). SpeciÞcally, in

this approach, latent class analysis is conceived as a log-linear model that describes the

relation between some manifest variables and a latent variable. This method requires

a relative small number of iterations, allows for the implementation of various types of

constraint on the parameters, and Þnds asymptotic covariances for the estimates as a

by-product.

In the second method, the estimation problem of latent class models can be handled as

an estimation problem with missing data (namely the observations on the latent variable

are missing). SpeciÞcally, we derive maximum likelihood estimates of the parameters

using the EM algorithm (Dempster,Laird and Rubin 1977). In this section we study the

estimation of parameters of LCM via the EM algorithm. Further, we present a review

of the estimation of the unconstrained Latent Class Model using the EM algorithm and

try to Þnd out how it works when there are constraints on the parameters.

The EM Algorithm for the Unconstrained Latent Class Models

As we can see, the EM algorithm maximizes the likelihood function with a distinction

between the observed and missing data. The observed data are the scores of the manifest

categorical variables, and the missing data are the scores of the latent variable. Before

continuing, it is important to note, that latent class analysis assumes a categorical latent

variable with some categories, such that given a level x of this latent variable the manifest

variables are independent.

The estimation method of EM algorithm consists of two steps:

1. The E (expectation) step: In this step we compute the expectations of the unob-

served complete data conditional on the observed incomplete data matrix and the

current parameters estimates.
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2. The M (maximization) step: In this step, we maximize the expected log-likelihood

of the incomplete data matrix as a function of the unknown model parameters.

Assuming a multinomial distribution, the Kernel likelihood of the complete data can

be written as:

Lc =
Y
s,k

(πs,k)
ns,k

where:

πs,k denotes the unobserved probabilities of falling simultaneously in the categories

denoted by vector s (vector of the length of the manifest variables) and the latent class

k , and

ns,k denotes the number of subjects in the sample who have pattern s and fall in class

k.

E-step: In this step the conditional expectation of ns,k has to be formulated. Ac-

cording to the Bayes� theorem we have that

πk|s = πkπs|k/
X
t

πkπs|t, where πs|t =
Y
u

πu,s(u)|k

πv,s(v)|k is the probability of category s(v) for variable v conditional on class k.

Consequently, the conditional expectation of ns,k is

nsπk|s =
nsπkπs|k¡P
t πtπs|t

¢
M-step: In this step the complete -data log likelihood is maximized with respect

to the unknown model parameters πk and πu,s(u), with ns,k replaced by the conditional

expectation (from E-step), denoted as n+s,k. So, we maximize the following:

log(Lc) =
X
s,k

n+s,k log (πs,k) =
X
s,k

n+s,k log

Ã
πk

VY
v

πv,s(v)|k

!
=
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X
s,k

n+s,k log (πk) +
X
s,k

n+s,k

VX
v

log
¡
πv,s(v)|k

¢
(5.14)

Optimization of log(Lc) is achieved using Lagrange multipliers.

Estimation of πk: In this case the Lagrangian can be written as

f1 =
X
s,k

n+s,k log (πk)− α
ÃX

k

πk − 1
!

(5.15)

If we want to maximize equation (5.14) over πk, we should maximize the equation (5.15).

Then by taking derivatives, putting them equal to zero, and solving for α, we get

∂f1

∂πk
=
X
s

n+s,k
πk

− α = 0⇔ α = N

Thus, we have that the estimation of πk is:

πk =
X
s

n+s,k
α
=
X
s

n+s,k
N
.

Estimation of πv,s(v)|k: It is easy to verify the following:

X
s,k

n+s,k

VX
v

log
¡
πv,s(v)|k

¢
=

VX
v

IvX
i

KX
k

n+v,i,k log πv,i|k

where

πv,i|k is the unknown conditional probability, for which the side condition
P

i πv,i|k = 1,

and

n+v,i,k is deÞned as the number of subjects in category i of variable v and simultane-

ously, in class k (updated value of nv,i,k from the E-step).

So, the function to be optimized becomes

f2
¡
πv,i|k

¢
=

VX
v

IvX
i

KX
k

n+v,i,k log πv,i|k −
VX
v

KX
k

βv,k

Ã
IvX
i

πv,i|k − 1
!
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where the βv,k is a Lagrange multiplier.

Then by taking derivatives, putting them equal to zero, and solving for β, we obtain

∂f2
¡
πv,i|k

¢
∂πv,i|k

=
n+v,i,k
πv,i|k

− βv,k = 0⇔ βv,k =
X
i

n+v,i,k

Thus, we have that the estimation of πv,i|k is :

π+v,i|k =
n+v,i,kP
i n

+
v,i,k

.

The EM Algorithm in Constrained Latent Class Analysis

In this case, we estimate the probabilities when some of them are constrained. Two types

of constraints are considered:

� Fixed value constraints for one or more conditional probabilities πv,i|k (these con-
straints are used to assess whether an estimate of a parameter is signiÞcantly dif-

ferent from some value of theoretical interest)

� equality constraints for one or more sets on conditional probabilities (these con-
straints are used to assess whether the estimate of two or more parameters are

different).

According to Mooijaart and Heijden (1992) the function that is going to be maximized,

for estimation of the conditional probability πv,i|k , is :

f
¡
πv,i|k

¢
=

V,Iv,kX
v,i,k

nv,i,k log(πv,i|k) (5.16)

This function is to be maximized over the unknown parameters πEl and the unknown

free parameter πv,i|k.

Before going to the estimation procedure, it is important to make some useful nota-

tion. Thus, a set of elements πv,i|k is constrained to
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1. Þxed values (F)

2. free values (G), and

3. equality values (L), denoted by El (l = 1, 2, ..., L), { El consists of elements πv,i|k

that are constrained to be equal}.The union of the sets El is denoted as E, and the

elements πv,i|k in set El are equal to πEl .

Hence, the equation (5.16) can be rewritten as

f
¡
πEl, πv,i|k

¢
=

LX
l

nEl log πEl +
X
v,i,k,
v,i,k∈G

nv,i,k log πv,i|k +
X
v,i,k,
v,i,k∈F

nv,i,k log πv,i|k (5.17)

We are going to maximize this equation (5.17) using Lagrange multipliers. There are VK

different variables and latent classes (indexed by v and k). The restrictions that hold for

each variable - latent class combination are: LX
l

dl,v,kπEl +
X
i

v,i,k∈G

πv,i|k

 =

1− X
i

v,i,k∈F

πv,i|k

 ≡ cv,k (5.18)

The constrained function, including the Lagrange multipliers, can now be written as

f ∗
¡
πEl ,πv,i|k

¢
=

LX
l

nEl log πEl +
X
v,i,k,
v,i,k∈G

nv,i,k log πv,i|k −

V,KX
v,k

αv,k

 LX
l

dl,v,kπEl +
IvX
i

v,i,k∈G

πv,i|k − cv,k


The derivatives of this function with respect to the unknown parameters are

∂f ∗
¡
πEl, πv,i|k

¢
∂πEl

=
nEl
πEl

−
V,KX
v,k

dl,v,kαv,k
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∂f ∗
¡
πEl, πv,i|k

¢
∂πv,i|k

=
nv,i,k
πv,i|k

− αv,k, i, k ∈ G.

Equating the above derivatives to zero and solving for the parameters, gives

πEl =
nElPV,K

v,k dl,v,kαv,k
(5.19)

πv,i|k =
nv,i,k
αv,k

, i, k ∈ G (5.20)

So, by solving for th VK Lagrange multipliers, αv,k we obtain

LX
l

dl,v,knElP
dl,w,tαw,t

+
nGv,k
αv,k

= cv,k (5.21)

which deÞnes VK equations for VK unknown parameters αv,k. Solving for these para-

meters and substituting into (5.19) and (5.20) gives the solutions of the unknown model

parameters. So, (5.21) is the basic formula that has to be solved.

In some cases there does not exist an explicit solution for αv,k from (5.21), and

thus there are not explicit solutions for the unknown parameters, in others, an iterative

procedure has to be used for solving αv,k from (5.21).

Case 1: No equality constraints for the probabilities in the variable-latent class

combination of variable v in class k.

Case 2: Probabilities in different variable-latent class combinations are not con-

strained to be equal.

Case 3: Probabilities in different variable-latent class combinations are constrained

to be equal, and dl,vk = dlcv,k.

Case 4: Probabilities in different variable-latent class combinations are constrained

to be equal.
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5.2 Latent Class models applied to Brand Switching

Data

5.2.1 Mixed Markov and Latent Markov Modeling

Markov chains have been proposed as possible models for the analysis of brand switching

data many years ago, but this was not a popular approach because of the poor Þt to

the data. The reason for this can be found in two assumptions. First, all consumers

are assumed to follow the same change process, and second it is presumed that the state

space can be measured directly without error.

The Þrst of these assumptions is relaxed in the mixed Markov model by allowing for

heterogeneity in individual transition probabilities. Poulsen (1990), proposed a Mixed

Markov model that follows from the partial segmentation view of buyer heterogeneity.

According to him the buyer population consists of an unknown number of segments that

follow separate Þrst order, non-stationary choice processes. This model is a generalization

of the latent class model which assumes zero-order, non stationary choice models. In the

sequel, we present the Mixed Markov model and some restrictions of this.

Mixed Markov Model

In order to describe this model it is necessary to assume the following buyer structure:

1. The buyer market consists of a Þnite but unknown number of buyer segments (S).

2. A common choice set of alternative brands cC = {A,B,C, ...} correspond to all the
buyers for each purchase occasion.

3. Each buyer belongs exclusively in one segment.
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4. Within a segment s at purchase occasion w, each buyer chooses among cC =

{A,B,C, ...} with probability vector

δ
(w)
is =

³
δ
(w)
A|is, δ

(w)
B|is, δ

(w)
C|is, ...

´
. (5.22)

5. Each buyer makes his choice independently of any other buyer.

In order to avoid computational difficulties, we consider three consecutive purchase

occasions. We have a three-dimensional contingency table, that contains only the counts

of buyer with choice sequence (i,j,k). In this case, we have that:

πs = the probability a buyer belongs to segment s (segment size)

πijk|s = the joint probability for a buyer in segment s to make the sequence (ijk) of

purchases at three occasions

πijk = the marginal or overall probability of observing a buyer with that particular

sequence. Thus, it is obvious that:

πijk =
X
s

πsπijk|s

Additionally, if we take into consideration equation (5.22) we have that:

πijk =
X
s

πsδ
(1)
i|s , δ

(2)
j|is, δ

(3)
k|js (5.23)

This is the fundamental equation of the Mixed Markov model, where πs represents the

size of segment, δ(1)i|s is the initial choice probabilities, and δ
(w)
j|is represents the transition

matrices {i ∈ cC, s = 1, 2, ...S , w = 2, 3, 4, ...,W}.
It is important to mention that some familiar models used to examine the choice

behaviour are restriction of the Mixed Markov model. Some of them are the following:

� The homogeneous Markov model is constrained in the mixed model when the num-
ber of segments is equal to one, namely when S=1.
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� The latent class model is also a special case of the mixed Markov model if the
equality constrains of no feedback effects is imposed: δ(w)j|is = δ

(w)
j|s ∀i, j ∈ cC, s =

1, 2, ..., S. Hence, the zero-order assumption of the latent class model can be tested

within the present model hierarchy of mixed Markov models.

Latent Markov Model

In this kind of Markov model a different structure philosophy has been developed. Specif-

ically, the basic idea is to deÞne a set of behavioural models as states in a Markov model.

These states will be stationary, zero-order models. Shifts between these states will take

place according to a stationary transition matrix.

Neither the states nor the transition matrix of the Markov models are directly ob-

servable, but must be inferred from manifest choices. The entire model is called Latent

Markov model. This kind of model consists of two parts:

� a probabilistic relation between the observed response (manifest variable) and the
unobservable true state (latent variable), and

� the change process operating on the latent states (described by a Markov transition
matrix).

The basic structural assumptions for this model are:

1. There is a Þnite and unknown number S of latent buyer states

2. Each s is described by a stationary probability vector over the choice set cC =

{A,B,C, ...}, δs =
¡
δA|s, δB|s,δc|s,......

¢
. This vector captures the structural relation

between the manifest choices and latent states

3. At any purchase occasion each buyer is in a particular state. Over time, buyers are

allowed to change position according to a stationary transition matrix T = (τ t|s),

denoting the conditional probability of moving to state t, given the present state s

(s, t = 1, 2, 3, ...., S).

59



As in the previous model, for computational reasons we consider three consecutive

purchase occasions. The manifest choices are (ijk) and assume for a moment that the

corresponding states (stu) of each buyer are directly observable. Thus, we can write:

π
(ijk)(stu)

= π(1)s δi|sτ t|sδj|tτu|tδk|u

where π
(ijk)(stu)

is the joint probability of an individual starting s to choose i at the Þrst

purchase occasion, then move to state t and choose j at the next purchase, and Þnally

move to state u and choose k. Because the states are not directly observable, only the

marginal πijk have empirical counterparts, so the Latent Markov model has the following

form:

πijk =
X
s

X
t

X
u

π(1)s δi|sτ t|sδj|tτu|tδk|u

where:

π
(1)
s is the initial state probability, (s = 1, 2, 3, ...S)

δi|s is the choice probabilities, i ∈ , (s = 1, 2, 3, ...S)
T = (τ t|s) is the transition probabilities, s, t = 1, 2, 3, ..., S.

5.2.2 Grover and Srinivasan Model (GS Model)

Grover and Srinivasan (1987) developed an innovating method to extract market struc-

ture from brand switching data by using latent class analysis. To capture the hetero-

geneity in household�s choice probabilities, they divide the total population of households

into brand loyal segments and switching segments. Households within each switching seg-

ment are assumed to follow a zero-order switching behaviour and also are assumed to be

homogeneous in their choice probabilities. Moreover, they discuss how within - segment

heterogeneity in choice probabilities can be incorporated in the latent class models.

In this model the main assumption is the one that refer to stationarity. This as-

sumption gives the possibility to approximate the stochastic brand choice behaviour of

consumers as a zero order process. Thus, a consumer�s brand choice probabilities at a
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purchase occasion are assumed to be unaffected by the previous purchase history. Also,

the assumption of stationarity implies that the consumer�s choice probabilities can be

taken to be constant over the time period.

Let n denote the number of brands in the product class of interest. It is assumed that

the heterogeneity can be captured adequately by:

1. n brand loyal segments corresponding to the n brands, l = 1, 2 , . . . , n

2. m switching segments, k = 1, 2, . . . , m.

A consumer that belongs to a brand loyal segment l will always purchase brand l

with probability one during the time period. So, in this case, there is no within-segment

heterogeneity. Considering segment l, the proportion Sijl of consumers who buy brand i

on one purchase occasion and brand j on another purchase occasion is given by:

Sijl =

 1 if i = j = l

0 otherwise

that is, segment l consumers will purchase only brand l on both purchase occasions.

For switching segments, let pik denote the probability of choosing brand i . Thus,

pik is the market share of brand i in segment k. It follows that pik ≥ 0 for i = 1, 2,

3, ...,n; k = 1, 2, 3,....,m and
Pn

i=1 pik = 1 for k=1,2,...,m. Because the choice process

is assumed to be zero order and stationary, the within -segment k probability of buying

brand i on one purchase occasion and a different brand j on another occasion is given by:

Sijk = pikpjk for i 6=j. The within-segment k probability of buying the same brand i on
two purchase occasions is given by: Siik = pikpik = p2ik for i =1, 2, . . . , n.

Let Sij be the theoretical proportion of consumers who buy brand i on one occasion

and different brand j on another occasion in the entire market. Then we have that :

Sij =
nX
l=1

VlSijl +
mX
k=1

WkSijk, for i 6= j
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where:

Vl (the proportion of consumers in the total market who are loyal to brand l) ≥ 0 for
l = 1, 2, ..., n

Wk ( the proportion of consumers belonging to switching segment k) ≥ 0 for k =

1, 2, ...,m, and
nX
l=1

Vl +
mX
k=1

Wk = 1.

According to the above assumptions, it follows that Sijl = 0 since i 6= j. This means
that there is no brand switching by loyal consumers. Moreover,the proportion in the

entire market who buy the same brand i on both purchase occasions can be computed.

In this case we have:

Sii = Vi +
mX
k=1

Wkp
2
ik , for i = 1, 2, ..., n (5.24)

Further, the proportion of consumers in the entire market who buy brand i on one

purchase occasion and brand j on another purchase occasion can be computed. Thus, we

have:

Sij =
mX
k=1

Wkpikpjk , for i 6= j (5.25)

Using the weights (relatives sizes of the segments) {Vi} and {Wk}, we can get the

aggregate market share:

MSi = Vi +
mX
k=1

Wkpik, for i = 1, 2, ..., n.

The above equations (5.24) and (5.25) are the best approximations to real data because of

assumptions such as stationarity and zero order and because of sampling ßuctuations in

obtaining the empirical proportion. In order to present these equations more compactly,

we adopt the following notation:

h = 1, 2, . . ., n+m : denotes the segments
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βh = is the proportion of all consumers who belong to segment h

qih = is the probability with which segment h consumers buy brand i.

5.2.3 Jain, Bass and Chen Model (JBC Model)

Jain, Bass and Chen (1990) developed another method in order to estimate a model that

explicitly incorporates within-segment heterogeneity in choice probabilities. They use a

zero order household purchase behaviour model which is similar to that used by Grover

and Srinivasan but it operationalizes household heterogeneity in choice probabilities in

a different manner. First, they develop a stochastic model of household purchasing

behaviour at the segment level under the following assumptions:

� All households follow a zero-order choice process in each segment,

� The choice probabilities of each household are constant over the purchase occasions,
and

� The choice probability vector of households is Dirichlet distributed over the seg-
ment.

In a second step, they aggregate the model to the market level by summing over all

the segments. It is important to note that this aggregate model cannot be estimated

by using the conventional latent class model estimation procedure. They propose an

iterative estimation procedure to estimate the parameters of such a model by using brand

switching data.

In order to incorporate the heterogeneity into a stochastic brand choice model, it is

necessary to make some distributional assumptions.

1. The probability distribution that describes the multi-brand buying behaviour, is the

Dirichlet compound multinomial distribution. This distribution has the following

form:

Multinomial (
−
P1,

−
P 2, ...,

−
Pn) ∩Dirichlet (α1,α2, ...,αn)
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where ∩ denotes a compounding operator. This multinomial distribution refers to
the distribution of purchases of an individual household that selects from among n

brand with probability vector
−
P= (

−
P1,

−
P 2, ...,

−
Pn) on each purchase occasion. The

probability vector
−
P across the heterogeneous population of households follows a

Dirichlet distribution with parameters (α1,α2, ...,αn).

2. For an individual household the probabilities
−
P i, i = 1, ..., n are constant on each

purchase occasion and therefore the probability vector does not vary over the pur-

chase occasion.
E(Pi) = Pi, E(

−
P i,

−
P j) = (1− θ)PiPj

V ar(
−
Pi) = θPi(1− Pi)

Cov(
−
P i,

−
P j) = −θPiPj

where Pi = αi/α , θ = 1/(1− α), and α =
Pn

i=1 αi.

From the assumption of Dirichlet distribution for the probability vector
−
P= (

−
P1,

−
P 2

, ...,
−
Pn) we obtain the following results:

� The expression E( −P i,
−
P j) indicates that the expected switching from brand i to

brand j on two consecutive purchase occasions is proportional to the product of

their market shares.

� The constant of proportionality (1− θ) is a number between 0 and 1 that is inde-
pendent of the brands in the probability vector.

� Rewriting the variance of −
P i in the form θ = var(

−
P i)/Pi(1 − Pi), it can be seen

that θ can be viewed as a measure of relative heterogeneity in that it expresses

the validity
−
Pi as a proportion of the total variation Pi(1− Pi) under the complete

heterogeneity.

Suppose that the population of N households can be grouped into L segments. Con-

sider the stochastic process {Xt, t ∈ T} where Xt denotes the brand purchased on occa-
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sion t by a randomly drawn household. DeÞne
−
Pij as

−
Pij= P (Xt = i, Xt+1 = j) i, j = 1, 2, ..., n.

The event P (Xt = i,Xt+1 = j) can happen in L mutually exclusive ways. The randomly

drawn household may belong to any of the L segments and then choose brands j and l

on the two consecutive purchase occasions. Let wk be the probability that the household

belongs to Sk, the kth segment (k = 1, 2, . . . , L) and deÞne
−
P

(k)
ij = P (Xt = i, Xt+1 =

j/Sk). Then,
−
P ij=

PL
k=1

−
P
(k)

ij wk where wk ≥ 0 for all k and
PL

k=1wk = 1 {wk is the

relative size of the kth segment}. Taking expectations on both sides over all households

in the population, we obtain:

Pij =
LX
k=1

P
(k)
ij wk (5.26)

where Pij and P
(k)
ij denote the expected values of

−
P ij and

−
P

(k)
ij , respectively.

Using the assumptions that the households follow a zero order purchase behaviour

in each segment and that the choice probability vector is Dirichlet distributed over the

households in each segment, we obtain the following equations:

P
(k)
ij = (1− θk)P (k)i P

(k)
j , for all i 6= j (5.27)

P
(k)
ii = θkP

(k)
i + (1− θk)P (k)i P

(k)
i , for all i 6= j (5.28)

where θ denotes the heterogeneity parameter for the kth segment.

Substituting equations (5.27) and (5.28) in equation (5.26) we obtain the following

results:

Pij =
LX
k=1

(1− θk)P (k)i P
(k)
j

Pii =
LX
k=1

h
θkP

(k)
i + (1− θk)P (k)i P

(k)
i

i
wk =

LX
k=1

θkP
(k)
i wk +

LX
k=1

(1− θk)P (k)i P
(k)
i wk.
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The parameters in the above equations satisfy the following conditions:

1. P (k)i , θk, wk ≥ 0 for all k = 1, 2, 3, ..., L and i = 1, 2, ..., n

2.
PL

k=1wk = 1 and
PL

k=1 P
(k)
i =

PL
k=1 P

(k)
j = 1 for all k.

The above equations and the restrictions represent our model.

Remark 7 When θk = 0 for all k, the model becomes:

Pij =
LX
k=1

wkP
(k)
i P

(k)
j

This is the Grover and Srinivasan model excluding the brand loyal segments. Also, this

equation implies that all households within a segment are homogeneous in their choice

probabilities.

Remark 8 This model is a general type of latent class model. In fact it can be viewed

as an extension of equation Pij =
PL

k=1wkP
(k)
i P

(k)
j where the parameters P (k)i and P (k)j

are not Þxed constants but random variables distributed over the population.

Estimation Procedure: Jain, Bass and Chen (1990) proposed an alternative max-

imum likelihood method for estimating the parameters of the model. They deÞne bk =

θkwk, and substitute for bk, θkwk. Thus, the model can be transformed as

Pij =
LX
k=1

(wk − bk)P (k)i P
(k)
j for i 6= j (5.29)

Pii =
LX
k=1

bkP
(k)
i +

LX
k=1

(wk − bk)P (k)i P
(k)
i (5.30)

From equations (5.29) and (5.30) wk, bk, P
(k)
i and P (k)j can be estimated.As the estimations

of wk and bk are obtained, it is easy to estimate the parameter θk. The procedure for

estimating wk, bk, P
(k)
i and P (k)j consists of two stages.
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1. Derivation of the maximum likelihood estimates of the parameters wk, P
(k)
i and

P
(k)
j , for Þxed bk�s.

2. Performing a search over the bk�s to Þnd the best bk�s that maximize the likelihood

function.

Starting with a different set of initial values for the various parameters, we compare

the solutions obtained by this iterative procedure to seek the solution that gives the

minimum value of the chi-square statistic. XX2 = 2
P

i

P
j fu log

µ
fu/

a
F u

¶
where

fij/ = Nrij,
a
F ij= N

a
Pij

rij = the observed values of the proportion of households in the (i, j)th cell of the

contingency table
a
Pij= the estimated proportion values that are obtained from the iterative procedure,

and

N =the total number of households in the sample.

Then, we minimize the equation ofX2 through a search for possible values of bk�s. The

solution that minimizes the above equation of chi-square, yields the maximum likelihood

estimates for the parameters.

The chi-square statistic in the above equation can be used to test the null hypothesis

(Ho) that the L- class latent structure is true. When H0 is true and the parameters of

the model are locally identiÞable, the statistic is asymptotically distributed as chi-square

with (n2 − 1)− L(L− 1)− (n− 1)L = n2 − (n+ 1)L degrees of freedom.
Determining the number of segments: In latent structure analysis, one must

prespecify the number of segments before estimating the parameters of the model. A

way to determine the number of segments is to use a factor analytic model. There is a

resemblance between this model and the latent structure model.

Let αk = wk − bk. By replacing bk with wk − αk equation (5.30) can be rewritten as

Pii =
LX
k=1

wkP
(k)
i +

LX
k=1

αkP
(k)
i (P

(k)
i − 1) (5.31)
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The Þrst term on the right side of this equation represents the aggregate market share

of brand i, Pi. Therefore, this equation can be rewritten as:

Pi − Pii =
X

αkP
(k)
i (P

(k)
i − 1) (5.32)

We have assumed that the choice probability vector (
−
P (k)1 ,

−
P
(k)

2 , ...,
−
P (k)n ) in segment k

follows a Dirichlet distribution. Using the expressions V ar(
−
P (k)i ) = θP (k)i (1 − P (k)i ),

Cov(
−
P
(k)

i ,
−
P
(k)

j ) = −θP (k)i P
(k)
j the following results are obtained:

Pij =
X
(−αk/θk)Cov(

−
P
(k)

i ,
−
P
(k)

j ) (5.33)

Pi − Pii =
X
(αk/θk)V ar(

−
P
(k)

i ) (5.34)

By deÞning tk = αk/θk the last equation can be rewritten as:

Pij =
X

tk[−Cov(
−
P
(k)

i ,
−
P
(k)

j )] (5.35)

Pi − Pii =
X

tkV ar(
−
P
(k)

i ) (5.36)

If we consider a matrix T with diagonal elements Tii = Pi − Pii and the off-diagonal
elements Tii = Pij, it is obvious that T is the weighted sum of L variance -covariance

matrices. This procedure is analogous to principal components analysis, where a variance-

covariance matrix is factored into a set of additive matrices so that this set of matrices

best approximates the original variance-covariance matrix.

Therefore, we can apply factor analysis methods in order to obtain the number of

segments for the latent class model. Also, from the above approximation, we conclude

that a latent class model can be viewed as a discrete version of a factor analytic model.
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5.3 Other Approaches with Latent Class Analysis

5.3.1 Grover and Dillon model

Grover and Dillon (1985) developed a probabilistic model which provides a general, ßex-

ible framework which can be used to test a hypothesized hierarchical market structure.

The general probabilistic model can be easily implemented since it can be translated in

terms of a restricted latent class models.

The basic concept of the general probabilistic model is simple. Each household can be

classiÞed into one of a set of mutually exclusive and exhaustive latent aspect classes. The

latent aspect classes reßect the different evaluation strategies that are being used and

deÞne the likely pattern of switching that can occur since they determine the speciÞc

set of alternatives that a household considers when making a purchase decision. An-

other property of the model is that within a latent aspect class the purchase-to purchase

transition obey the law of the local independence.

Before presenting the model we adopt some useful notation:

N1 = the number of brands from which the household can choose at the Þrst purchase

occasion

N2 = the number of brands from which the household can choose at the second

purchase occasion

M = the number of latent aspect class types

1= a response vector with N1 elements consisting of 1�s and 0�s which indicates

purchase or non purchase behaviour with respect to the Þrst purchase occasion.

2 = a response vector with N2 elements consisting of 1�s and 0�s which indicates

purchase or non purchase behaviour with respect to the second purchase occasion.

O1,2 = a response vector of N1 +N2 dichotomously scored elements that reßect the

household�s observed purchase behaviour across the two purchase occasions.

E(m
)

1,2 = a response vector of N1 + N2 dichotomously scored elements that reßect

the household�s expected purchase behaviour across the two purchase occasions for a
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household belonging to the mth latent aspect class.

Thus, the general model has the following form:

P (O1,2) =
MX
m=1

P (O1,2/E
(m)

1,2 )P (m)

where:

P (m) denotes the probability that a household is using the aspect strategy associated

with the m− th latent aspect class .
P (O1,2/E

(m)

1,2 ) is a conditional probability. All these link the observed purchase history

vectors to the expected purchase vectors which are governed by the latent aspect classes.

A general representation for these conditional probabilities is:

P (O1,2/E
(m)

1,2 ) =
2Y
t=1

NtY
i=1

P (it/m)
ait(1− P (it/m))1−ait

where:

P (it/m) is the conditional probability that the i-th brand is purchased at the t-th

purchase occasion (t=1 or 2) given that the household belongs to the m-th latent aspect

class.

1− P (it/m) is the conditional probability that the i − th brand is not purchased at
the t-th purchase occasion (t = 1 or 2) given that the household belongs to the m − th
latent aspect class.

ait =

½
1, if the i− th element found on O1,2 is non-zero
0, otherwise

Note: The conditional probabilities can be used to compute transition probabilities.

Also the P (it/m) are not the transition probabilities since the conditioning is with respect

to the latent aspect classes and not to the brand purchased at a given purchase occasion.
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So, the transition probabilities can be obtained by noting that:

P (it/m) = (P (it/m)/P (it))P (m)

where P (it) is the marginal probability of purchasing the i − th brand at the t − th
(t = 1or 2) purchase occasion. The transition probabilities, denoted by ti1i2 , can now be

obtained from the following relationship: ti1i2 =
PM

m=1 P (m|i1)P (i2|m).

5.3.2 Zahorik�s Approach

Zahorik (1994), developed an aggregated model of market structure based on brand

switching data which illustrates the market as a set of overlapping clusters of substi-

tutable brands. During this trial, he generalized earliers models based on latent class

analysis (e.g. Grover and Srinivasan model, Jain, Bass and Chen model) by accounting

for heterogeneity among consumers and by allowing for brand switching across clusters

a way of depicting variety seeking .

According to Zahorik, the term sequence refer to any two consecutive choices of

brands in a product category, while the term �switch� speciÞcally refers to sequences of

two different brands. Moreover, the model assumes that all brands switches are of two

types:

1. Consistency Switches (CSs) which involve two brands perceived to be highly sub-

stitutable, including successive purchases of the same brands, and

2. Variety Switches (VSs) which involve brands perceived to differ on some important

attribute.

There are many reasons why consumers might switch brands, even when the intended

usage occasions are quite similar. In particular, the consumer may switch because:

1. He considers the two brands highly substitutable for the intended use.
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2. He Þnds the favorite brand out of stock.

3. He switches to a brand which is being offered on deal.

4. He is bored or satiated with some aspect of the last brand purchased and may

consciously seek a brand which will provide some variety.

5. He experiences a change in needs or circumstances, such as caused by the onset of

cold weather, changes in the household membership, a change or diet, etc.

6. He tries an unfamiliar brand to learn about it.

7. He has undergone a change of perceptions of the relative merits of brands in the

market due to new marketing programs, social inßuences, changes in personal val-

ues, or other reasons.

The models that were developed by Zahorik were extensions of the procedure de-

scribed by Rao and Sabavala (1981) in which market structure for an individual was

derived from switching patterns using cluster analysis. In their model (RS), a consumer

perceives market structure as a hierarchy, with branching nodes representing the different

levels of the major attributes on which brands are classiÞed. Those brands grouped to-

gether at the end of the branches are perceived as essentially equivalent and substitutable

to the consumer.

The individual model assumes that a consumer�s history of purchase sequences con-

sists of strings of zero-order CSs within PACs, separated by occasional (higher-order)

VSs across PACs, as in the �leapfrog� models. The zero-order assumption within PACs

is made under the following rationale: Once a consumer has decided upon a particular

PAC for a speciÞc choice occasion, by deÞnition the brands within the PAC differ on

only unimportant attributes, so past purchase history should not alter one�s usual brand

choice probabilities. The probability that a given purchase sequence is from brand i to

brand j, is

φij = γij + vij + error
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where γij is the probability that a given sequence is A CS from brand i to brand j, and

vij is the probability that a given sequence is a VS from brand i to brand j.

The aggregate model follows from the individual model by taking expectations across

the consumers. In order to achieve a workable parsimonious model, some assumptions

about the joint distribution of individual probabilities would be made:

1. Brand switching within PACs is proportional to the brands� shares within the PAC.

2. Variety seeking switching between brands in different PACs is proportional to the

brands� shares of sales within the PACs.

3. One�s likelihood of switching between two speciÞc PACs for variety is uncorrelated

with the brands one chooses in those PACs.

The extensions of the model to include within PAC heterogeneity and cross-PAC

switching preclude the use of latent class analysis for estimating the parameters.
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Chapter 6

A Comparative Analysis for Brand

Choice Models

6.1 Linear Learning, Markov and Bernoulli Models

According to the previous chapters, the most known models of brand choice are Linear

Learning Models, Markov and Bernoulli models.

Givon and Horsky (1978) developed a model that describes the individual�s brand

choice behaviour. More speciÞcally a brand choice behaviour of an individual consumer

is assumed to be described by either Bernoulli, Markov or Linear Learning models. The

Linear Learning model is the more general of the three models since the other two are

constrained versions of it (zero-order Bernoulli and the Þrst order Markov models).

An individual following the Linear Learning model in his brand choice behaviour will

choose brand A at time t+1 out of a choice set A and
−
A with conditional probability

Pr(At+1|Xt) = α+ βXt + λPt, α, β,λ ≥ 0;α+ β + λ ≤ 1 (6.1)

where At is the event of choosing brand A at time t,
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Pt is the probability of that event, and

Xt =

½
1 if At occurs
0 otherwise

.

The probability of choice (6.1) is updated with each purchase by a non-feedback

constant, α, by a feedback parameter β which represents the last experience with the

brand, and by a fraction λ of the previous probability Pt. The magnitude of λ is related

to the consumer�s learning rate. If he learns fast, λ will be small and vice versa. If λ

= 0, the linear learning model is equivalent to a Þrst-order Markov process with purchase

decisions as states having transition matrix:

1 0

P (j|i) =
1

0


α+ β 1− α− β

α 1− α


In Markov model all households are going to have the same parameters as in the case

of Linear Learning Models.

If α = β = 0 and λ = 1, then Pt+1 = Pt, which is the zero-order Bernoulli process. It

can be proven that the feedback parameters β and λ are constrained to be nonnegative

and equal for both brands. This precludes the possibility that an individual may have

different experiences with different brands and even a negative experience with a certain

brand. These limitations can be avoided if the parameters for both brands are allowed

to differ. The individual�s probability revision operators for the two brands will now be:

Pr(At+1|Xt) = α1 + β1Xt − β2
−
Xt +λ1Pt − λ2

−
Pt
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Pr(At+1 |Xt) = α2 + β1Xt − β2
−
Xt +λ1Pt − λ2

−
Pt, α2 = 1− α1

where the feedback parameters β1, β2,λ1,λ2 may be either positive or negative.

Population Heterogeneity

When the entire population, rather than just the individual, is considered, the parameters

of the individual Linear Learning model will vary in their values across individuals.

The parameters α, β,λ are assumed to be jointly distributed according to a Dirichlet

distribution with a mass point at α = β, λ = 1 and a mass plane at λ = 0. Thus,

f(α, β,λ) =

=



w1 , if α = β,λ = 1

w2
Γ(v3+v4+v6)
Γ(v3)Γ(v4)Γ(v6)

αv3−1βv4−1(1− α− β)v6−1 , if λ = 0,α,β > 0,α+ β ≤ 1
(1− w1 − w2) Γ(v3+v4+v5+v6)

Γ(v3)Γ(v4)Γ(v5)(Γ(v6)
αv3−1βv4−1λv5−1(1− α− β − λ)v6−1 ,

if α, β,λ > 0,α+ β + λ ≤ 1; w1, w2 ≥ 0;w1 + w2 ≤ 1; v3, v4, v5, v6 > 0

The weights w1, w2 and (1−w1−w2) give the proportions of the population following the
Bernoulli, Markov and Linear Learning processes, respectively. The initial probability

P is assumed to be distributed independently of α, β,λ according to a Beta distribution

with a mass point at P = 0:

f(p) =

(
w0, if p = 0

(1− w0) Γ(v1+v2)
Γ(v1)Γ(v2)

pv1−1(1− p)v2−1, if 0 < p < 1; 0 ≤ w0 ≤ 1; v1, v2 > 0
.

The amount of consumer heterogeneity to be expected under different market condi-

tions may be predictable. The diversity of individual experiences with brand A is likely

to be related to the proportion of product class consumers purchasing the brand at least

some of the time. If such a proportion is high, it is indicative of positive experiences by
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most consumers; if it is low, the diversity of experiences is probably large, few consumers

have a positive experience and many have either no experience or a negative experience.

Market Share Models

The market share process will be derived through the aggregation of the individual con-

sumers.

Heterogeneous Market Share Models

For an individual consumer with process parameters θ = (α, β,λ, P ) and a choice of

X0 at time t = 0, the probability of choosing brand A at time t equals

Pr(At|X0, θ) = (β + λ)t−1 (βX0 + λP ) + α1− (β + λ)
t

1− β − λ (6.2)

Given an initial market share m0 the predicted heterogeneous market share of brand

A at time t, mr
t , depends on the expectation of the individual transition probabilities:

mr
t = m0 E

θ
[Pr(At|A0, θ)] + (1−m0) E

θ

·
Pr(At|

−
A0 θ)

¸
(6.3)

Using equation (6.3) and substituting Pr(At|X0 = 1, θ) for Pr(At|A0, θ) and Pr(At|X0 =
0, θ) for Pr(At|

−
A0, θ) the last equation becomes:

mr
t = m0E

£
(β + λ)t−1 β

¤
+ E

£
(β + λ)t−1 λ

¤
E(P ) + E

·
α
1− (β + λ)t
1− β − λ

¸
(6.4)

For the nested models Markov and Bernoulli, the predictions of market share mr
t are,

respectively,

m0E(β
t) + E

·
α
1− βt
1− β

¸
and E(P ).
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6.2 Brand Switching Analysis via Latent Class Mod-

els

In the community of Marketing, a type of latent models are mixture models. These are

relevant when �measurements are available from experimental units which are known

to belong to a set of classes, but whose individual class-membership are unavailable�

(Titterington, Smith and Markov, 1985). One special case of latent structure analysis,

called latent class models, has attracted several marketing researchers. Lazarfeld (1950)

saw latent class analysis as a measurement model, suitable for categorical or qualitative

data and similar to factor analysis of quantitative data. Nevertheless, the interpretation

of the model within marketing has been somewhat broader. Poulsen (1982) shows that

the latent class model applied to panel data on brand choice, represents a mixture of zero-

order, non-stationary choice processes. Close in spirit to the application in Poulsen are the

works of Grover and Srinivasan (1987, 1989), where a latent class model was considered.

Grover and Srinivasan also referred to the applicability of these models which provide a

segmentation of the buyers in the market and insights into the competitive structure of the

brands. Poulsen (1990) generalizes the latent class model in two separate directions, both

relevant to the analysis of brand choice. Firstly, the assumption of zero-order behaviour,

inherent in the latent class model, is relaxed by allowing Þrst or higher order processes,

leading to a mixture of Markov chain models. Secondly, he formulates a Markov model

with states representing behavioural models that allow latent change processes.

A distinct advantage of latent structure analysis is that it simultaneously addresses

two important issues facing a product manager: market structure analysis and market

segmentation (Grover and Srinivasan, 1987). Also, it provides managerially useful infor-

mation as estimates of the segment sizes and within segment brand shares inturn bear on

the design of effective marketing strategies. Jain, Bass, Chen (1990) investigated issues

concerning latent structure analysis as applied to the market structure.

In order to compare the previous models (Grover and Srinivasan model {GS model}
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and Jain, Bass, Chen model {JBC model}) we will illustrate the proposed approaches

with a common application to the instant coffee market. Both approaches used the

following cross-classiÞcation matrix (Grover and Srinivasan, 1987, pp146) :

Instant Coffee Cross−ClassiÞcation Matrix

HP TC TC FL MH S S MX N N B

D C D C C D D C C D D

R FD FD R R R FD FD R R FD

HP D R 93 7 17 19 18 43 1 4 6 7 10

TC C FD 9 80 12 11 24 7 4 2 6 3 3

TC D FD 9 14 46 3 7 7 4 2 2 0 9

FL C R 19 18 4 82 29 14 0 4 9 2 6

MH C R 26 11 6 35 184 24 3 11 18 6 6

S D R 15 13 8 13 28 127 4 3 3 8 8

S D FD 2 0 3 2 1 7 17 3 0 1 4

MX C FD 4 3 4 3 6 5 2 27 1 0 4

N C R 5 3 2 4 16 4 0 1 46 9 2

N D R 6 1 4 1 5 9 0 0 11 15 22

B D FD 10 4 4 4 2 10 2 2 5 2 27

Number of households buying row brand on the Þrst purchase occasion and column brand on the

second purchase occasion.

HP= High Point, TC = Taster�s Choice, FL = Folgers, MH = Maxwell House, S = Sanka, MX =

Maxim, N = Nescafe, B = Brim

D = Decaffeinated, C = Caffeinated

FD = Freeze dried, R = regular (spray dried)

***************************************************************************

This table contains data that come from the MRCA panel data (1981). In particular,
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this dataset consists of 4657 households that made at least two purchases of one or more

of the 11 brands during a 12-month period. In order to ensure statistical independence

of the observations in the cross-classiÞcation table, Grover and Srinivasan used only the

data of the Þrst two purchases of a household (among the set of 11 brands). This is the

table that the authors used in both cases.

In this case, Jain and Rao (1994), compared the two proposed models by Grover and

Srinivasan (1987) and Jain, Bass nad Chen (1990), respectively. They concluded the

following:

1. The Latent Class Analysis is a method that gives important information about buy-

ers behaviour. SpeciÞcally, it gives information on market structuring and market

segmentation. It recovers the underlying structure in a product structure. Even if

the market consists of overlapping segments, it will uncover such a structure.

2. By comparing the two proposed models, it is obvious that both GS and JBC ap-

proaches account for heterogeneity in households preferences. The choice of a par-

ticular approach will therefore be dictated by a prior knowledge of the market. If

there exist brand loyal segments within the product category then the GS approach

is preferable since JBC approach cannot provide estimates of the sizes of such seg-

ments. If the population consists of heterogeneous segments but not of brand loyal

types, then the JBC is the appropriate approach.

3. Finally, JBS�s procedure of using a factory analytic approach to determine the

number of segments in a latent class models works very well. Hence, it should be

considered for specifying the number of segments in latent structure analysis.
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Chapter 7

Conclusions

The successful design and development of a product strategy is determined by the mar-

ket researcher ability to obtain knowledge of the demands and expectations of his target

group. Such knowledge requires a deep investigation as far as consumer behaviour is con-

cerned. Although, in previous years results on consumer behaviour were easily extracted

based on daily sellings, nowadays due to the complexity of market and huge number of

available products, this is impossible. Thus, the contribution of the science of statis-

tics in the estimation of the basic parameters, which constitute the consumer proÞle, is

considered essential.

In this thesis, a review of stochastic consumer behaviour models has been attempted.

Firstly, emphasis has been given to the statistical analysis of market data by Þtting a

variety of stochastic models classiÞed according to �when�, �what� and �how� purchase

occurs. Thus, we referred to purchase incident models usually used to predict �when�

and �how much� purchases occur in a speciÞc time interval. A class of purchase incident

models dealt with extensively in this thesis is the NBD models as well as extensions of

this. Moreover, the model of interpurchase times at the individual level is referred too.

As far as brand choice models are considered, we focused on zero-order models, Markov

models and linear learning models. Finally, latent class models applied to consumer

behaviour were dealt with.
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It is obvious from the above, that several approaches have been suggested in the

literature in order to cope with the needs of market research. The analysis of market using

latent variables has grasped the interest of many marketing researchers, due to several

factors. Progress has been made in methodological as well as computational capabilities.

Moreover, the increase in the supply of single source and other types of panel data has

improved the availability and quality of the basis for applying these methods.

Latent models offer a framework for analysing and interpreting buyer behaviour by

focussing on the underlying structure such as segment-membership and segment proÞle.

By segmenting buyers according to their behaviour one manages to identify buyers that

differ signiÞcantly and thus seek for explanations regarding their buying behaviour. Un-

derstanding the underlying reasons for an observed behaviour will increase the ability to

predict future behaviour, which is of central importance to the marketer.
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